The Journal of Systems and Software 83 (2010) 2513-2527

Contents lists available at ScienceDirect

i

of
ans

o
AT

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Enhancing middleware support for architecture-based development through
compositional weaving of styles

Sam Malek*, Harshini Ramnath Krishnan, Jayalakshmi Srinivasan

Department of Computer Science, George Mason University, 4400 University Drive, MS 4A5, Fairfax, VA 22030, United States

ARTICLE INFO ABSTRACT

Article history:

Received 14 April 2010

Received in revised form 21 July 2010
Accepted 22 July 2010

Available online 30 July 2010

Architecture-based software development has been shown as an effective approach for managing the
implementation complexity of large-scale software systems. Architecture-based development is often
achieved with the help of a middleware, which provides implementation-level counterparts for the
architectural modeling constructs. Such a middleware automatically ensures that implemented system
accurately embodies the properties encoded in its architectural models. However, existing middlewares
do not provide sufficient support for architectural styles. This is due to the crosscutting structure of
styles that impacts the behavior of every other architectural construct, and hence the corresponding
middleware facilities. We present an aspect-oriented approach that alleviates this problem by weaving
the stylistic concerns with the rest of the middleware. The approach decouples stylistic concerns from
other middleware facilities, which in turn improves the middleware’s understandability and flexibility,
and enables rapid composition of hybrid styles. We evaluate the approach and describe our experiences

Keywords:

Software architecture
Architectural style
Aspect-oriented programming
Middleware

by providing support for several well-known styles using two open-source middleware platforms.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Software engineering researchers and practitioners have suc-
cessfully dealt with the increasing complexity of software systems
by employing the principles of software architecture. Software
architectures provide design-level models and guidelines for com-
posing software systems in terms of components (computational
elements), connectors (interaction elements), and their configu-
rations (also referred to as topologies) (Shaw and Garlan, 1996).
Software architectural styles (e.g., Publish-Subscribe, Client-Server,
Pipe-Filter) further codify structural, behavioral, interaction, and
composition guidelines that are likely to result in software systems
with desired properties (Fielding, 2000; Shaw and Garlan, 1996).

For the software architectural models and guidelines to be truly
useful in a development setting, they must be accompanied by
support for their implementation (Shaw et al., 1995). However,
there is a gap between the high-level architectural concepts and
the low-level programming language constructs that are used for
the implementation. This gap requires engineers to maintain a
(potentially complex) mental map between components, connec-
tors, communication ports, events, etc. on the one hand, and classes,
objects, shared variables, pointers, etc. on the other hand.

* Corresponding author.
E-mail addresses: smalek@gmu.edu (S. Malek), hramnath@gmu.edu (H. Ramnath
Krishnan), jsriniva@gmu.edu (J. Srinivasan).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2010.07.050

A more effective approach for architecture-based software
development is to leverage a middleware solution that provides
native implementation-level support for the architectural con-
cepts. Such a middleware platform automatically reduces the
possibility of architectural drift and erosion (Perry and Wolf, 1992).
It alleviates the developers from resorting to manual techniques
for verifying the fidelity of the implemented system with respect
to the architectural models.

Unfortunately, the state-of-the-art middlewares provide imple-
mentation support for some architectural concepts (e.g., compo-
nents, ports, events), but not adequate support for others (Malek
etal., 2007), such as explicit connectors (Mehta et al., 2000), which
are usually distributed across the different implementation-level
modules as combinations of method calls, shared memory, net-
work sockets, and other facilities provided by the middleware. Also,
modern commercial middleware platforms do not fully support
architectural styles. They ignore, mimic, or at best assume a partic-
ular style. In turn, instead of streamlining the architecture-based
development of software systems, they form an obstacle—the soft-
ware architect is forced to choose a style that is best supported by
a given middleware platform, as opposed to a style that suits the
requirements of a particular software system.

The lack of support for architectural styles stems from the dif-
ficulties associated with their implementation. Often architectural
styles prescribe rules and constraints that impact (crosscut) the
behavior and structure of all the other architectural constructs,
and hence the corresponding middleware facilities (Malek, 2008a).
This in turn makes it difficult to realize the stylistic concerns in the

dx.doi.org/10.1016/j.jss.2010.07.050
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:smalek@gmu.edu
mailto:hramnath@gmu.edu
mailto:jsriniva@gmu.edu
dx.doi.org/10.1016/j.jss.2010.07.050

2514 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

traditional Object-Oriented Programming (OOP) paradigm (Malek,
2008b). At the same time, there is a lack of consensus among the
software engineers on the exact specification and semantic of many
well-known architectural styles, forcing the middleware designer
to realize an interpretation of a style that is not acceptable by oth-
ers. Finally, there are many architectural styles that an architect
may opt to use, making it impossible for the middleware designer
to provide support for all of them.

We present an approach for implementing architectural styles
that is based on the Aspect-Oriented Programming (AOP) paradigm
(Kiczales et al., 1997). We provide an overview of our approach on
top of an existing middleware platform, called Prism-MW (Malek
et al,, 2005). Our approach allows for modularized implementa-
tion of stylistic concerns, which are weaved into the middleware’s
core facilities to generate style specific versions of the middle-
ware.

Separation of the stylistic concerns from the middleware core
facilities has several benefits, including the ability to hierarchically
compose hybrid styles by reusing the existing styles, and the flexi-
bility of changing a system’s architectural style without impacting
the rest of the system. Our approach shifts the responsibility of
making stylistic decisions from the middleware designer to the
software engineer. It allows the engineer to implement support
for a new, potentially domain specific, style in a given middleware
platform.

We also provide an overview of our experience with the devel-
opment for supporting several styles in two middleware platforms,
and their application in the context of a real-world software system.
Our experience corroborates that by providing extensive support
for styles in middleware, it is possible to automatically ensure
that the implemented system accurately embodies the properties
encoded in its architectural models.

The remainder of the paper is organized as follows. Section 2
motivates the research. Section 3 describes our overall approach.
Section 4 provides an overview of Prism-MW. Section 5 demon-
strates the crosscutting structure of styles using Prism-MW. Section
6 details support for several styles on top of Prism-MW using the
proposed methodology. Section 7 shows how the resulting mid-
dleware is used. Section 8 describes the composition of hybrid
styles. Section 9 evaluates the approach. Finally, the paper con-
cludes with a summary of the related work and avenues of future
research.

2. Problems and challenges

Ideally, when fronted with the complexity of designing a large-
scale software system, the architect should have the flexibility to
construct a software architecture that best satisfies the system’s
requirements, irrespective of the candidate middlewares that could
be used for the implementation. However, as observed by other
researchers, including Gorton (2006) and Medvidovic et al. (2003),
this is rarely the case. The ability to go from the system'’s archi-
tectural models to their implementation is consistent with the
Object Management Group’s Model-Driven Architecture method-
ology that consists of two phases: Platform Independent Model
(PIM) and Platform Specific Model (PSM) (MDA). Unfortunately,
deriving PSM from PIM is often extremely challenging and in some
cases not even feasible (Jean et al., 2002). We believe the exist-
ing middlewares’ rudimentary support for styles to be one of the
key culprits in complicating the transformation of PIM to PSM.
As a result, in practice, the engineers are constrained by a subset
of architectural choices, including styles, effectively supported by
available middleware platforms.

In general, existing middleware solutions either do not support
styles at all or fall into one of the following two categories:

e Style supposition: The majority of middleware platforms are
developed with certain intrinsic assumptions about the structural
and behavioral characteristics of the applications that could be
deployed on top of them. These presumed characteristics deter-
mine the style of systems that could be effectively deployed on
top of such platforms. For instance, Java RMI and CORBA make
certain assumptions on the nature of interaction among soft-
ware components (e.g., remote method invocation) that make
them suitable for the development of Client-Server, but not
Publish-Subscribe systems.

Mimicking styles: Even the middlewares that presuppose styles
(e.g., Java RMI, CORBA, and DCOM) lack a sophisticated support
for them. They provide support for some aspects of architectural
styles, such as the communication style (e.g., synchronous versus
asynchronous), but do not support others. For instance, consider
the fact that stylistic rules and constraints on the valid config-
urations of a software system are rarely ensured and enforced
by these middlewares. In turn, making it extremely difficult
to verify the fidelity of the constructed software system with
respect to its intended architecture. As another example, con-
sider the fact that the majority of middlewares do not provide
explicit support for architecture-level connectors, which are usu-
ally distributed across different implementation-level modules
as combinations of method calls, shared memory, network sock-
ets, and other facilities in the middleware (Mehta et al., 2000).
As a result, such middlewares cannot provide effective support
for the numerous styles (e.g., C2, Taylor et al., 1996; Pipe-Filter,
Shaw and Garlan, 1996) that rely on the existence of explicit
connectors.

The current shortcomings stem from challenges the developers
of middleware systems face in realizing support for styles:

e Fragmented implementation: Architectural styles often prescribe
rules and constraints that impact the behavior and struc-
ture of all the other architectural constructs. Therefore, unlike
any other architectural concept, architectural styles cannot be
effectively abstracted and implemented using the traditional
Object-Oriented Programming constructs. In fact, if a middle-
ware provides support for the stylistic concerns, they are often
implemented as dispersed code snippets, and thus lost in the final
product (Malek et al., 2005).
Lack of consensus: As acknowledged by Fielding (2000), there
is a lack of consensus among software engineers on the exact
specification of some commonly used architectural styles. For
instance, consider the Client-Server style, which is one of the
most widely used styles in distributed systems. There is no
general agreement in the software engineer community on
whether the Client behavior of blocking the thread of execution
while a request is processed forms an essential characteristic
of this style or not (Fielding, 2000). As a result, middle-
ware developers provide support for some of the conventional
and commonly accepted aspects of a style, and ignore the
others.

e Many styles: An approach pioneered in our previous work (Malek
et al., 2005) provides support for multiple styles in a middleware
by parameterizing it, such that it can be configured to behave
according to the rules of a style at boot up time. However, we
argue that this is not a viable solution for a general-purpose
middleware. There are many well-known styles and even more
domain specificand hybrid styles that an architect may opt to use.
Predicting all of those a priori (i.e., during the construction of the
middleware) is infeasible. Furthermore, providing implementa-
tion support for any substantive set of styles inevitably makes the
middleware bulky and hinders its performance.

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

[eeessscccccccccscssccssccsccsscssccsscssscsssssccsscsssessens

"
H Aspect Weaver H
R g o
s ™ g \]
' Layered Client-Server :
1]
sl Renac A Cache Aspect .
1 e < pect W
' | § '
L] ’
] - '
L]
] — A .
' Layered-Client-| [Cache-Client- H
. l Server AspeciJ | Server Aspect q
L) -_— . ——)
1 1]
L] L]
L] L]
1 1]
: ;
1
d ‘ Connector ‘ ‘Archilecture| ‘ Event ‘ ‘ Port ‘ .
: :
L]
H [Scheduler [Dispatcher \ Scaffold ‘ ssesssns :
L] L]
[. . [
' Generic Architectural Support .
e e sesassassssssaSsSEESSESESSssSSSSSSsEsSEsEaEsssssssssse -
Mutex ‘ \ Semaphore | \ Event ‘ \File Facto ‘
Factol Factory Factory Factory i
Thread utex Semaphore SRS T ocket
Abstraction | | Abstraction | | Abstraction Abstraction
Virtual Machine
Native System Call Device .
Threads ‘ Semaphore ‘ [Interface [Disvars ‘ [File System ‘
Process Socket DLL S
Mgmt Library Support
Operating System

2515

Different versions of the middleware, each customized for a
specific (hybrid) style

Client | Server | | Request ‘ | Reply |

| Buffering I | Client Server Blocking Sync
Connector Constraints Comm S

Client-Server Support
Virtual Machine
Operating System

Proxy Gateway
Connector |Gonnector| | Request ‘ | Reply I

Layered Bottom ce e
Constraints I ‘ Top Port | | Port
Layered Support

Virtual Machine
Operating System

Client [Server] l Request | ‘ Reply I

Cache
Constraints

Cache-Client-Server Support
Virtual Machine
Operating System

\ Cache I | Lookup | |

Fig. 1. Injecting support for styles into middleware.

3. Injecting architectural style

The approach presented in this paper builds on our earlier work
(Malek, 2008a), which as detailed below has been extended to
accommodate composition of multiple architectural styles. Fig. 1
shows an overview of our approach. A typical structure of the mid-
dleware stack is shown on the left side of the figure. We have
distinguished between two types of facilities that a middleware
may provide on top of the Operating System: at the bottom is a
virtual machine layer that allows the middleware to be deployed
in heterogeneous settings; the abstraction facilities provided by
the virtual machine are leveraged by the middleware’s architectural
constructs that lay on top of it.

In this research, we are interested in the top layer, i.e., archi-
tectural support layer. As noted earlier, the level of architectural
support provided by middlewares vary. In this figure, we are depict-
ing the typical facilities an architectural middleware, which provides
extensive support for architecture-based software development,
may provide. We provide a detailed overview of an architectural
middleware in the next section.

In our approach, we assume that the architectural facilities pro-
vided by the middleware are generic, i.e., they are not stylistically
constrained. This assumption does not impede the applicability of
our approach, since as you may recall from the previous section
most middlewares do not provide sophisticated support for archi-
tectural styles. We implement the stylistic concerns in one or more
aspects, which when weaved with the middleware’s generic con-
structs result in a middleware that supports the implementation of
one or more styles.

For example, as depicted in Fig. 1, to provide support for the
Client-Server style, the Client-Server Aspect is weaved with the
middleware to generate a specialized version of the middleware
with typed components (Clients, Servers), typed events (request,
reply), modified component behavior (Client blocks after making
a request), new connector functionality (server connector buffers
incoming requests), and strict configuration rules (e.g., prevent-
ing a Client from connecting and making requests to other Clients).

Similarly, the Layered Aspect and Cache Aspect enable the style
specific characteristics of the Layered and Cache styles, respec-
tively.

The contributions of our approach can be summarized as fol-
lows:

e Locality: All the code that implements a style is defined in an
aspect, and not scattered in the middleware’s core facilities. The
middleware facilities are free of the style concerns, and as a result
there is no style specific coupling. The locality of stylistic concerns
has three advantages: (1) aids the system understandability, and
hence improves the middleware’s maintenance; (2) allows a user
of the middleware to refine the realization of a given style, if the
user has a different interpretation of that style; and (3) enables
a user of the middleware to develop support for new domain-
specific styles.

Compositionality: Several basic style aspects can be weaved

together to provide support for hybrid styles. A hybrid style is an

architectural style that inherits the properties of two or more par-
ent styles. An example of a hybrid style is the Cache-Client-Server

that extends the Cache and Client-Server styles (shown in Fig. 1).

(Un)Pluggability: Since the middleware facilities are not aware

of their role in architectural styles (i.e., there is no dependency

from the middleware to the style aspects), it is possible to change
the style of an application, potentially at run-time via dynamic

AOP, without impacting either the application or the middleware

facilities.

e Automatic architectural conformance: A generated style specific
version of the middleware constrains the application developer
to a subset of implementation choices allowable in that style. As
a result, it automatically prevents implementation choices that
could result in architectural drift and erosion.

In the remainder of this paper, we describe the details of the
approach using an existing middleware platform and three well-
known styles, which are composed to support several hybrid styles.

2516 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

Abstract Abstract Round Robin
Scheduler Dispatcher ¥|——— Dispatcher
Scaffold Abstract
Fifo I Monitor
Scheduler 47 ensibie
Abstract
Scaffold | java.io.Serializable
|Architecture
> = iPort
= #mutualPort
ble
IComponent 0 Po
D
0 pone 0 po
IConnector

Fig. 2. Abridged UML class design view of Prism-MW. Classes impacted by style are
in gray.

4. An illustrative middleware

In this section, we provide an overview of Prism-MW (Malek
et al., 2005), an architectural middleware platform that we have
used extensively in this research. Prism-MW is an architectural
middleware platform that provides implementation-level support
for architectural constructs in an extensible, efficient, and scal-
able manner (Malek et al., 2005). Prism-MW is a suitable platform
for describing and applying our approach: (1) Prism-MW supports
straightforward one-to-one mapping of architectural constructs
to their implementations, which makes it an ideal platform for
demonstrating the crosscutting impact of styles; and (2) Prism-
MW is open source, which allows us to demonstrate the weaving
of the style specific code with the middleware’s implementation.
However, note that the overall approach presented in this paper
is independent of any particular platform. As discussed in Section
9, we have also applied and evaluated the approach on another
open-source middleware platform.

Prism-MW supports architectural abstractions by providing
classes for representing each architectural element, with meth-
ods for creating, manipulating, and destroying the element. These
abstractions enable direct mapping between an architecture and
its implementation. Fig. 2 shows a partial class design view of
Prism-MW. Essentially Fig. 2 corresponds to the Generic Architec-
tural Support layer of the middleware stack (recall the left hand side
of Fig. 1), and shows the interrelationships between its constructs.

Brickis an abstract class that represents an architectural building
block. It encapsulates common features of its subclasses (Archi-
tecture, Component, Connector, and Port). Architecture records the
configuration of its constituent components, connectors, and ports,
and provides facilities for their addition, removal, and reconnec-
tion, possibly at system run-time.

Events are used to capture communication in an architecture. An
event consists of a name and payload. An event’s payload includes
aset of typed parameters for carrying data and meta-level informa-
tion (e.g., sender, type, and so on). An event type is either a request
for a recipient to perform an operation or a reply that a sender has
performed an operation.

Ports are the loci of interaction in an architecture. A port can be
connected to at most one other port. Each port has a type, which is
either request or reply. Request events are always forwarded from
request to reply ports; reply events are forwarded in the opposite
direction.

Components perform computations in an architecture and may
maintain their own internal state. The developer provides the
application-specific logic by extending the component class. Each
component can have an arbitrary number of attached ports. Com-
ponents interact via their ports.

Connectors are used to control the routing of events among the
attached components. As components, each connector can have an
arbitrary number of attached ports.

Components and connectors attach to one another by creat-
ing a link between a component port and a single connector port.
A link between two ports is made by welding them together. In
order to support the needs of dynamically changing applications,
each Prism-MW component or connector is capable of adding or
removing ports at run-time (Malek et al., 2005).

Finally, Prism-MW's core associates the Scaffold class with every
Brick. Scaffold is used to schedule and queue events for delivery (via
the AbstractScheduler class) and pool execution threads used for
event dispatching (via the AbstractDispatcher class) in a decoupled
manner. Prism-MW’s core provides the default implementations of
AbstractScheduler and AbstractDispatcher. For brevity, we do not dis-
cuss many other Prism-MW facilities (e.g., distribution, monitoring,
reflection, service discovery) that are not directly relevant to this
research. Interested reader should refer to (Malek et al., 2005).

Prism-MW'’s core provides the necessary support for develop-
ing arbitrarily complex applications, as long as they rely on the
provided default facilities (e.g., event scheduling, dispatching, and
routing) and stay within a single address space. The first step a
developer follows (performs) is to create a subclass (or to extend)
from the Component class for all components in the architecture and
to implement their application-specific methods. The next step is to
instantiate the Architecture class and to define the needed instances
of components, connectors, and ports. Finally, attaching compo-
nent and connector instances into a configuration is achieved by
using the weld method of the Architecture class.

For illustration, Fig. 3 shows a simple usage scenario of the Java
version of Prism-MW. The application consists of two components
communicating through a single connector. The Calculator class’s
main method instantiates components, connectors, and ports; adds
them to the architecture; and composes (welds) them into a con-
figuration. Fig. 3 also demonstrates event-based communication
between the two components. The GUI component creates and
sends an event with two numbers in its payload, in response to
which the Adder component adds the two numbers and sends the
result back via an event. In core Prism-MW, an event need not
identify its recipient components; they are uniquely defined by the
topology of the architecture and routing policies of the employed
connectors (Mehta et al., 2000).

5. Crosscutting impact of style

We have previously argued in (Malek, 2008a) that effective sup-
port for architectural styles in a middleware platform requires:

¢ The ability to distinguish among different architectural elements
of a given style (e.g., distinguishing Clients from Servers in the
Client-Server style).

¢ The ability to specify the architectural elements’ stylistic behav-
iors (e.g., Clients block after sending a request in the Client-Server
style, while C2Components send requests asynchronously in the
C2 style (Taylor et al., 1996)).

e The ability to specify the rules and constraints that govern the
architectural elements’ valid configurations (e.g., disallowing
Clients from connecting to each other in the Client-Server style,
or allowing a Filter to connect only to a Pipe in the Pipe-Filter
style).

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527 2517

(a) Architecture arch
Component_
adder
| Connector conn

Event
reply

=B

g3 q

o g‘ Compo_nent
gui

(b)

Architecture initialization
class Calculator {
static public void main(String argv[]) {
FIFOScheduler sched = new FIFOScheduler(50);
RRobinDispatcher disp = new RRobinDispatcher(5);
Architecture arch = new Architecture(sched, disp);

// create components and connectors here
Component adder = new Addition();
Component gui = new GUI();

Connector conn = new Connector();

// add components and connectors to architecture
arch.add(adder);

arch.add(gui);

arch.add(conn) ;

// establish the interconnections
arch.weld(gui, conn);
arch.weld(conn, adder);

arch.start(); } }

GUI component sends an event

Event request = new Event ("add");
request.addParameter ("num 1", new Integer (2));
request.addParaemter ("num 2", new Integer (5));
send (request);

Adder component handles the event
public void handle (Event e){
if (e.equals("add")) {

Event reply = new Event ("response");
reply.addParameter("result", new Integer (7)});
send (reply);

Yoo

Fig. 3. Illustration of Prism-MW usage: (a) architecture of a small calculator and (b)
application implementation fragments for the calculator.

This suggests that styles have a significant impact on the
behavior and structure of all the architectural constructs. Below
we further demonstrate the extent of this using Prism-MW.
Prism-MW'’s extensive separation of concern and modularized
implementation of architectural constructs allow us to demon-
strate the crosscutting impact of styles most effectively.

Like the majority of commercial middlewares, Prism-MW’s core
is style agnostic, and to provide support for an architectural style,
one would have to modify its facilities. There are two ways of doing
this: (1) leverage Prism-MW’s extensible classes to override the
core behavior (shown in Fig. 2 and discussed in Malek et al., 2005),
or (2) modify the implementation of the core classes directly. Nei-
ther results in a localized, modularized, and decoupled solution, as
desired.

For the clarity of exposition, we describe the changes to the
middleware using the second approach:

e As mentioned in our first requirement, before we can enforce
the stylistic rules and constraints, we need to be able to distin-
guish the style of each architectural construct. One approach is to
define a new interface for each stylistic type. For instance, to pro-
vide support for Client and Server component types, we change
the Component class to implement a Client or Server interface,
respectively.

e As mentioned in our second requirement earlier, we may need
to:

o Modify the behavior of core Prism-MW Connector to support style
specific event routing policies. For example, Pipe forwards data
unidirectionally, while a C2Connector uses bidirectional event
broadcast (Taylor et al., 1996). For this we would need to mod-
ify the core connector’s handle method, which is responsible for
routing events.

Modify the behavior of core Prism-MW Component to provide
synchronous component interaction. The default, asynchronous
interaction is provided by the core component’s send method. For
example, we may need to modify the default behavior to enable a
Client block after it sends a request to a Server and unblock when
it receives a response.

Modify the behavior of core Prism-MW Port to support differ-
ent types of inter-process communication (e.g., socket-based,
infrared). Prism-MW?’s core ports only provide support for a single
address space.

Modify core Prism-MW Event to support new event types. For
example, a C2Component in the C2 style exchanges Notifica-
tions and Requests, while Publisher and Subscriber components
in Publish-Subscribe style exchange Advertisements, Subscrip-
tions, and Publications.

(o}

]

(o}

¢ As mentioned in our third requirement earlier, we may need to
specify and enforce constraints on the allowable configurations.
For this, we would need to modify the Architecture’s weld method
to ensure that the topological constraints of a given style are
satisfied. The weld method is used to connect components and
connectors by associating their ports with one another. For exam-
ple, in the Client-Server style, Clients can connect to Servers, but
two Clients cannot be connected to one another.

From the above discussion it is evident that supporting a new
architecture style in Prism-MW impacts most of the middleware’s
facilities. It also shows that changes are dispersed among the vari-
ous parts of the middleware’s implementation. In fact, supporting
a style may require changing all of the grayed out classes shown in
Fig. 2.

The situation is exacerbated with middlewares that do not pro-
vide the same level of support for architecture-based development
as Prism-MW. Finding the classes that need to be modified to realize
a particular feature of a style is fairly straightforward in Prism-MW.
This is not the case with the majority of commercial middlewares
that do not provide explicit support for some of the architectural
concepts (e.g., connector, configuration).

6. Stylistic aspects

Below we detail our approach for providing implementation
support for three well-known styles on top of Prism-MW and by
using Aspect] (Aspect]). The three styles are Client-Server, Layered,
and Cache.

Our approach consists of four steps: (1) define a new aspect for
each architectural style; (2) define style specific roles for the differ-
ent architectural constructs; (3) provide new style specific facilities
using the aspect’s inter-type declaration; and (4) override or refine
the middleware’s default behavior by interjecting the new logic.

6.1. Client-Server style

We first describe an aspect that realizes one of the most
commonly used styles in the development of distributed soft-
ware systems: Client-Server. Clients send requests to Servers, and
Servers process the requests and return the results. Client-Server
style disallows two clients from connecting and making requests to
one another. Moreover, a Client’s thread of execution should block

2518 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

01. public aspect ClientServerStyle {

02. // the component types (roles) in the style
03. public interface Client {};

04. public interface Server {};

05. //the places in the middleware that need to change

06. pointcut requestService(Client c):

07. (call(* *.send(Event)))&& target(c)
08. pointcut receiveResponse(Client c):

09. (call(* *_handle (Event)))&& target(c);
10. pointcut connect (Brick bl,Brickb2):

11. (call (* *.weld(Brick,Brick)))&&

12. target(bl) &&target (b2) ;

13. // blocking the client’s thread of execution
14. after(Client c): requestService(c)
15. { ((Object)c) .wait(); }

16. // unblocking the client’s thread of execution
17. after(Client c): receiveResponse (c)
18. { ((Object) c).notifyall(); }

19. // checking the topological constraint
20. before (Brick bl,Brick b2): connect(bl,b2) {

21. if((bl instanceof Client) &&(b2 instanceof Client)){
22. System.out.println(“Two clients cannct be

23. connected to each other”);

24. System.exit(0); }

25. }

26. }

Fig. 4. Client-Server style aspect.

until its request is processed by the server (Fielding, 2000). Finally,
some interpretations of the style include the ability to buffer client
requests on the service-side.

Fig. 4 depicts the Client-Server’s aspect. In lines 2-4 the two
main types in the style are defined: Client and Server. Note that the
notion of type corresponds to the role of an architectural element
in a style. As will be detailed in Section 7, we use aspect’s inter-
type declaration to make application components implement one
of these interfaces, and hence play a specific role in the architecture.
This allows us to type the system’s components based on their role
in the intended architecture.

Lines 5-12 show the declaration of the pointcuts that precisely
specify the places in the middleware that need to be modified.
For instance, requestService is a pointcut that picks out join points
dealing with the invocation of the Client’s send method. Similarly,
receiveResponse is a pointcut that picks out join points dealing with
the invocation of the Client’s handle method. Finally, connect is a
pointcut that picks out join points dealing with the invocation of
the architecture’s weld method.

Lines 13-25 show the advices that realize the required changes
for supporting Client-Server behavior in the middleware as fol-
lows: after a Client makes a service request, the execution thread is
blocked; after a response is received, the Client is unblocked; and
before components are connected, the topological constraints are
checked, where two clients are disallowed from connecting to one
another.

Fig. 4 shows only one possible implementation of Client-Server.
Other interpretations of the style are also possible. For instance,
we have also created an alternative implementation, where the
Server components queue incoming requests. For brevity, we do
not show other implementations of the style. However, it is evi-
dent that in our approach fine-tuning a style’s implementation is
relatively easy. It requires changes to only a single aspect, and since
the places in the middleware where pointcuts impose are already
identified, the changes could be made by an informed application
developer familiar with the middleware.

Comp

N
o
> Comp
©
-l

Comp

Comp

Fig. 5. Layered style.

6.2. Layered style

Another architectural style that we have implemented using our
approach is the Layered style. A layered system is organized hierar-
chically such that each layer provides services to the layer above it
and uses services of the layer below it (Fielding, 2000). As depicted
in Fig. 5, the Layered architecture consists of two connector types:
Proxy and Gateway.

A Proxy connector provides a shared interface for one or more
requesting components. It accepts the requests from the “inner
layer” components, and forwards them, with possible translation,
to the servicing components below. Gateway connector provides
a similar functionality for the servicing components. The “inner
layer” components reply with the service results to a Gateway,
which forwards the results, with possible translation, to the layers
above. Additional facilities can be provided for features like load
balancing, authentication, and so on.

Unlike the Client-Server style, the Layered style defines roles for
connectors, instead of components. Moreover, it specifies relatively
more complex topological constraints. The style disallows direct
connection between two proxies and two gateways. In addition to
this, layer jumping is not allowed. Layer jumping occurs when the
proxy of one layer connects to a gateway other than the one directly
below it. For example, in Fig. 5, a connection between Proxy3 and
Gateway1 is not allowed.

Fig. 6 shows the aspect that realizes the Layered style. Lines 3
and 4 define the two roles in the style: Proxy and Gateway. This
time we have modeled the roles as Java abstract classes, instead
of interfaces, since we would like the role to define a new vari-

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527 2519

01. public aspect LayeredStyle {
02. // the connector types (roles) in the style
03. public abstract class Proxy { int layerNum; };

04. public abstract class Gateway { int layerNum; };

05. // the place in the middleware that is impacted

06. pointcut connect (Brick bl,Brick b2):

07. (call(* * weld(Brick, Brick)))&& target(bl)ss target(b2);
08. // check topological constraints

09. before(Brick bl, Brick b2): connect(bl, b2) {

10. if((bl instanceof Proxy)&& (b2 instanceof Proxy))} {

11. System.out.println("Cannot weld two proxies");

12. System.exit (0); }

13. else if ((bl instanceof Gateway)&& (b2 instanceof Gateway)) ({
14. System.out.println(" Cannot weld two Gateways");

15. System.exit (0); }

16 //check for layer jumping

17. else {

18. if ((bl instanceof Proxy)&& (b2 instanceof Gateway)){
19. int proxyLayNum = ((Proxy)bl).layerNum;

20. int gatewayLayNum = ((Gateway)b2).layerNum; }

21. else {

22. int proxyLayNum = ((Proxy)b2).layerNum;

23, int gatewayLayNum = ((Gateway)bl).layerNum; }

24. if (! ((proxyLayNum-1) == gatewayLayNum)) {

25. System.out.println ("Proxy of Layer "+proxyLayNum+
26. " Cannot be connected to Gateway of Layer "+

27. gatewayLayNum) ;

28. System.exit(0); }

29. }bo}

Fig. 6. Layered style aspect.

able: layerNum. layerNum specifies the layer number a Gateway or
Proxy belongs to. For brevity, we have elided the code that sets the
layerNum variable of Gateway and Proxy connectors.

Similar to the Client-Server style, lines 5-7 specify a pointcut
to intercept the connection (weld) calls. Lines 8-29 use the point-
cut and specify a before advice to check the topological constraints
mentioned earlier.

6.3. Cache style

In the previous examples, the stylistic role (type) was associated
with only a single type of architectural construct: Client-Server
specifies two types of components, while the Layered style specifies
two types of connectors. In this section, we present the implemen-
tation of Cache style. Unlike the previous styles, the Cache role may
be associated with any of the architectural constructs.

A cache is a storage where the responses to prior requests
can, if considered cacheable, be stored and reused to service simi-
lar requests in the future. The underlying assumption is that the
response to a new request is similar to that in the cache if the
request was to be forwarded to the processing component (Fielding,
2000). Fig. 7 depicts an instance of the Cache style, where the
caching is performed by one of the components. Similarly, the
caching activity may be performed by a connector or a port.

Fig. 8 shows the implementation of the Cache style. In line 3 we
introduce the role of a Cache, which as will be discussed in Section 7
can be associated with any architectural construct. Line 5 allocates
storage space for the cached data. Lines 6-11 define the request-
Service and receiveResponse pointcuts, which respectively pick out
join points that call the send and handle method of any construct
implementing Cache. The two pointcuts indicate the places in the
middleware where cache activities are performed.

Lines 12-20 implement the cache lookup functionality. The
around advice is invoked in place of the send method. As you may
recall from Fig. 3, the send method is how any architectural con-
struct in Prism-MW sends events. If an event with the same name
is in the storage, it is immediately retrieved and sent back to the
requester by calling its handle method. Otherwise, when there is a
cache miss, the Aspect]’s proceed construct is used to continue with
the normal flow of execution (i.e., call the send method).

Cache
Memory

Fig. 7. Cache style.

01. public aspect CacheStyle {

02. // the cache type (role)
03. public interface Cache{};

04. // storage used for caching data
05. static Map storage = new HashMap();

06. // place where the cache lockup is performed
07. pointcut requestService(Cache c):

08. (call(* *.send(Event)))&& target(c):;
09. // place where the cache store is performed
10. pointcut receiveResponse(Cache c):

11. (call(* *.handle(Event)))&& target(c);

1z, // lookup in the cache
13. veid around(Cache c, Event e):requestService(c)&& args(e) {

14. Object key = e.name;

15. if (storage.containsKey (key)) {

16. Event cachedResponse = (Event) storage.get(key);
1T ((Brick)c) .handle (cachedResponse); }

18. // if not in the cache proceed to send the request
19. else

20. proceed(c,e); }

21. // cache the result in the storage
22. after(Cache c, Event e):receiveResponse(c)&& args(e) {
23, if (e != null){

24, Object key = e.name;

25. if ('storage.containsKey(key))
26. storage.put(key, e);

27. 11}

Fig. 8. Cache style aspect.

Finally, lines 21-27 show the advice that implements the func-
tionality of storing the response for future cache lookups. This
advice is invoked after the handle method is called.

As will be discussed in Section 8, Cache style may be combined
with other styles (e.g., Client-Server) to eliminate some interac-
tions, and hence improve efficiency, scalability, and performance.
The trade-off, however, is that caching can decrease the reliability.
This is a problem when the stale data in the cache differs signifi-
cantly from the data that would have been obtained if the request
had been processed (Fielding, 2000).

To that end, we have also developed a more practical imple-
mentation of this style, where each stored event is tagged with
an expiration time stamp. When the lookup advice encounters an
expired event, it deletes it from the storage. For brevity we have
not shown the details of this in the code snippet.

The above examples demonstrate the efficacy of implementing
styles in middleware using our approach. Most notably, the result-
ing style specific code is both localized and modularized, which
in turn improves the system’s ability to evolve, and aids with the
system understandability.

7. Using the weaved middleware

So far we have described how aspects can be used to modify
the core behavior of a middleware to provide support for styles.
In this manner, we have increased the decoupling between the
middleware core facilities and the stylistic functionality, since the
middleware does not contain any style specific code. In other
words, we have inverted the dependency relationship, such that
the style aspects depend on the middleware code, and not the other
way around.

2520 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

In this section, we describe another advantage of our approach.
We remove the style dependency between the application logic
and the middleware as follows. To specify the stylistic role of an
application-level component we use aspect’s inter-type declaration.
Inter-type declarations allow the programmer to modify a pro-
gram'’s static structure, namely, the members of its classes and the
relationship between classes.

Inter-type declarations are used to specify the stylistic role of the
components in the calculator application (recall Fig. 3) as follows:

public aspect CalculatorStyleConfig {
declare parents: gui implements Client;
declare parents: adder implements Server;

The declare parents construct allows aspects to modify existing
classes without changing their code. This open class mechanism can
attach fields, methods, or - as in this case - interfaces to existing
classes (Aspect]). Here gui and adder components of the calcula-
tor application are instructed to implement the Client and Server
interfaces, respectively.

Using inter-type declaration, the application developers are
able to configure the style of their software systems after its
development. This is unlike the existing middleware technolo-
gies, where the style of the application is determined based
on the stylistic properties assumed by the middleware. More-
over, by inverting the style dependency relationship, we are
able to control the style of an application externally. In turn,
with the new advancements in dynamic AOP (Greenwood and
Blair, 2004), our approach enables run-time adaptation of a soft-
ware system’s architectural style by simply (un)weaving new
aspects.

8. Composing hybrid styles

Most large-scale software systems cannot be built using a
single style (Malek et al., 2007). As a result, the application devel-
opers are forced to use multiple middleware platforms, where
each is geared to a particular style, for implementing the sys-
tem. It is also often desirable to use hybrid or domain-specific
styles in the construction of software systems (Malek et al., 2007).
A hybrid style inherits the properties of two or more “pure”
styles, while a domain-specific style may refine the rules of
an existing style to account for the unique characteristics of a
domain.

There are several advantages in using hybrid styles. For instance,
the Layered-Client-Server is generally considered a more appro-
priate style than Client-Server for the construction of large-scale
distributed systems (Andrews, 1991). This is because the Gateways
and Proxies can be utilized for load balancing, and also for scal-
ing the service-discovery by reducing the number of identities that
need to be managed.

Our approach enables rapid composition of hybrid styles by
simply weaving two or more style aspects with the middleware.
However, an issue of concern is the compatibility of different styles.
Each style imposes its own set of constraints, which may con-
flict with the rules of another style. In turn, the combined use of
incompatible styles in a single system can lead to unpredictable
and expensive mismatches (Garlan et al., 1995).

During style composition, there are multiple aspects that may
impose ata particular join point. When more than one aspect super-
impose at a particular join point, the join point is said to be shared
(Babu and Ramnath Krishnan, 2009). Different orders of execution
among aspects at a Shared Join Point (SJP) may exhibit different
behavior.

Two categories of interference may arise:

e Changing the execution order of two aspects at a SJP results
in the same observable behavior. For example, the advices that
check the topological constraints in the Client-Server and Lay-
ered aspects do not refer to the effect of the other, and simply
maintain their own state. In other words, the topological con-
straint checks for a hybrid style, such as Layered-Client-Server,
may be performed in any order.

Changing the execution order of two aspects at a SJP results in
different observable behavior. More importantly, some execu-
tion orders may violate the intended behavior of the system. For
example, consider a scenario where the Client-Server and Cache
aspects are composed together. During the calls to the handle
method, there are two advices that are superimposed at that par-
ticular join point: after of receiveResponse defined in both Cache
(line 22 of Fig. 8) and Client-Server aspects (line 17 of Fig. 4). The
desired order of execution is for the advice of Cache to be exe-
cuted before the advice of Client-Server. This ordering enables
the Cache to store the response before the Client is unblocked. If
the advices execute in the opposite order, the Client is unblocked
first, and may send more requests before the response is stored.
As a result, some of the responses may not be cached.

The execution order of aspects can be specified using the declare
precedence construct, as follows:

public aspect StylePrecedence{
declare precedence:
CacheStyle, ClientServerStyle;

Here we instruct the Cache aspect to be executed prior to the
Client-Server aspect to form the Cache-Client-Server style.

When more than one advice within a single aspect applies at
a particular join point, it is also important to specify the order of
execution. In single style as well as in hybrid styles, the relative
order in which such advices execute needs to be well defined. The
rule for determining advice ordering (also known as specificity) that
superimpose at a particular join point is that whichever piece of
advice appears first in the aspect declaration’s body is considered
to be more specific (Kiczales et al., 2001). This commonly happens
when there are matching before and after advice, but it can also
happen with two pieces of advice that are of the same kind.

Finally, we should mention that if a domain-specific style does
not refine the rules of an existing style, then it would be imple-
mented from scratch, just like any other “pure” style. Clearly, in
such a case, there would be no code reuse.

9. Evaluation

We provide a detailed evaluation of the approach, including our
experience with applying the approach in real-world context. In
support of our claims that the overall approach is independent
of any platform, we have applied it to another open-source mid-
dleware, called Spread (Spread Toolkit). Spread provides a high
performance messaging service that is resilient to faults across local
and wide area networks. Both Prism-MW and Spread have a mod-
ular design, which makes them a natural choice for the illustration
of our approach. We evaluate the approach using both middleware
platforms.

9.1. Benchmark results

The performance and efficiency of a middleware platform is
often of utmost concern to the middleware engineers. We eval-
uated the performance overhead of the approach by comparing
the weaved versions (i.e., AOP) against manually revised versions

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

Table 1
Benchmark results: weaved version (WV) and manually modified version (MMV).

2521

Middleware Architectural style Execution time (ms) Memory usage (KB)
wv MMV wv MMV

Prism-MW Client-Server 2022 2015 117 114
Caching 2002 1999 129 121
Caching-Client-Server 2042 2031 145 132
Layered-Client-Server 2068 2054 138 127

Spread Client-Server 2889 2877 176 169
Caching 2876 2862 184 172
Caching-Client-Server 2901 2893 191 186
Layered-Client-Server 2923 2904 189 178

(i.e., 00) of the middleware. That is for each weaved version,
we created an equivalent instance of the middleware by adding
the style specific code directly to the middleware’s core classes.
Four representative architectural styles (i.e., Client-Server, Cache,
Cache-Client-Server, and Layered-Client-Server) were selected
and implemented using both approaches.

Since we were interested in the overhead induced by the
middleware, the complexity of the application-level logic was
irrelevant. Therefore, we used the simple calculator application
depicted in Fig. 3a for benchmarking the middleware’s perfor-
mance. For each data point we invoked the addition functionality
1,000,000 times and measured the running time and average mem-
ory overhead of executing the 8 versions of each middleware. The
environment set-up consisted of a mid-range PC with Intel Pen-
tium IV 1.86 GHz processor and 3 GB of RAM running JVM 1.5.0 on
Windows XP.

Table 1 shows the execution time and memory usage of Prism-
MW and Spread Middleware under different realization of styles.
Theresults indicate that the manually modified versions are slightly
faster than the ones automatically generated. However, this over-
head is negligible, and does not outweigh the benefits of the
approach when faster running times are not critical.

The results also indicate that our approach on average con-
sumes 3-10% more memory than an implementation without
aspects. While the memory overhead is an importance concern,
we expect the recent advances in aspect compilers, in particular
those (Avgustinov et al., 2005) directed at Aspect], will soon make
it possible to generate optimized code with significantly smaller
memory footprint.

9.2. Implementation properties

Our experience with using the approach in implementing more
than 20 different architectural styles described in Fielding (2000)
has been very positive. In the process, we noticed that the amount of
effort required to implement a new style decreased over time. That
is as more styles were developed, the level of code reuse increased.
Our approach achieves reuse in two ways: partial code reuse among
similar styles, and complete code reuse through style composition.
The former is attributed to the fact that architectural styles promot-
ing similar quality attributes often have common traits with one
another. For instance, both Layered and C2 style promote flexibil-
ity and separation of concerns, and as a result there is a significant
implementation overlap between the two style aspects. While simi-
larity of styles is a good indicator of potential for partial code reuse,
it often has the opposite effect on the compositionality of those
styles. Our experience shows that the styles that are similar (e.g.,
C2 and Layered) often cannot be composed together. We further
elaborate on this below.

Table 2 shows the properties that were evaluated for the AOP
implementation of six representative styles in both Prism-MW and
Spread. As you may recall from Section 3, the key properties of inter-

est are as follows: (1) Locality is an indicator of the ability to realize
stylistic properties within an aspect, making the middleware’s core
functionality free from any style specific code, and thus improv-
ing the middleware’s understandability and maintainability. (2)
(Un)pluggability is the quality of the middleware facilities not being
aware of their role in architectural styles. This in turn facilitates
changing the architectural style of an application through weaving
the stylistic aspect with the underlying middleware, potentially at
run-time. (3) Compositionality is the ability to reuse styles by weav-
ing them together and constructing hybrid and more advanced
capabilities.

As depicted in Table 2, the implementation of styles in both
middleware platforms satisfied the locality and (un)pluggability
properties. While each style could be composed with at least one
other style (the right most column of Table 2), as expected some
styles were not compatible and could not be composed with one
another. For instance, Client-Server and Publish-Subscribe rely
on fundamentally different assumptions that make them incom-
patible with one another (i.e., Publish-Subscribe assumes time,
space, and synchronization decoupling, while Client-Server does
not, Fielding, 2000). In some cases, even though it was possible
to compose two styles, the resulting style would not be meaning-
ful and hence not shown in Table 2. For instance, C2 inherently
has the notion of layering (Taylor et al., 1996), and hence a com-
position of C2 with Layered would be redundant. Note that some
styles, such as Caching, were so flexible that could be composed
with any other style. We believe the ability to rapidly compose
styles in this manner opens up new avenues of research to study
compatibility of styles with one another and to develop new hybrid
and domain-specific styles.

Finally, Table 2 shows that our experiments showed no major
difference in the implementation properties of styles in the two
middlewares. While implementation of a style in one middleware
could guide the development of support for that style in another
middleware, complete reuse of style aspects across different mid-
dlewares without any modification to the code is not likely. When
porting a style aspect from one middleware platform to another
that has a similar implementation, the aspect’s pointcuts would
have to be modified to pick the appropriate join points.

9.3. Design quality

As mentioned before through the use of aspects we are able to
separate the stylistic concerns from other concerns in the middle-
ware’s design. To evaluate the quality of a middleware designed and
developed in this fashion, we use the modularity metric described
in Cacho et al. (2006) and Sant’Anna et al. (2003). These metrics
are useful to capture important design quality dimensions namely
separation of concerns, coupling, and cohesion. These metrics cap-
ture the degree to which a single concern in the system maps to the
design components (classes and aspects), operations (methods and
advice), and lines of code. We found the following metrics adopted

2522

Table 2
Implementation properties for the weaved version of the middleware.

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

Style name Middleware Locality

(Un)pluggability Compositionality

Client-Server Prism-MW/Spread i

Layered Prism-MW/Spread v

Caching Prism-MW/Spread N

Publish-Subscribe Prism-MW)/Spread

Pipe-Filter Prism-MW/Spread

c2 Prism-MW/Spread N

v Layered
Caching
Vi Client-Server
Caching
Pipe-Filter
Vi Client-Server
Layered
Publish-Subscribe
Pipe-Filter
Cc2
Caching
c2
Caching
Layered
Publish-Subscribe
Vi Caching
Publish-Subscribe

from Sant’Anna et al. (2003) to be most sensible for evaluating our
research:

¢ Concern Diffusion over Components (CDC): counts the number of
classes and aspects whose main purpose is the implementation
of a concern and the number of other classes and aspects that
access them.

Concern Diffusion over Operations (CDO): counts the number of
methods and advices whose main purpose is the implementation
of a concern and the number of other methods and advices that
access them.

Concern Diffusions over LOC (CDLOC): counts the number of tran-
sition points for each concern through the lines of code. Transition
points are points in the code where there is a “concern switch”.
Coupling Between Components (CBC): counts the number of
other classes and aspects to which a class or an aspect is coupled.
Lack of Cohesion in Operations (LCOO): counts the number of
methods and advice pairs of each class or aspect that do not access
the same instance variable.

Similar to previous work (Cacho et al., 2006; Sant’Anna et al.,
2003), the data collection for metrics was preceded by the
shadowing of every class, interface, and aspect realizing an archi-
tectural style in both manually modified and weaved versions of
the middleware. The shadowed areas are lines of code that imple-
ment a given concern, and the transition points are the points in
the code where there is a transition from a non-shadowed area
to a shadowed area and vice-versa. Afterwards, the metrics were
manually collected. We ensured that both OO and AOPrealization
of an architectural style implement the same set of constraints
and facilities.

Table 3 shows the metrics for seven representative styles supported
in two middleware platforms. Side-by-side comparison of each
metric for the two methods of realizing each style clearly demon-
strates the superiority of weaved version. Note that in all of the
metrics a smaller value is an indicator of improved modularity,
and hence a better design. CDC, CDO, and CDLOC metrics indicate
significant modularity improvements due to the separation of con-
cerns achieved by employing AOP. CBC and LCOO metrics indicate
reduced coupling and increased cohesion due to the fact that AOP
enables localization of stylistic concerns within an aspect.The ben-
efits of the AOP approach are best realized in the composition of
hybrid styles. Table 3 shows that the metric differences between
manually modified and weaved versions of the middleware are
larger for hybrid styles. This is attributed to the fact that hybrid
styles are typically more complex than basic styles; thus, the poten-
tial for code scattering and tangling increases even further.

9.4. Experience

We have validated and applied the approach on a real-world
application family that was developed previously in collaboration
with Bosch Research and Technology Center. The application fam-
ily, called MIDAS (Malek et al.,2007), is representative of large-scale
sensor network applications. MIDAS is composed of a large number
of sensors, gateways, hubs, and PDAs that are connected wirelessly.
MIDAS could be used for a variety of purposes, including smart hos-
pitals to warn the doctors of extreme health condition of patients,
smart factories to detect and prevent hazardous waste spills, and
So on.

MIDAS application instances are developed according to a
domain-specific architectural style that is frequently used by
Bosch for the development of their embedded sensor network
applications. Fig. 9 shows a partial view of MIDAS’s reference
architecture, which incorporates features similar to three well-
known architectural styles. The Layered portion of this architecture
is used for the deployment and run-time adaptation of soft-
ware running on MIDAS platforms; hence, the components that
provision this functionality are tagged as meta-level components.
The Publish-Subscribe portion corresponds to the communication
backbone of MIDAS that is responsible for routing and processing of
sensor data among the various platforms. Unlike the services pro-
vided by Publish-Subscribe components that are platform-specific,
MIDAS applications also require a number of more generic but less
frequently used services. To minimize resource utilization, these
services are distributed among the platforms and comprise the
Service-Oriented portion of MIDAS.

Previously, in a collaborative effort with Bosch engineers we had
manually extended Prism-MW to provide support for MIDAS. The
details of this experience are reported in our previous work (Malek
et al., 2007). To evaluate the AOP approach of realizing support
for styles, we developed three basic style aspects, each of which
corresponds to one of the three types of styles used in MIDAS, and
composed them together to realize a middleware customized to
MIDAS.

It took 4 days for two developers relatively familiar with both
MIDAS and Prism-MW to develop a MIDAS specific style aspect and
to generate a new customized version of Prism-MW. Clearly the
actual amount of effort required depends on many factors, includ-
ing the familiarity of the developers with the middleware, AOP,
and the desired style. At the same time, our experience shows that
after the initial development of the support for MIDAS style, even
the developers that were not expert in the middleware were able to
fine-tune the implementation when necessary. For instance, in sev-
eral occasions, developers that were not familiar with the internals

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527 2523
Table 3
Design quality metrics: manually modified version (MMV) and weaved version (WV).
Middleware Architectural Style CDC CDO CDLOC CBC LCOO
MMV wWv MMV wv MMV Wwv MMV WV MMV Wwv
Prism-MW Client-Server 9 1 15 3 42 9 10 2 4 0
Caching 10 1 13 2 35 7 12 2 5 0
Publish-Subscribe 12 1 16 5 55 14 14 3 4 1
Pipe-Filter 14 1 18 4 62 13 11 2 3 0
c2 8 1 10 2 28 12 13 3 4 2
Caching-Client-Server 11 2 18 5 67 14 16 4 6 0
Layered-Client-Server 17 2 22 5 78 15 16 4 5 0
Spread Client Server 6 1 7 2 20 4 6 1 1 0
Caching 5 1 7 1 22 5 8 2 2 0
Publish-Subscribe 4 1 9 2 33 7 9 2 1 0
Pipe-Filter 7 1 12 2 18 4 7 2 2 1
c2 6 1 9 2 28 6 8 3 3 1
Caching-Client-Server 8 2 14 3 38 9 9 3 2 0
Layered-Client-Server 10 2 16 3 40 6 10 3 3 0

of Prism-MW faced situations where it was beneficial to slightly
modify or fine-tune the style. In one case the SOA portion of MIDAS
was modified to provide support for fault-tolerance by creating
replicas of services, while in another case the Layered portion of
MIDAS was changed to Peer-to-Peer for efficiency purposes. Since
the style implementation is localized in an aspect external to the
middleware, it was relatively easy for the developers to concep-
tualize the support for a style and its impact on the middleware’s
behavior. As we had hypothesized, the localization made it signifi-
cantly easier to modify and maintain the middleware.

In the context of this project, we studied the effectiveness of the
MIDAS specific middleware in ensuring architectural compliance
(recall Section 3). To that end, a team of developers was asked to
develop a portion of MIDAS application depicted in Fig. 9 using
the MIDAS specific version of the middleware. The total size of
the resulting code was approximately 12.3 KSLOC and consisted
of 15 software components. To streamline the development, the
teams were allowed to reuse code written for a previous version of
the software. We compared the code developed using the MIDAS
specific version of the middleware against the original code devel-
oped in our previous work using a style-agnostic version of the

I hY
Gateway Architecture

middleware (Malek et al., 2007). We observed that the developers
using the style-agnostic middleware had made 17 implementa-
tion choices in the original implementation that conflicted with
the MIDAS’s stylistic requirements. Moreover, some of the imple-
mentation choices violated the system’s principal architectural
decisions. On the other hand, MIDAS specific version of the mid-
dleware successfully prevented deviations from the intended style
by enforcing the stylistic constraints and providing early feedback
to the developers. Only 1 architectural decision, which was not
stylistic in nature, did not get implemented correctly. This result
corroborated that support for advanced domain-specific styles in
middleware could significantly reduce the possibility of architec-
tural erosion.

10. Related work

We classify the literature related to our research into six
categories: (1) middleware solutions for architecture-based devel-
opment, (2) use of aspects in realizing middleware facilities, (3) use
of model-driven engineering in the design and construction of mid-

LY
\ J \
PDA Hub Architecture

Architecture

Sub-Architecture with | [Filelnput| [Trouble Tovo!ow Nodelnfo 2 SDEngine| [Eventiatificat
SOA flavor ‘LogSve Calculatar | Sve _ionSve
- - SDEngine
= 2 [2)
Session GwToHub 4 o Z GUI/ Controller
Operatar < Processor 2 o c
o 3 o i
3 . o o o] o =i
Sub-Architecture with s] g g - Lt
Publish-Subscribe flavor Session & 2y g1 2 — Operator
Administrator o _— H 2 ==
(=] (B = o
o o] 5
w o
- To sensors Sensor = Processor -4 5 o o
Processorp_=g o % g E]
Sensor -) 3 5 3l
— In >
,, s [. S TR R ——— F—
Sub-Architecture with §
Layered flavor #D-plw-r%.
]
» \
\ A oA |
Legend:
Prism-MW < Distribution =
Architecture V' RequestPort A RequestPort Component | Service
- 2 - D
iy Pointer M Reply Port 2 Distribution E S
o “ Reply Port Meta-level Comp | Connector

Fig. 9. Partial view of MIDAS'’s architecture, including its three dominant architectural styles.

2524 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

dleware platforms, (4) AOP methods for realizing design concepts,
(5) aspect-oriented architecture modeling, and finally (6) AOP lan-
guages and technologies. Below we first provide an overview of the
most prominent works from each category and afterward compare
them against our work.

Several middleware technologies for architecture-based devel-
opment have been proposed:

e C2 Framework (Medvidovic et al., 1996) is an object-oriented
library for implementing software systems that comply with the
rules and constraints of C2 architectural style (Taylor et al., 1996).
ArchJava (Aldrich et al., 2002) is an extension to Java that unifies
software architecture with implementation. ArchJava does not
provide support for enforcing topological constraints, and there-
fore lacks the support for implementing and enforcing a software
system’s architectural style.

Aura (Sousa and Garlan, 2002) is an architectural style and sup-
porting middleware for ubiquitous computing applications with
a special focus on user mobility, context awareness, and context
switching.

Aspect-Oriented Development Framework (AODF)is an approach
presented by Lee and Bae (2004) for the development of sys-
tems according to the collaboration-based architectural style.
AODF achieves separation of concerns in both non-functional
requirements as well as intra-component and inter-component
functional aspects. Most notably, the collaboration-based archi-
tectural style proposed by the authors provides the mechanisms
for achieving the separation of concern through Aspectual Com-
position Rules and Aspectual Collaborative Composition Rules.
Middlewares such as TAO, Orbix/E (IONA Orbix/E Datasheet),
.Net, and MobiPADS (Chan and Chuang, 2003) provide partial
support for architectural abstractions in the form of explicit com-
ponents.

With the exception of AODF (Lee and Bae, 2004) and C2 Frame-
work (Medvidovic et al., 1996), none of the above technologies
provides explicit support for architectural styles. Instead, the
notion of architectural style in these technologies is limited to
the style of communication. Unlike our approach, AODF and C2
Framework provide support for only a single predetermined archi-
tectural style, and hence do not address the challenges tackled in
this work.

Several researchers have investigated the benefits and chal-
lenges of using aspects in realizing middleware facilities:

e Zhang and Jacobsen (2003a,b) have undertaken aspect-oriented
refactoring in a selection of ORBs. They have shown that through
aspect-oriented programming one could obtain a modularity
level that is unattainable via traditional programming tech-
niques.

Cacho et al. (2006) have presented an AOP approach for sup-
porting crosscutting concerns in reflective middleware. They also
quantitatively demonstrated the benefits of Aspect] implemen-
tation of the middleware over pure Java.

Hunleth et al. (2001) have used AOP to build customizable mid-
dleware by the selection of features that could be weaved into the
middleware as needed using specification from a configuration
file.

Colyer and Clement (2004) have used a case study to demonstrate
the complexities that surface during middleware construction,
and demonstrated the benefits of aspects for mitigating them.

Similar to these works, we employ aspects to realize
crosscutting behaviors (capabilities) in middleware platforms.
Unlike them, the focus of our research is on providing
support for architectural styles, while their focus has been

on supporting traditional system-level facilities (e.g., ORB,
thread scheduling, and logging) often provided by middle-
wares.

Several researchers have employed Model-Driven Engineer-
ing (MDE) (Schmidt, 2006) and Model-Driven Architecture
(MDA)techniques in the context of middleware platforms. Some
of the representative examples in this area are as follows:

e CoSMIC (Schmidt et al., 2002) tool-suite provides support for
developing domain-specific tools for composing and deploying
Distributed Real-time and Embedded (DRE) middleware-based
applications. The tool-suite is designed to (1) use a domain-
specific modeling language for modeling and analyzing DRE
application functionality and QoS requirements, and (2) gener-
ate CORBA Component Model deployment meta-data for CIAO
(Nanbor et al., 2002) and QuO (Vanegas et al., 1998) middleware
platforms.

Wadsack and Jahnke (2002) argue that since middleware plat-
forms are often relied upon as the means for bridging the
heterogeneity among various software and hardware compo-
nents, their evolution and maintenance are relatively more
challenging than traditional software systems. To that end, they
propose an MDA approach that aims to reduce the manual effort
and increase the quality of resulting middleware.

Parallax (Silaghi and Strohmeier, 2005) is an MDA framework
that enables the developer to configure the design models with
middleware-specific concerns at different levels of abstraction,
and then generate the implementation of these concerns for
different middleware infrastructures. The approach employs a
combination of Aspect] aspects with Eclipse plug-ins, which
enables aspects to encapsulate concerns that crosscut plug-in
boundaries.

Unlike our work, none of the above approaches aims to pro-
vide support for the implementation of architectural styles in
middleware platforms. However, we believe some of the MDE
techniques described above could be used in conjunction with
the AOP techniques proposed in our work. As further detailed
below, we consider this to be an interesting avenue of future
work.

Another area of related work has been the use of aspects in
realizing the design decisions:

e Hannemann and Kiczales (2002) have shown the benefits of
employing AOP in the implementation of design patterns.

e Cunha et al. (2006) have presented a collection of high-level
concurrency patterns and mechanisms in Aspect]. They demon-
strate that in comparison to basic Java implementation, the AOP
approach achieves higher modularity, reuse, understandability,
and (un)pluggability.

Our research is different from these works in two ways.
Firstly, our work is geared to the implementation of architec-
tural styles, as opposed to design/concurrency patterns. Secondly,
our approach deals with enhancing middleware support for
styles.

Related to our research is the notion of early aspects (Chitchyan
etal., 2005; Cuestaetal.,2005; Rashid et al., 2003), which is the idea
of applying aspects during initial stages of software development
(e.g., requirements elicitation and architecture modeling phases).
Chitchyanetal.(2005) present a comprehensive survey of the state-
of-the-art in modeling early aspects. Cuesta et al. (2005) provide a
detailed description of the concerns and techniques for modeling
architectural aspects. Batista et al. (2006a) and Navasa et al. (2002)
describe some of the key issues regarding the integration of AOSD
and ADLs. They argue that a systematic integration of architectural

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527 2525

abstractions and AOSD would enhance the existing support for sep-
aration and modular representation of crosscutting concerns at the
architectural level. The following research is representative of the
related work in this area:

e PRISMA (Pérez et al., 2008) is an approach that integrates the
software architecture modeling with aspect-oriented software
development techniques to take advantage of both. The PRISMA
model (Pérez et al., 2005) is a symmetrical model that does not
consider functionality as a kernel entity different to aspects and
it does not constrain aspects to specify non-functional require-
ments. PRISMA provides a formal Aspect-Oriented Architecture
Description Language (AOADL) (Pérez et al., 2006). Aspects have
been introduced in the PRISMA AOADL as a new concept rather
than using other architectural constructs (e.g., component, con-
nectors, views, etc.). A recent extension of this approach with
concepts from Ambient Calculus has resulted in Ambient-PRISMA
(Ali et al., 2010). Ambient-PRISMA supports design and devel-
opment of mobile applications using Ambient-PRISMANET, a
middleware realized on top of .NET technology.

Aspectual ACME (Batista et al., 2006b), an extension to ACME
(Garlanetal., 1997),incorporates Aspectual Connectors and other
facilities to modularize crosscutting concerns in the architectural
models. The objective of Aspectual ACME has been to reduce the
number of extensions and additional constructs necessary for
modeling architectural aspects.

AspectLEDA (Navasa et al., 2009) is an aspect-oriented ADL that
builds on an aspect-oriented architecture modeling methodol-
ogy, called AOSA Model (Navasa et al., 2005), and LEDA (Canal et
al., 2001). AOSA Model (Navasa et al., 2005) is an architectural
description methodology allowing the behavior of a system to
be changed by adding or removing logical restrictions without
changing the components that constitute them. This is achieved
via a base level containing the initial system (core components)
and a meta-level containing the new elements (aspect and coor-
dinators in the model). The models constructed in this manner
can be translated to LEDA (Canal et al., 2001), which is an ADL
with formal underpinnings (pi-calculus) allowing the system’s
correctness to be verified and the corresponding prototype of the
system in Java to be generated.

All of the above approaches are concerned with modeling cross-
cutting concerns in the architectural models. Unlike them, our
research is concerned with the effective implementation of archi-
tectural styles in middleware platforms, which is a fundamentally
different objective. At the same time, as detailed in the next section,
we believe these approaches could complement our work. They
provide a high-level language (e.g., AO-ADL) that could potentially
be used to model stylistic concerns, which if employed together
with MDE techniques could generate middleware-specific style
aspects.

We have used Aspect]’s pointcut language for our implemen-
tation. Some of the other AOP technologies include Aspectwerkz,
Alice (Eichberg, 2005; Eichberg and Mezini, 2004), Prose
(2010)Prose, and JBoss AOP. We feel our approach could be realized
using any of the aforementioned technologies. We chose Aspect]
for two reasons: (1) Aspect] can be used to modularize individual
middleware services, regardless of the component model sup-
ported by the middleware and without any particular assumption
on the underlying facilities. (2) Aspect] is widely used in many
projects, especially for the implementation of infrastructural ser-
vices (Eichberg, 2005). While Aspect] is limited to middleware
platforms implemented in Java, advances in aspect-oriented pro-
gramming are making it possible to employ AOP techniques in other
languages (e.g., AspectC++).

11. Conclusions and future work

Middlewares have been shown to aid the architecture-based
development of software systems. However, due to the crosscut-
ting structure of architectural styles, there is a lack of adequate
support for styles in the existing middleware platforms. In
this paper, we demonstrated the crosscutting impact of styles
on architectural middleware platforms. We presented a new
approach to implementing styles that is based on the aspect-
oriented programming paradigm. Finally, we showed how style
aspects can be reused in composing more advanced hybrid
styles.

Aspects allow for modularized and localized implementation of
stylistic support in middlewares. They allow an informed engineer
to modify the default behavior of a middleware by implement-
ing support for an arbitrary, possibly domain-specific, architectural
style. By enforcing the stylistic rules in middleware, we are able to
alleviate the developers from resorting to manual techniques for
verifying the fidelity of the implemented system with respect to
the architectural models.

As part of our future work, we plan to extend our work
to existing commercial middleware platforms. Another interest-
ing avenue of future work is to investigate the dynamic aspect
weaving of style concerns. This would enable dynamic adapta-
tion of a software system’s style by simply (un)deploying the
appropriate style aspect at run-time. Finally, we believe the
approach presented in this paper could be complemented with
the Aspect-Oriented Architectural Description Languages, such as
Aspectual ACME (Batista et al., 2006b), PRISMA AOADL (Pérez et
al., 2006), and AspectLEDA (Navasa et al., 2009), to model the
crosscutting behavior of architectural styles in terms of architec-
tural constructs. We hypothesize that such models in conjunction
with model- and code-transformation techniques from Model-
Driven Engineering (Schmidt, 2006) could be used to automatically
generate the required middleware-specific code for supporting
styles. Such an approach would be useful, as it would free
the developer from having to learn AOP as well as the details
of the middleware. Instead, the developer would specify the
rules and properties of the style in terms of high-level architec-
tural constructs (e.g., using an AO-ADL), which would then be
transformed into the corresponding middleware-specific aspect
code.

References

Aldrich,], Chambers, C., Notkin, D., 2002. Archjava: connecting software
architecture to implementation. In: Proceedings of the International Con-
ference on Software Engineering, Orlando, Florida, May 2002, pp. 187-
197.

Ali, N., Ramos, 1., Solis, C., 2010. Ambient-PRISMA: ambients in mobile aspect-
oriented software architecture. Journal of Systems and Software 83 (6 (June)),
937-958.

Andrews, G., 1991. Paradigms for process interaction in distributed programs. ACM
Computing Surveys 23 (1 (March)), 49-90.

Aspect] web site. http://www.eclipse.org/aspectj/.

AspectC++ web site. http://www.aspectc.org/.

Aspectwerkz web site. http://aspectwerkz.codehaus.org/.

Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotak,]., Lhotak, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J., 2005. Optimizing Aspect].
In: Proceedings of the International Conference on Programming Language
Design and Implementation (PLDI 2005), Chicago, Illinois, June 2005, pp. 117-
128.

Babu, C., Ramnath Krishnan, H., 2009. Fault model and test-case generation for
the composition of aspects. ACM SIGSOFT Software Engineering Notes 34 (1
(January)), 1-6.

Batista, T., Chavez, C., Garcia, A., Sant’Anna, C., Kulesza, U., Rashid, A., Castor Filho,
F., 2006a. Reflections on architectural connection: seven issues on aspects and
ADLs. In: Proceedings of the International Workshop on Early Aspects, Shanghai,
China, May 2006, pp. 3-10.

Batista, T., Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C., 2006b.
Aspectual connectors: supporting the seamless integration of aspects and
ADLs. In: Proceedings of the ACM SIGSOFT Brazilian Symposium on Soft-

http://www.eclipse.org/aspectj/
http://www.aspectc.org/
http://aspectwerkz.codehaus.org/

2526 S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527

ware Engineering (SBES'06), Florianépolis, Brazil, October 2006, pp. 17-
32.

Cacho, N., Batista, T., Garcia, A., Sant’Anna, C., Blair, G., 2006. Improving modularity
of reflective middleware with aspect-oriented programming. In: Proceedings of
the International Workshop on Software Engineering and Middleware, Portland,
Oregon, November 2006, pp. 31-38.

Jean, G.C,, Sourrouille, J.L., Pascal, B.B., Cedex, F.V., 2002. Model mapping in MDA.
In: Proceedings of the Workshop in Software Model Engineering, Dresden, Ger-
many, October 2002.

Canal, C, Pimentel, E., Troya, J.M., 2001. Compatibility and inheritance in
software architectures. Science of Computer Programming 41 (2), 105-
138.

Chan, A.T.S., Chuang, S., 2003. MobiPADS: a reflective middleware for context-aware
mobile computing. IEEE Transactions on Software Engineering 29 (12 (Decem-
ber)), 1072-1085.

Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Pinto, M., Bakker,]., Tekinerdogan,
B., Clarke, S., Jackson, A., 2005. Report synthesizing state-of-the-art in aspect-
oriented requirements engineering, architectures and design. In: AOSD-Europe
Deliverable D11, AOSD-Europe-ULANC-9, Lancaster University, Lancaster, pp.
1-259.

Colyer, A., Clement, A., 2004. Large-scale AOSD for middleware. In: Proceedings of
the International Conference on Aspect-Oriented Software Development, Lan-
caster, UK, March 2004, pp. 56-65.

Cuesta, C.E., Romay, M.P., de La Fuente, P., Barrio-Solérzano, M., 2005. Architec-
tural aspects of architectural aspects. In: Proceedings of the European Workshop
on Software Architecture (EWSA 2005), Pisa, Italy, June 2005, pp. 247-
262.

Cunha, C.A., Sobral,]J.L., Monteiro, M.P., 2006. Reusable aspect-oriented imple-
mentation of concurrency patterns and mechanisms. In: Proceedings of the
International Conference on Aspect Oriented Software Development, Bonn, Ger-
many, March 2006, pp. 134-145.

Eichberg, M., 2005. Component-based software development with aspect-
oriented programming. Journal of Object Technology 4 (3 (April)), 21-
26.

Eichberg, M., Mezini, M., 2004. Alice: modularization of middleware using aspect-
oriented programming. In: Proceedings of the International Workshop on
Software Engineering and Middleware (SEM 2004), Linz, Austria, September
2004, pp. 47-63.

Fielding, R., 2000. Architectural Styles and the Design of Network-Based Software
Architectures. PhD thesis, University of California Irvine, June 2000.

Garlan, D., Allen, R., Ockerbloom, J., 1995. Architectural mismatch, or, why it’s hard
to build systems out of existing parts. In: Proceedings of the International Con-
ference on Software Engineering (ICSE 1995), Seattle, USA, April 1995, pp. 179-
185.

Garlan, D., Monroe, R., Wile, D., 1997. ACME: an architecture description interchange
language. In: Proceedings of the Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON 1997), Toronto, Canada, November 1997,
pp. 169-183.

Gorton, L., 2006. Essential Software Architecture. Springer-Verlag, Berlin, Germany.

Greenwood, P., Blair, L., 2004. Using dynamic aspect-oriented programming to
implement an autonomic system. In: Proceedings of the Dynamic Aspects Work-
shop, Lancaster, England, March 2004, pp. 76-88.

Hannemann, J., Kiczales, G., 2002. Design pattern implementation in Java and
Aspect]. In: Proceedings of the Object-Oriented Programming Systems Lan-
guage and Applications (OOPSLA 2002), Seattle, Washington, November 2002,
pp. 161-173.

Hunleth, F., Cytron, R,, Gill, C., 2001. Building customizable middleware using aspect
oriented programming. In: Proceedings of the Workshop on Advanced Separa-
tion of Concerns in Object-Oriented Systems, Tampa, Florida, October 2001.

IONA Orbix/E Datasheet. http://www.iona.com/whitepapers/orbixe-DS.pdf.

Jboss AOP web site. http://labs.jboss.com/jbossaop/.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin,
J., 1997. Aspect-oriented programming. In: Proceedings of the European Con-
ference on Object-Oriented Programming, Jyvaskyla, Finland, July 1997, pp.
220-242.

Kiczales, G., Hilsdale, E., Hugunin,]., Kersten, M., Palm, J., Griswold, W.G.,
2001. An overview of Aspect]. In: Proceedings of the European Conference
on Object-Oriented Programming, Budapest, Hungary, June 2001, pp. 327-
353.

Lee, J., Bae, D., 2004. An aspect-oriented framework for developing component-
based software with the collaboration-based architectural style. Jour-
nal of Information and Software Technology 46 (2 (February)), 81-
97.

Malek, S., Mikic-Rakic, M., Medvidovic, N., 2005. A style-aware architectural mid-
dleware for resource-constrained, distributed systems. IEEE Transactions on
Software Engineering 32 (3 (March)), 256-272.

Malek, S., Seo, C., Ravula, S., Petrus, B., Medvidovic, N., 2007. Reconceptualiz-
ing a family of heterogeneous embedded systems via explicit architectural
support. In: Proceedings of the International Conference on Software
Engineering (ICSE 2007), Minneapolis, Minnesota, May 2007, pp. 591-
601.

Malek, S., 2008a. Dealing with the crosscutting structure of software architectural
styles. In: Proceedings of the International Computer Software and Applications
Conference, Turku, Finland, July 2008, pp. 385-392.

Malek, S., 2008b. Effective realization of software architectural styles with aspects.
In: Proceedings of the Working IEEE/IFIP Conference on Software Architec-

ture (WICSA 2008), working session track, Vancouver, BC, February 2008, pp.
313-316.

Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N., 1996. Using object-oriented
typing to support architectural design in the C2 style. In: Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE 1996),
San Francisco, CA, October 1996, pp. 24-32.

Medvidovic, N., Dashofy, E.M., Taylor, R.N., 2003. The role of middleware in
architecture-based software development. International Journal of Software
Engineering and Knowledge Engineering 13 (4 (August)), 367-393.

Mehta, N., Medvidovic, N., Phadke, S.,2000. Towards a taxonomy of software connec-
tors. In: Proceedings of the International Conference on Software Engineering,
Limerick, Ireland, June 2000, pp. 178-187.

Nanbor, W., Balasubramanian, K., Gill, C., 2002. Towards a real-time Corba compo-
nent model. In: Proceedings of the OMG Workshop on Embedded and Real-Time
Distributed Object Systems, Washington, DC, July 2002.

Navasa, A., Perez, M.A., Murillo, .M., Hernandez,]., 2002. Aspect-oriented software
architecture: a structural perspective. In: Proceedings of the Workshop on Early
Aspect, Enschede, The Netherlands, April 2002.

Navasa, A., Perez, M.A., Murillo,].M., 2005. Aspect modeling at architecture design.
In: Proceedings of the 2nd European Workshop on Software Architecture (EWSA
2005), Pisa, Italy, June 2005, pp. 41-58.

Navasa, A., Pérez-Toledano, M.A., Murillo,].M., 2009. An ADL dealing with aspects
at software architecture stage. Journal of Information and Software Technology
51 (2 (February)), 306-324.

Object Management Group’s Model-Driven Architecture. http://www.omg.
org/mda/.

Pérez, ., Ali, N., Carsi, J.A., Ramos, 1., 2005. Dynamic evolution in aspect-oriented
architectural models. In: Proceedings of the European Workshop on Software
Architecture, Pisa, Italy, June 2005, pp. 59-76.

Pérez,].,Ali,N., Carsi, J.A.,Ramos, ., Alvarez, B., Sanchez, P., Pastor,].A.,2008. Integrat-
ing aspects in software architectures: PRISMA applied to robotic tele-operated
systems. Journal of Information and Software Technology 50 (9-10 (August)),
969-990.

Pérez, J., Ali, N., Carsi, J.A., Ramos, L., 2006. Designing software architectures with an
aspect-oriented architecture description language. In: Proceedings of the Inter-
national Symposium on Component-Based Software Engineering (CBSE 2006),
Vasteras, Sweden, June 2006, pp. 123-138.

Perry, D.E., Wolf, A.L, 1992. Foundations for the study of software architectures.
ACM SIGSOFT Software Engineering Notes 17 (4 (October)), 40-52.

Prose web site. http://prose.ethz.ch/.

Rashid, A., Moreira, A., Aradjo, J., 2003. Modularisation and composition of aspectual
requirements. In: Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD 2003), Boston, USA, March 2003, pp.
11-20.

Real-time Corba with TAO (The ACE ORB). http://[www.cs.wustl.edu/
~schmidt/TAO.html.

Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., von Staa, A.V., 2003. On the reuse and
maintenance of aspect-oriented software: an assessment framework. In: Pro-
ceedings of the Brazilian Symposium on Software Engineering, Manaus, Brazil,
October 2003.

Schmidt, D.C., 2006. Model-driven engineering. IEEE Computer 39 (2 (February)),
25-31.

Schmidt, D.C., Gokhale, A., Natarajan, B., Neema, S., Bapty, T., Parsons, J., Gray,]J.,
Nechypurenko, A., Wan, N., 2002. CoSMIC: an MDA generative tool for dis-
tributed real-time and embedded component middleware and applications. In:
Proceedings of the OOPSLA 2002 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, Seattle, WA, November 2002.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G., 1995. Abstrac-
tions for software architecture and tools to support them. IEEE Transactions on
Software Engineering 21 (4 (April)), 314-335.

Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, NJ.

Silaghi, R., Strohmeier, A., 2005. Parallax—an aspect-enabled framework for plugin-
based MDA refinements towards middleware. In: Beydeda, S., Book, M., Gruhn, V.
(Eds.), Model-Driven Software Development. Research and Practice in Software
Engineering, vol. II. Springer-Verlag, pp. 237-267.

Sousa, J.P., Garlan, D., 2002. Aura: an architectural framework for user mobility in
ubiquitous computing environments. In: Proceedings of the IEEE/IFIP Work-
ing Conference on Software Architectures, Montreal, Canada, August 2002, pp.
29-43.

Spread Toolkit web site. http://www.spread.org/.

Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead, E.J., Robbins, J.E., Nies, K.A.,
Oreizy, P., Dubrow, D.L., 1996. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software Engineering 22 (6 (June)),
390-406.

Vanegas, R., Zinky, J.A., Loyall, J.P., Karr, D., Schantz, R.E., Bakken, D.E., 1998. QuO’s
runtime support for quality of service in distributed objects. In: Proceedings of
the IFIP International Conference on Distributed Systems Platforms and Open-
Distributed Processing, The Lake District, United Kingdom, September 1998, pp.
207-222.

Wadsack, J.P., Jahnke, J.H., 2002. Towards model-driven middleware maintenance.
In: Proceedings of the OOPSLA 2002 Workshop on Generative Techniques in the
Context of Model-Driven Architecture, Seattle, WA, November 2002.

Zhang, C., Jacobsen, H.A., 2003a. Quantifying aspects in middleware platforms.
In: Proceedings of the International Conference on Aspect-Oriented Software
Development, Boston, MA, March 2003, pp. 130-139.

http://www.iona.com/whitepapers/orbixe-DS.pdf
http://labs.jboss.com/jbossaop/
http://www.omg.org/mda/
http://prose.ethz.ch/
http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.spread.org/

S. Malek et al. / The Journal of Systems and Software 83 (2010) 2513-2527 2527

Zhang, C., Jacobsen, H.A., 2003b. Re-factoring middleware systems: a case study.
In: Proceedings of the International Symposium on Distributed Objects and
Applications (DOA 2003), Catania, Sicily, November 2003, pp. 1243-1262.

Sam Malek is an Assistant Professor in the Department
of Computer Science at George Mason University (GMU).
He is also a faculty member of the C4I Center at GMU.
Malek’s general research interests are in the field of soft-
ware engineering, and to date his focus has spanned the
areas of software architecture, distributed and embedded
software systems, middleware, autonomic computing,
service-oriented architectures, and quality of service anal-
ysis. The underlying theme of his research has been to
devise techniques and tools that aid with the construc-
tion, analysis, and maintenance of large-scale distributed,
\ 1 embedded, and pervasive software systems. His research

has been funded by NSF, US Army, and SAIC. Malek
received his Ph.D. in 2007 from the Computer Science Department at the University
of Southern California (USC). His dissertation research was nominated by USC for the
final round of the ACM Doctoral Dissertation Competition in 2007. He also received
an M.S. degree in Computer Science in 2004 from USC, and a B.S. degree in Infor-
mation and Computer Science cum laude in 2000 from the University of California,
Irvine. Malek is the recipient of numerous awards, including USC Viterbi School of
Engineering Fellow Award in 2004, and the USC Computer Science Outstanding Stu-
dent Research Award in 2005. He is a member of the ACM, the ACM SIGSOFT, and
the IEEE.

Harshini Ramnath Krishnan received an M.S Degree in
Computer Science from George Mason University in 2010
and a B.S in Computer Science from Anna University, India,
in 2008. Initially, an Intern in VeriSign Inc with the Plat-
form Product Development group, she is now an Engineer
in the Rapid Prototyping team of VeriSign Inc. Her research
interests span the areas of aspect-oriented software devel-
opment, architectural styles, and software architecture for
distributed systems.

Jaya Srinivasan received an M.S. degree in Software Engi-
neering from George Mason University in 2010 and a B.E
degree in Electronics and Communications Engineering
from University of Madras, India, in 2003. Previously, she

= has worked as a Programmer Analyst for Cognizant Tech-

nology Solutions in Chennai, India, where she developed
several software products. Jaya was awarded Outstand-
ing Academic Achievement award in her M.S program.
Her research interests are in software architecture for dis-
tributed systems, middleware facilities for architectural
implementation, and architectural styles.

	Enhancing middleware support for architecture-based development through compositional weaving of styles
	Introduction
	Problems and challenges
	Injecting architectural style
	An illustrative middleware
	Crosscutting impact of style
	Stylistic aspects
	Client–Server style
	Layered style
	Cache style

	Using the weaved middleware
	Composing hybrid styles
	Evaluation
	Benchmark results
	Implementation properties
	Design quality
	Experience

	Related work
	Conclusions and future work
	References

