
QoS Architectural Patterns for Self-Architecting Software
Systems

Daniel A. Menascé, João P. Sousa, Sam Malek, and Hassan Gomaa
Department of Computer Science

George Mason University
Fairfax, VA 22030, USA

{menasce,jpsousa,smalek,hgomaa}@gmu.edu

ABSTRACT
This paper discusses the automated application of architec-
tural patterns for tuning the quality of service of service-
oriented software. The paper first presents an overview of
prior work in self-architecting, SASSY, and a motivating
example in the emergency response domain. After sum-
marizing the heuristic used for self-architecting, the paper
discusses a number of architectural patterns and the cor-
responding quantitative models for two concrete aspects of
quality of service: availability and response time. A case
study illustrates the role of patterns in the application of
the self-architecting heuristic to the motivating example.

Categories and Subject Descriptors
C.4 [Modeling Techniques]: Experimentation; D.2.11 [Soft-
ware Architectures]: Patterns; D.4.8 [Performance]: Sto-
chastic analysis; G.1.6 [Optimization]: Global optimiza-
tion

General Terms
Performance, Experimentation

Keywords
Service-Oriented Architecture, software architectures, auto-
nomic computing, quality of service, software optimization,
architecture patterns

1. INTRODUCTION
Tuning the architecture of software systems is hard. Once

an application’s logic is defined, an architect is concerned
with choosing architectural styles and patterns that promote
desired system qualities. Unfortunately, choosing a pattern
that promotes certain aspects of quality normally has a neg-
ative effect on some other aspects of quality [4, 14]. The task
of an architect is to make tradeoffs that reflect the priorities
of stakeholders. This task is especially complex for large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’10, June 7–11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0074-2/10/06 ...$10.00.

systems, where the architectural decisions made to optimize
certain features may cause adverse effects in other parts of
the system.

Situated systems present an additional challenge since both
the specific quality goals and the available means, such as
service providers, may only become known on the spot, when
the system is needed to address a specific situation. For ex-
ample, in the emergency response domain, different means
may be employed or given different priorities, e.g., to fight
a threat vs. to evacuate the affected area, depending on the
kind of threat and on the number of potential victims.

Automation is a promising approach to help architects
address such challenges. In service-oriented systems, auto-
matic service discovery brings scalability and effectiveness
to the process of selecting the set of service providers that
will deliver the preferred Quality of Service (QoS) to the sys-
tem. Furthermore, once service discovery is automated, it
can be supported by a run-time infrastructure thus making
self-healing and self-adaptation possible [1, 9, 25]. Further
improvements to QoS may be achieved by leveraging the
automatic generation of service coordinators based on high-
level descriptions of service flow. For example, JOpera au-
tomatically tunes coordination parameters, such as thread
replication, taking into account system characteristics and
load [23].

Although steps in the right direction, the mechanisms
above fall short of providing the kinds of QoS improvements
that expert application of architectural patterns can deliver.
Work on architectural patterns is well-know in the art [8].
However, this paper is about automated techniques for ap-
plying QoS architectural patterns.

Recent work in self-architecting attempts to bridge that
gap by automating the application of architectural patterns [5,
18]. This paper extends prior work in SASSY (Self-Archi-
tecting Software SYstems), where the automatic applica-
tion of patterns is informed by QoS goals defined by system
stakeholders [18]. SASSY uses efficient and scalable search
heuristics to identify the optimal patterns, making it possi-
ble to perform self-architecting both at system deployment
and at run time for purposes of self-adaptation [20].

The contributions of this paper are, first, the analysis of a
number of patterns suitable for self-architecting, and second,
quantitative models to derive the overall QoS of a system
after the application of several such patterns.

In the remainder of this paper, Sections 2 and 3 respec-
tively present an overview of SASSY and a motivating ex-
ample in the emergency response domain. Section 4 summa-
rizes the self-architecting heuristic, and Section 5 presents

195

the patterns currently supported in SASSY and their cor-
responding QoS models. Section 5 also illustrates the ap-
plication of such patterns with a case study, and Section 6
compares with related work. Finally, Section 7 summarizes
the main points of this paper.

2. OVERVIEW OF SASSY
SASSY takes optimization of QoS to a level beyond the

optimal selection of service providers by automatically gen-
erating a number of candidate architectural patterns to re-
place each service and searching for the pattern that best
serves user-defined QoS goals.

Broadly, SASSY provides a framework and infrastructure
for self-adaptation, self-healing, self-optimization and evolu-
tion of service-oriented software systems.

Figure 1 shows the relationships between the top-level
components and models used in the SASSY framework. This
framework is consistent with the classical monitoring and
feedback control loop for software self-management (e.g., [17])
and builds on prior work by the authors and others [13, 19].
Specifically, starting at the bottom left, the Monitoring Sup-
port component leverages probes on the SOA implementa-
tion stack and transforms those observations into measures
of QoS at system level via monitoring and gage services.
Observations of service failure and QoS are reflected on the
System Service Architecture, at the center, thus keeping
the latter consistent with the status of the running system.
The Adaptation Support component, at the bottom right,
manages the operational aspects of effecting changes to the
running system based on architectural descriptions of those
changes.

What is distinctive about SASSY is the self-architecting
and re-architecting component and associated models, at the
top of the figure. Service Activity Schemas (SAS) describe
the features and logic of the application and are written by
domain experts in a graphical notation similar to Business
Process Modeling Notation (BPMN) [2] (more in Section 3).
BPMN is too loosely defined and does not have the tight
semantics and the QoS annotation capabilities as SAS [7].

In contrast to BPMN, SAS can be annotated with QoS
goals expressed in the form of utility functions. Utility func-
tions originate in economics and have been extensively used
in autonomic computing to assign a value to the usefulness
of a system based on its attributes (e.g., [1, 25]). For exam-
ple, a utility function associated with system availability, a
might be:

UAvailability(a) =

8

<

:

0 a < 0.9
0.5 0.9 ≤ a < 0.95
1 0.95 ≤ a < 1

(1)

This expresses that the system is not useful (utility 0) if
its availability is less than 0.9, it is only half useful for an
availability in the interval [0.9,0.95), and it is entirely ade-
quate (utility 1) when the availability equals to or exceeds
0.95.

SASSY is innovative in the way that it supports the ex-
pression of such QoS goals. This is done by highlighting
paths of interest in SAS, so called Service Sequence Scenar-
ios (SSS), and specifying end-to-end goals along those paths
in the form of utility functions as above. The overall util-
ity of a system is defined as a composition of the individual
utilities according to their relative importance. Such util-

ity functions and their composition are defined by domain
experts in consultation with the system stakeholders.

SASSY uses analytical models to derive the end-to-end
QoS attributes, and hence the utility of the system, as func-
tions expressed in terms of the QoS provided by each service
along each SSS (more in Section 5.6). These analytical mod-
els play a key role in the self-architecting process.

The self-architecting and re-architecting component auto-
matically generates a near-optimal System Service Architec-
ture, and maintains that optimality in the face of changes
detected by the Monitoring Support—self-healing and adap-
tation—and in the face of changes made by users in the SAS
and SSS—system evolution. For that, it focuses on a set
of SSS with greater room for improving their contribution
to the overall utility. Then it generates variations to the
system architecture by replacing each service along an SSS
with candidate architectural patterns that are functionally
equivalent but improve some aspect of QoS. Prior work has
evaluated the effectiveness and scalability of several heuris-
tics for generating candidate replacements and searching for
the optimal architecture [20].

This paper describes the progress made to further improve
the self-architecting process by leveraging knowledge about
which architectural patterns promote or detract which QoS
attributes.

3. MOTIVATING EXAMPLE
For illustrating our research, we rely on an emergency re-

sponse system intended for use by government agencies to
automatically detect, respond, and manage various crises.
The system targets SOA enabled smart spaces, which are
comprised of various types of sensors, such as smoke detec-
tors, fire sprinklers, and cameras. Each sensor exposes its
functionality via a discoverable web service, which complies
to the specification of the service type from the domain on-
tology. The emergency response crew is also equipped with
a variety of SOA enabled devices (e.g., PDAs) and plat-
forms (e.g., fire engines), which allow the crew to communi-
cate their status, coordinate activities, and operate remote
sensors. A system such as this is innately dynamic and in-
tended to deal with a variety of emergency scenarios. The
SAS language provides a suitable method of specifying the
system’s requirements under different emergency conditions
(e.g., fire, earthquake, hurricane). SASSY in turn selects
the appropriate SAS model based on the situation at hand.
Below we describe a SAS model constructed for a fire emer-
gency at a smart building, which is further used in this paper
to illustrate self-architecting and QoS analysis in SASSY.

Figure 2a shows a subset of the modeling constructs avail-
able in the SAS language. Events are messages exchanged
between two separate entities, and Gateways manage the
flow of control. Supported gateways include Conditional-Or,
Fork, and And-Join, with the same meaning as in BPMN.
The language distinguishes local activities from service us-
ages, i.e., activities performed by external entities as services
provided to the requester. Furthermore, local activities may
be composite, which enable hierarchical decomposition, or
tasks, which cannot be decomposed any further. Activities
and service usages are represented by rectangles with round
corners, where composites show a plus sign, for bringing up
the internal composition, and service usages show a server
icon. Communication with a service is via input and output

196

Figure 1: High-level view of the SASSY framework.

events, which are, respectively, indicated as white and black
envelopes on the border of the corresponding rectangle.

Figure 2b shows an example SAS made by a city for mon-
itoring fire emergencies in public buildings equipped with
smoke detectors and fire sprinklers. If smoke is detected,
the building sends a smokeDet event to the 911 Dispatcher,
which may issue events targeted at the Police Station, Hospi-
tal, and Fire Station. These organizations in turn may take
further actions and coordinate their activities with other en-
tities. In this example, the Fire Station may decide to turn
on the fire sprinklers in the building.

Figure 2c shows the SAS for 911 Dispatcher, where the
reception of a smokeDet event starts two parallel threads of
control. First, an attempt is made to contact the building
occupants using the Emergency Phone System, described
in a local composite activity. Second, an external Building
Locator service is used to find the physical address of the
incident. Once both have finished, if contact was made with
the occupants, the phone call is forwarded to an operator;
otherwise, an investigate event will be sent to the Police
Station.

Following the Building Locator service, two other exter-
nal services, Occupancy Awareness and Building Category
Finder, are requested to determine the number of occupants
in the building and the type of the building. If there are
occupants in the building but no contact was possible, a
reqHelp event is sent to the Hospital for dispatching an
ambulance to the scene. Finally, depending on the type
of the building, either reqMultFS or reqSingFS events are
sent to the Fire Station, indicating a request for multiple or
single fire engines, respectively. Organizations such as the

Hospital, Police Station, and Fire Station, might develop
their SAS models independently, the details of which are
not shown in here for brevity.

The purpose of Service Sequence Scenarios (SSS) is the
specification of QoS objectives, which play a key role in the
generation and evaluation of candidate architectures. For-
mally, SSS are sub-graphs of SAS that are well-formed, in
the sense of satisfying all the syntactic constraints of a com-
plete SAS. With the current tool support, SSS are accessible
via dashed rectangles at a corner of an SAS (see Figure 2c).
Figure 2d shows what happens when the Availability SSS is
selected: the corresponding sub-graph is highlighted, while
the rest of the SAS is grayed out. Specific end-to-end QoS
objectives associated with an SSS are captured in a prop-
erty sheet. For example, the SSS in Figure 2d has a utility
function that depends on that SSS availability. This util-
ity function is composed with the utility function of all the
other SSS and is used during the self-architecting process to
determine the system’s ability in satisfying the user’s QoS
requirements (see Section 4).

A formal specification of SASSY’s activity-oriented re-
quirements modeling language can be found in [7].

4. SASSY’S SELF-ARCHITECTING AND RE-
ARCHITECTING

Figure 3 shows the structural view of the base architec-
ture automatically generated by SASSY for the 911 Dis-
patcher of Fig. 2(c). SASSY automatically generates a base
architecture from an SAS specification. In this base archi-
tecture, each service type is represented by a single compo-

197

Figure 2: Requirements for a fire emergency response scenario in SAS: (a) SAS language constructs; (b) a
high-level SAS describing the interactions between a number of agencies in response to a fire emergency; (c)
911 Dispatcher’s internal coordination (behavior) described in the SAS language; and (d) an availability SSS
defined on a specific sequence of interactions in 911 Dispatcher.

198

Figure 3: Structural view of the base architectural model generated for the 911 Dispatcher of Fig. 2.

Figure 4: Structural view of an adapted architecture derived from the base architectural model depicted in
Fig. 3.

nent. Moreover, a component that carries out the coordina-
tor logic in the SAS is added to the architecture. This com-
ponent coordinates the communication between the other
components. Note that unlike services, activities are not
represented in the architectural model that is used for opti-
mizing the software system. This is because activities cor-
respond to locally available libraries and resources that are
not necessarily discoverable, and thus are outside the scope
of automatic (re)architecting.

The base architecture initially generated by SASSY is not
necessarily the best architecture that meets the QoS re-
quirements of the application—expressed as a utility func-
tion. Through the process outlined in this section, SASSY
searches and finds an architecture, along with a correspond-
ing set of service providers, that maximizes the utility func-
tion for the application.

Thus, the optimization problem addressed by SASSY deals
with the issue of finding an architecture and a set of service
providers (SPs) that implement the service types in the SAS
in a way that optimizes the global utility function Ug for a
given SAS. This problem is clearly NP-complete. Therefore,
SASSY uses a heuristic-based search technique that works
as described below.

The search used by SASSY works by replacing QoS ar-
chitectural patterns (see Section 5) for other QoS archi-
tectural patterns. Our work assumes that any architectural
pattern is totally, and not partially, replaced during the
search by another QoS architectural pattern that has the

same interface with the rest of the architecture as the pat-
tern being replaced. For example, the Occupancy Awareness
component in the architecture of Fig. 3 is replaced by a com-
position of Occupancy Awareness 1 and Occupancy Aware-
ness 2 connected by the Fault Tolerant connector as illus-
trated in Fig. 4. It should be noted that the interface with
the rest of the architecture was preserved in this replace-
ment. Single components in the architecture are trivial cases
of basic architectural patterns and are referred as such in the
description below. In what follows, A0 in Step 1 stands for
either the base architecture generated by SASSY or for an
instantiated architecture that needs to be re-architected be-
cause of the need to adapt.

• Step 1. Start with architecture A0 and corresponding
service selection Z0 of service providers for the service
types of A0.

• Step 2. Identify the SSSs with the lowest contribution
towards overall utility. How many SSSs to consider is
a parameter of the heuristic.

• Step 3. Find a neighborhood N of architectures de-
rived from A0 by replacing QoS architectural patterns
in A0 by other candidate QoS architectural patterns
that improve the utility of the SSSs identified in Step
2 (see Section 5).

• Step 4. Perform a near-optimal service provider al-
location for each architecture in N . This is also an

199

NP-complete problem for which SASSY uses a heuris-
tic described in [21].

• Step 5. Compute the global utility Ug for each archi-
tecture in N and pick the architecture Abest with the
largest utility in N .

• Step 6. If the utility of Abest represents a“good enough”
improvement over the previous value of the global util-
ity, stop and return Abest. Otherwise, make A0 equal
to Abest and go to step 2.

This optimization problem may be modified by adding a
cost constraint. In the cost-constrained case, one assumes
that there is a cost associated with each SP for providing
a certain QoS level. The optimization approach used by
SASSY is driven by QoS Architectural Patterns for software
self-adaption. These are the main focus of this paper and
are discussed below.

Once the architecture is deployed, there may be a need to
re-architect due to changes in the environment (e.g., failures
of service providers or changes in their QoS characteristics).
SASSY uses the same approach described in this section to
automatically generate a new architecture. Once that ar-
chitecture is generated, SASSY’s run-time infrastructure ef-
fectuates the change through a run-time adaptation process
described in details in [12].

A detailed description and evaluation of the heuristic ap-
proach used by SASSY in its self-architecting and re-archi-
tecting process can be found in [20].

5. QOS ARCHITECTURAL PATTERNS
A QoS architectural pattern P is defined by the tuple

(S, B,Q) where

• S is the structural view of P , which in our case is ex-
pressed in a modified xADL [6]. The structural view
consists of a set of one or more components Cj (j =
1, · · · , C), connected by zero or more connectors. Each
component is associated to a service provider when the
architecture is instantiated. Each service provider has
associated with it various QoS metrics. Let vm,c be
the value of the QoS metric m associated with compo-
nent c.

• B is the behavioral view of P , which in our case is
expressed using Finite State Processes (FSP) [16].

• Q = {(mi,Mi) | i = 1, · · · , n} is a set of n QoS metrics
mi, and their corresponding analytical models Mi. A
model Mi can be viewed as a function

mi = Mi(~V1, · · · , ~VC) (2)

where ~Vj = (vm1,Cj
, · · · , vmn,Cj

), for j = 1, · · · , C.

The vector ~Vj represents the set of values of the metrics
m1, · · · , mn for component Cj .

The following subsections provide examples of various QoS
Architectural Patterns using the notation described above.
The structural and behavioral view of each pattern will be
described in words and not in xADL or FSP due to space
limitations. For illustration purposes, and due to space con-
siderations, the examples below focus on two metrics: a for
availability and e for execution time.

5.1 Basic Pattern
This is the simplest possible pattern in terms of structure.

It consists of a single component c and no connectors. Its
behavior corresponds to asynchronous message-passing. The
availability of the basic pattern reflects the probability that
it is available to receive the message and its execution time
reflects the time it takes to act on the message received.

The set Q = {(a,Ma), (e,Me)} for this pattern is such
that

a = Ma(va,c) = va,c

e = Me(ve,c) = ve,c (3)

Eq. (3) simply says that the value of all QoS metrics for the
pattern correspond to that of its component.

5.2 Fault-Tolerant First-to-Respond
This pattern consists of C components C1, · · · , CC and a

connector that receives requests and sends them in parallel
to all C components. All components process the request
and send their replies to the connector, which replies to its
requester as soon as the first component replies. It is as-
sumed in what follows that the C components fail indepen-
dently of one another.

The availability model Ma for this pattern is

a = Ma(va,C1
, · · · , va,CC

) = 1 −
C

Y

j=1

(1 − va,Cj
) (4)

Eq. (4) indicates that the availability of the QoS pattern is
1 minus the unavailability of the set of all C components.

Intuitively, the execution time for this pattern is the min-
imum execution time among the components that are up. A
probabilistic model of Me consists of the sum of all the prob-
abilities that a given configuration of components is available
multiplied by the minimum execution time of the compo-
nents that are up. We provide expressions for C = 2 and
C = 3 and then generalize for any value of C. The expres-
sion for C = 2 is

e =
1

a
[va,C1

(1 − va,C2
)ve,C1 + va,C2

(1 − va,C1
)ve,C2 +

va,C1
va,C2

min{ve,C1, ve,C2}]. (5)

The expression for C = 3 is

e =
1

a
[va,C1

(1 − va,C2
)(1 − va,C3

)ve,C1
+

va,C2
(1 − va,C1

)(1 − va,C3
)ve,C2

+

va,C3
(1 − va,C1

)(1 − va,C2
)ve,C3

+

va,C1
va,C2

(1 − va,C3
)min{ve,C1

, ve,C2
} +

va,C1
va,C3

(1 − va,C2
)min{ve,C1

, ve,C3
} +

va,C2
va,C3

(1 − va,C1
)min{ve,C2

, ve,C3
} +

va,C1
va,C2

va,C3
min{ve,C1

, ve,C2
, ve,C3

}]. (6)

The general expression for any value of C is

e =
1

a

X

∀ ~ǫ

C
Y

j=1

[1 − (ǫj + (−1)ǫj va,Cj
)] ×

min{
ve,C1

(1 + α)

ǫ1 + α
, · · · ,

ve,CC
(1 + α)

ǫC + α
} (7)

where ~ǫ = (ǫ1, · · · , ǫC), ǫj ∈ {0, 1},
QC

j=1 ǫj 6= 0, and α =

10−10 (i.e., a very small number). It should be noted that the

200

terms of the form
ve,Cj

(1+α)

ǫj+α
are equal to ve,Cj

when ǫj = 1

and equal to a very large number when ǫj = 0. In the latter
case, a very large number makes the term irrelevant for the
min operator. The term ǫj is equal to one when component
Cj is available and zero otherwise.

As an example, the component Occupancy Awareness in
Fig. 3 was replaced by a fault-tolerant architectural pattern
in Fig. 4. If this pattern is of the first-to-respond type, its
availability and execution times would be given by

a = 1 − [(1 − va,OccupancyAwareness1) × (8)

(1 − va,OccupancyAwareness2)]

and

e =
1

a
[va,OccupancyAwareness1(1 − va,OccupancyAwareness2)

ve,OccupancyAwareness1 +

va,OccupancyAwareness2(1 − va,OccupancyAwareness1)

ve,OccupancyAwareness2 +

va,OccupancyAwareness1va,OccupancyAwareness2

min{ve,OccupancyAwareness1 , ve,OccupancyAwareness2}].

(9)

This pattern primarily promotes availability, although it
also benefits the expected response time in the case of fail-
ures: even if the fastest component fails, it guarantees the
response time of the next fastest component. However such
benefits come at the cost of redundant usage of resources,
which negatively impacts scalability.

5.3 Fault-Tolerant Two-Phase Commit
The fault-tolerant two-phase commit pattern has the same

structure as the fault-tolerant first-to-respond pattern but
has a different behavior. In this case, the connector receives
a request, sends it for processing to all C components, waits
for all to respond, and then sends a commit request to all of
them. Thus, the availability model Ma for this pattern is

a = Ma(va,C1
, · · · , va,CC

) =
C

Y

j=1

va,Cj
(10)

since all components need to be available to complete the
operation.

The execution time model Me is

e = 2 × max{ve,C1
, · · · , ve,CC

} (11)

This component promotes fault-tolerance when informa-
tion has to be maintained at more than one location to al-
low continued operation in the face of failures. However,
the increased availability comes at the expense of reduced
execution time.

5.4 Load Balancing
This pattern has the same architectural structure as the

two previous ones. Its behavior is different though. The
connector sends requests to one and only one of the C com-
ponents at a time. When it receives a reply, the connector
issues a reply. The load balancing pattern may follow many
different disciplines. We assume a simple round-robin load
balancing discipline. If a component is not available it is
not included in the round-robin cycle. Thus, the availability

model Ma for this pattern is

a = Ma(va,C1
, · · · , va,CC

) =
1

C

C
X

j=1

va,Cj
(12)

because 1/C is the probability that a component is selected
and va,Cj

is the probability that it is available when selected.
If the load balancer pattern uses a mechanism to track when
components are available, such as heart-beat or time-out on
requests, then its availability is the same as in Eq. (4).

The execution time model Me is

e =
1

C

C
X

j=1

va,Cj
× ve,Cj

(13)

because the execution time is ve,Cj
if component Cj is se-

lected and available. This occurs with probability va,Cj
/C.

This pattern primarily promotes scalability. Similarly to
the first-to-respond pattern, it also promotes availability but
the benefits in the execution time are less pronounced: the
expected time is a weighted average of the response times,
in contrast to a guaranteed fastest available response time.

5.5 Parallel Invocation
This pattern consists of a connector that receives a request

and breaks it down into sub-requests that are sent in parallel
to all C components. The connector merges all replies from
the C components and replies to the original request. The
connector and all components have to be available for the
pattern to be available. Thus, the availability model Ma for
this pattern is

a = va,connector

C
Y

j=1

va,Cj
(14)

The execution time model Me is

e = ve,connector−prior+max{ve,C1
, · · · , ve,CC

}+ve,connector−post

(15)
where ve,connector−prior and ve,connector−post are the execution
times at the connector prior to farming all subrequests to the
C components and after receiving their replies, respectively.

This pattern primarily promotes the reduction of execu-
tion time given that the overall work can be broken down in
smaller pieces to be executed in parallel. However, this may
come at the cost of reduced availability.

5.6 Composition of QoS Architectural Patterns
This section describes how the various QoS metrics are

affected by the composition of patterns along an SSS. In
SASSY, a utility function, associated to a QoS metric, is
assigned to each SSS. Then, all these utility functions are
combined into a global utility function.

The end-to-end QoS metric along an SSS depends on the
values of that metric for each component or pattern in the
SSS.

We illustrate here how these end-to-end metrics are com-
puted for execution time and availability. The expression for
the end-to-end execution time is obtained as the sum of the
execution times of all components along the SSS. Consider
for example the SSS in Fig. 2d to which the stakeholders as-
sociated goals for availability and end-to-end execution time.
Suppose that the architecture in Fig. 4 is being evaluated,

201

where the first-to-respond pattern has been applied for Oc-
cupancy Awareness. Then, the end-to-end execution time
for that SSS is

eSSS = ve,BuildingLocator + eFault−Tolerant First−to−Respond

(16)
where eFault−Tolerant First−to−Respond is given by Eq. (9).

The availability of the SSS in Fig. 2d is given by

aSSS = va,BuildingLocator × aFault−Tolerant First−to−Respond

(17)
where aFault−Tolerant First−to−Respond is given by Eq. (9).

In general, the end-to-end execution time is the sum of the
execution times of basic components or composite compo-
nents (i.e., patterns) along an SSS. The end-to-end availabil-
ity is the product of the availabilities of basic components
or composite components (i.e., patterns) along an SSS.

5.7 Case Study
This section provides an example of the use of QoS Ar-

chitectural patterns for two SSSs. Consider the availability
SSS shown in Fig. 2d and consider a similar SSS (i.e., the
same structure) but with execution time associated to it.
These SSSs use two service types: Building Locator and Oc-
cupancy Awareness. Consider that there are three possible
service providers (BL1, BL2, and BL3) that can be used to
support the Building Locator service type and three service
providers (OA1, OA2, and OA3) that can support the Occu-
pancy Awareness service type. Table 1 shows the execution
times (in msec) and availabilities guaranteed by these service
providers.

Table 2 illustrates the effect of using eight different com-
binations of QoS architectural patterns for these SSSs. We
use three types of patterns in this example: Basic Compo-
nent (BC), Load Balancing (LB), and Fault Tolerant First-
to-Respond (FFT). In parentheses, next to each pattern in
Table 2 is the list of actual service providers used in the
pattern. For example, LB (BL1, BL2) indicates a load bal-
ancing pattern that uses service providers BL1 and BL2.

The availability a and execution time e for Building Lo-
cator and Occupancy Awareness are shown in the table and
were computed using the expressions given in Section 5.
Then, the table shows aSSS and eSSS, the availability and
execution time for the SSSs, respectively. As it can be seen,
the combinations of patterns and service provider selections
that provides the best availability are 4 and 8, both with
an SSS availability of 0.9792. The lowest execution time for
the SSS is given by combination number 4, which has an
execution time equal to 150.38 msec.

The last two columns of Table 2 show the utilities for
these values of availability and execution time. The utility
for availability was computed using Eq. (1). The utility for
execution time was computed using the following sigmoid:

Ue(e) =
e0.5 (160−e)

1 + e0.5 (160−e)
. (18)

The above expression is commonly used in autonomic com-
puting [1]. The value 160 represents the desirable QoS goal
for execution time.

The highest value for both Ua and Ue is obtained for com-
bination number 4, which uses a basic component with ser-
vice provider BL1 for the Building Locator service type and a
fault tolerant first-to-respond pattern using service providers
OA1 and OA3 for the Occupancy Awareness service type.

The architecture that uses these patterns is illustrated in
Fig. 4. In general, the search procedure tries to optimize a
global utility that is a function of all the individual utilities.

This example illustrates just a few possible combinations
of patterns and service selections. The reader will certainly
note that the number of possible combinations of QoS archi-
tectural patterns and service providers grows in a combina-
torial way. SASSY automates the search process (see Sec-
tion 4) using heuristic procedures that are driven by QoS ar-
chitectural patterns. The interested reader may refer to [20]
for a detailed description of these heuristics.

6. RELATED WORK
Over the past few years, researchers and practitioners have

developed a variety of frameworks and techniques intended
to support the construction of self-adaptive systems [3, 17].
Below we provide an overview of the most notable approaches
in this area and examine them in light of our work.

IBM’s Autonomic Computing initiative advocates a refer-
ence model, known as MAPE-K [15], that is structured as
a hierarchical set of feedback-control loops, each of which
consists of the following activities: Monitor, Analyze, Plan,
and Execute. In their seminal work [22], Oreizy et al. pi-
oneered the architecture-based approach to run-time adap-
tation and evolution management. In [10], Garlan et al.
present Rainbow framework, a style-based approach for de-
veloping reusable self-adaptive systems. Rainbow monitors
a running system for violation of the invariant imposed by
the architectural model, and applies the appropriate adapta-
tion strategy to resolve such violations. Georgiadis et al. [11]
propose a decentralized adaptation approach, where each
self-organizing component manages its own adaptation with
respect to the overall system goal.

All of the above approaches, including numerous others
(e.g., see [3, 17]), share three key traits: (1) use analytical
models for making adaptation decisions at runtime, and (2)
rely on architectural models for managing the complexity of
analysis, and (3) effect a new solution through architecture-
based adaptation. These works have clearly formed the
foundation of our work. However, in our research we are
extending these approaches by employing QoS architectural
patterns, which allow SASSY to satisfy the users’ QoS re-
quirements through automatic (re)generation of the archi-
tecture.

Our previous work [13, 12] investigated the concept of
adaptation pattern, which provides a reusable mechanism
for ensuring the consistency of the software during and af-
ter the adaptation. It corresponds to a state-based model
that describes how to transition a software component from
active state to the quiescence state prior to its replacement.
The work presented in this paper is different, as the QoS
architectural patterns are used to determine the best ar-
chitecture, and not the low-level adaptation activities. We
believe QoS architectural patterns and adaptation patterns
to be complementary to one another.

In [26], Zhang and Cheng present an approach to formally
model the behavior of adaptive programs, automatically an-
alyze them, and generate an implementation of the system.
A more recent work [24] shows how this model-driven ap-
proach could be employed for developing patterns, which
through reuse could reduce the effort required for developing
self-adaptive software systems. The proposed patterns are
of three types: monitoring, decision-making, and dynamic

202

Service Service Execution Availability
Type Provider Time (msec)

Building Locator BL1 50 98%
BL2 70 97%
BL3 60 99%

Occupancy Awareness OA1 120 99%
OA2 150 95%
OA3 100 98%

Table 1: Service types, service providers (SPs) and their characteristics.

No Building Locator a e Occupancy Awareness a e aSSS eSSS Ua(SSS) Ue(SSS)

1 BC (BL1) 0.980 50.000 BC (OA1) 0.960 120.00 0.9408 170.00 0.5 0.99331
2 BC (BL1) 0.980 50.000 BC (OA2) 0.950 150.00 0.9310 200.00 0.5 0.00005
3 BC (BL1) 0.980 50.000 FFT (OA1,OA2) 0.998 121.14 0.9780 171.14 1.0 0.98821
4 BC (BL1) 0.980 50.000 FFT (OA1, OA3) 0.999 100.38 0.9792 150.38 1.0 1.00000
5 LB (BL1, BL2) 0.975 58.450 BC (OA1) 0.960 120.00 0.9360 178.45 0.5 0.68460
6 LB (BL1, BL2, BL3) 0.980 58.767 BC (OA1) 0.960 120.00 0.9408 178.77 0.5 0.64946
7 LB (BL1, BL2) 0.975 58.450 FFT (OA1,OA2) 0.998 121.14 0.9731 179.59 1.0 0.55079
8 LB (BL1, BL2, BL3) 0.980 58.767 FFT (OA1, OA3) 0.999 100.38 0.9792 159.15 1.0 0.99997

Table 2: Eight combinations of QoS Architectural Patterns for the SSS of Fig. 2d and various selections of
SP. BC = Basic Component; LB = Load Balancer; FFT = Fault Tolerant First-to-Respond

reconfiguration. The patterns investigated by the authors
are general, and not specifically targeted at improving QoS
properties in SOA systems. Moreover, the focus of our work
has been on an automated quantitative method of selecting
and composing patterns to achieve the QoS objectives.

Finally, related to our work are the approaches for adap-
tive QoS management in SOA settings. The two most re-
lated approaches to SASSY are JOpera [23] and MOSES [5]
frameworks. JOpera [23] provides an engine for managing
the execution of service providers to satisfy multiple QoS
properties, such as efficiency and latency. Thus, JOpera’s
objective is on enabling the service providers to satisfy their
SLA requirements, while in SASSY given a set of service
providers, it aims to find an architecture that satisfies the
users’ QoS requirements. Using a BPEL specification of
a software system, MOSES [5] dynamically determines the
best composition of service providers. Unlike MOSES, SASSY
uses a higher-level and more intuitively understood language
than BPEL. Moreover, SASSY maintains an explicit repre-
sentation of the system’s architecture, which is continuously
revised at runtime through the application of QoS archi-
tectural patterns. MOSES uses only two patterns: fault-
tolerant one-at a-time, referred to as sequential alternate ex-
ecution of services, and fault-tolerant first-to-respond; this is
in contrast with the richer set of patterns in Section 5. Fur-
thermore, MOSES uses linear programing to search for an
optimal solution, which severely limits its scalability since
the problem is NP-complete.

7. CONCLUDING REMARKS
This paper has described the autonomic application of

architectural patterns for tuning the quality of service of
service-oriented software systems. In particular, the paper
has described a number of QoS patterns and the correspond-
ing quantitative models for two concrete aspects of quality

of service: availability and execution time. The emphasis
here is on automatic application of QoS patterns to ob-
tain an architecture that maximizes a utility function for
the software system. This paper has also discussed how this
research extends prior work in SASSY, where the service ac-
tivity schemas are annotated with QoS goals as defined by
domain experts.

This paper extends prior work in SASSY by providing
autonomic system adaptation based on QoS patterns, where
the system continuously monitors QoS goals and takes auto-
nomic action if QoS goals are not met. SASSY uses efficient
and scalable search heuristics to identify the optimal pat-
terns, making it possible to perform self-architecting both
at system deployment and at run time for purposes of self-
adaptation. A case study has illustrated the role of QoS
patterns in a self-architected service-oriented application.

The contributions of this paper are: 1) the analysis of
a number of patterns suitable for self-architecting and self-
adaptation and 2) quantitative models to derive the overall
QoS of a system after the application of several such pat-
terns.

Future work involves integrating the QoS patterns de-
scribed in this paper with our research into self-adaptive sys-
tems [12]. Our research is consistent with the 3-layer model
for self-management [17], in which the QoS autonomic adap-
tation corresponds to the highest layer of Goal Management.
The next layer, Change Management, determines the config-
uration changes needed to autonomically adapt the affected
part of the system, while the rest of the system continues to
be operational. For example, in the case study (Section 5.7)
in order to replace the basic Occupancy Awareness compo-
nent with the FFT QoS pattern, it would be necessary to (a)
drive the Occupancy Awareness (OA1) service to a quiescent
state by queueing up new OA service requests and letting
OA1 complete old requests, (b) unlink the connection from

203

OA1 to the Dispatcher Coordinator (DC), (c) instantiate the
Fault Tolerant connector (FTC), link FTC to the OA1 and
OA2 services, (d) link DC to FTC, and (e) release queued
OA service requests to FTC to restart the operation of the
OA service, operating with the FFT QoS pattern. The bot-
tom layer of the 3-layer model, Component Control, actually
coordinates the execution of the adaptation scenario.

Acknowledgments
This work is partially supported by award no. CCF-0820060
from the National Science Foundation.

8. REFERENCES
[1] M.N. Bennani and D.A. Menascé. Resource allocation

for autonomic data centers using analytic performance
models. In Proc. 2nd IEEE Intl. Conf. Autonomic
Computing (ICAC’05), Seattle, WA, June 2005.

[2] Object Management Group (OMG). BPMN Spec. ver
1.1. http://www.omg.org/spec/BPMN/1.1/

[3] B. Cheng et al. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. In Software
Engineering for Self-Adaptive Systems, LNCS Hot
Topics, 2009.

[4] P. Clements, R. Kazman, and M. Klein. Evaluating
software architectures: methods and case studies.
Addison Wesley, 2001.

[5] V. Cardellini, E. Casalicchio, V. Grassi, F.L. Presti,
R. Mirandola. QoS-Driven Runtime Adaptation of
Service-Oriented Architectures. In 7th joint meeting of
the European Software Engineering Conference and the
International Symposium on Foundations of Software
Engineering, Amsterdam, Netherlands, Aug 2009.

[6] E. Dashofy, A. van der Hoek, and R.N. Taylor. An
infrastructure for the rapid development of
XML-based architecture description languages. In
Proc. 24th International Conference on Software
Engineering, pages 266–276, Orlando, FL, May 2002.

[7] N. Esfahani, S. Malek, J.P. Sousa, H. Gomaa and D.A.
Menascé. A modeling language for activity-oriented
composition of service-oriented software systems. In
Proc. 12th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems
MODELS’09, Denver, CO, Oct. 2009.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, ISBN
0-201-63361-2, 1995.

[9] A.G. Ganek and T.A. Corbi. The dawning of the
autonomic computing era. IBM Systems Journal, vol.
42, 2003, pp. 5-18.

[10] D. Garlan, et al. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure. In
IEEE Computer, Vol. 37(10), Oct. 2004.

[11] I. Georgiadis, J. Magee, and J. Kramer.
Self-Organizing Software Architectures for Distributed
Systems. In Workshop on Self-Healing Systems,
Newport Beach, CA, Oct 2004.

[12] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and
D.A. Menascé, Software Adaptation Patterns for
Service Oriented Architectures, In Proc. 25th ACM
Symposium on Applied Computing, Dependable and

Adaptive Distributed Systems, Sierre, Switzerland,
March 22 - 26, 2010.

[13] H. Gomaa and M. Hussein. Software reconfiguration
patterns for dynamic evolution of software
architectures. In Proc. 4th Working IEEE/IFIP
Working Conf. Software Architecture, pages 79–88,
Oslo, Norway, June 2004.

[14] N. Harrison and P. Avgeriou. Leveraging Architecture
Patterns to Satisfy Quality Attributes. Software
Architecture, Springer LNCS, 2007.

[15] J.O. Kephart, and D.M. Chess. The Vision of
Autonomic Computing. In IEEE Computer, vol. 36(4),
Jan 2003.

[16] J. Kramer and J. Magee. Analyzing dynamic change
in software architectures: A case study. In Proceedings
of the 4th IEEE Intl. Conf. Configurable Distributed
Systems, pages 91–100, Annapolis, MD, May 2007.

[17] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software
Engineering (FOSE’07), pages 259–268, Minneapolis,
MN, May 2007.

[18] S. Malek, N. Esfahani, D.A. Menascé, J.P. Sousa, and
H. Gomaa. Self-architecting software systems
(SASSY) from QoS-annotated models. In Principles of
Engineering Service Oriented Systems (PESOS’09),
pages 62–69, Vancouver, Canada, May 2009.

[19] S. Malek, M. Mikic-Raki, and N. Medvidovic. A
style-aware architectural middleware for
resource-constrained, distributed systems. IEEE Tr.
Software Engineering, 31(3):256–272, Mar. 2005.

[20] D.A. Menascé, J. Ewing, H. Gomaa, S. Malek, and
J.P. Sousa. A Framework for Utility-Based Service
Oriented Design in SASSY. Joint WOSP/SIPEW Intl.
Conf. Performance Engineering, San José, California,
Jan 28-30, 2010.

[21] D.A. Menascé, E. Casalicchio, and V. Dubey. On
Optimal Service Selection in Service Oriented
Architectures, Performance Evaluation Journal,
Elsevier, www.elsevier.com/locate/peva,
doi:10.1016/j.peva.07.001

[22] P. Oreizy, N. Medvidovic, and R.N. Taylor.
Architecture-Based Runtime Software Evolution. In
Intl. Conf. Software Engineering, Kyoto, Japan, April
1998.

[23] C. Pautasso, T. Heinis, and G. Alonso. JOpera:
Autonomic Service Orchestration. IEEE Data
Engineering Bulletin, vol. 29, Sep. 2006, pp. 32-39.

[24] A.J. Ramirez and B.H. C. Cheng. Applying
Adaptation Design Patterns. In Intl. Conf. Autonomic
Computing and Communications, Barcelona, Spain,
June 2009.

[25] J.P. Sousa, V. Poladian, D. Garlan, B. Schmerl, and
M. Shaw. Task-based Adaptation for Ubiquitous
Computing. IEEE Tr. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, Special Issue on
Engineering Autonomic Systems, vol. 36, pp. 328-340,
2006.

[26] J. Zhang and B.H. C. Cheng, Model-based
development of dynamically adaptive software. In Intl.
Conf. Software Engineering, Shanghai, China, May
2006.

204

