
A Framework for Utility-Based Service Oriented Design in
SASSY

Daniel A. Menascé, John M. Ewing, Hassan Gomaa, Sam Malek, and João P. Sousa
Department of Computer Science

George Mason University
Fairfax, VA, USA

{menasce,jewing2,hgomaa,smalek,jpsousa}@gmu.edu

ABSTRACT

The architecture of a software system has a significant im-
pact on its quality of service (QoS) as measured by sev-
eral performance metrics such as execution time, availabil-
ity, throughput, and security. This paper presents a frame-
work that is part of a large project called SASSY (Self-
Architecting Software Systems), whose goal is to allow do-
main experts to specify the system requirements using a
visual activity-based language. The SASSY framework au-
tomatically generates a base architecture that corresponds
to the requirements. Then SASSY generates a new archi-
tecture, derived from the base architecture, that optimizes
a utility function for the entire system. The utility function
is a multivariate function of several QoS metrics. The pa-
per shows a complete example and illustrates how SASSY
automatically adapts to changes in the environment’s QoS
features.

Categories and Subject Descriptors

C.4 [Modeling Techniques]: Experimentation; D.2.11 [Sof-
tware Architectures]: Patterns; D.4.8 [Performance]:
Stochastic analysis; G.1.6 [Optimization]: Global opti-
mization

General Terms

Performance, Experimentation

Keywords

Service Oriented Architecture, software architectures, au-
tonomic computing, utility functions, QoS, optimization,
heuristic

1. INTRODUCTION
The architecture of a software system has a significant

impact on its quality of service (QoS) as measured by sev-
eral performance metrics such as execution time, availabil-
ity, throughput, and security. Large and complex software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01 ...$10.00.

systems are deployed on environments that may exhibit sig-
nificant variations at run-time due to changes in the work-
load intensity and failures. A service-oriented architecture
(SOA) is a software architecture that consists of multiple
distributed autonomous services. The same service type,
e.g., airline reservation, is capable of being offered by differ-
ent service providers (SP), where services and their service
providers can be discovered at run time [4, 16, 17]. New SPs
may be brought into existence at any time and existing SPs
may fail or stop operating entirely. Different functionally
equivalent SPs may exhibit different QoS levels at different
costs. In such environments, it is important for software
systems to self-architect so they can adapt to changes in the
environment in an autonomous way. Software adaptation
refers to software systems that change their behavior during
execution. Self-adaptive software systems monitor the envi-
ronment and adapt their behavior in response to changes in
the environment [10].

The framework presented in this paper is part of a large
project called SASSY (Self-Architecting Software Systems),
whose goal is to allow domain experts to specify the system
requirements using a visual activity-based language. The
SASSY framework automatically generates a base architec-
ture that corresponds to the requirements. Then, as de-
scribed here, SASSY generates a new architecture, derived
from the base architecture, that optimizes a utility function
for the entire system. The utility function is a multivariate
function of several QoS metrics.

The contributions of this paper are the following. First,
it presents SASSY and its main concepts. Second, it for-
malizes the optimal self-architecting problem for software
systems and presents a heuristic to find a near optimal so-
lution. Third, the paper discusses a complete example and
illustrates how SASSY adjusts the architecture automati-
cally in response to changes in the QoS characteristics of
the underlying environment.

The paper is organized as follows: Section 2 presents an
overview of the SASSY system. Section 3 describes how
SASSY’s activity-based language is mapped to a system ser-
vice architecture. The next section describes the optimiza-
tion problem, including the heuristic search technique used
to find a near optimal architecture. Section 5 presents a
complete numerical example. Concluding remarks are pre-
sented in Section 6.

2. OVERVIEW OF SASSY
SASSY (Self-Architecting Software Systems) is a model-

driven framework for run-time self-architecting and re-ar-

27

chitecting of distributed software systems. SASSY provides
a uniform approach to automated composition, adaptation,
and evolution of software systems based on service-oriented
architectures (SOAs). This framework provides mechanisms
for self-architecting and re-architecting that determine the
near-optimal architecture for satisfying functional and QoS
requirements. The quality of a given architecture is ex-
pressed by a utility function provided by end-users and rep-
resents one or more desirable system objectives.

Figure 1 illustrates, at a very high level, how SASSY uses
run-time models for self adaptation of SOA-based software.
SASSY uses four types of run-time models: 1) service activ-
ity schemas with their corresponding service sequence sce-
narios, 2) system service architecture models, 3) QoS archi-
tectural pattern models, and 4) QoS analytical models.

Figure 1: High-level view of the SASSY framework.

A domain expert, as opposed to a software engineer, ex-
presses the system requirements in the form of a service ac-
tivity schema (SAS). Activities represent tasks that need to
be performed. The modeling constructs (e.g., activities, ser-
vice type, domain entities) are defined in a domain ontology
that unambiguously distinguishes different concepts and el-
ements in order to facilitate service discovery and resources
in support of activities.

Figure 2 provides an example of an SAS for an emergency
response application and was obtained as a screenshot from
the tool we developed for the project. This tool supports do-
main experts performing SASSY-related development. The
dashed boxes on the left-hand side of Fig. 2 correspond to
service sequence scenarios (SSS) to be introduced later in
this section. The SAS shows five service types (see boxes
with rounded corners with a server icon inside): Road Map,
Weather, ID Possible Threats, Make Evac Plan, and Eval

Evac Plan. The application can be described as follows.
When there is an emergency, three service types are invoked
simultaneously (see fork gateway in the diagram specified by

a rhombus with a plus sign inside): Road Map, Weather, and
ID Possible Threats. The Road Map service type is used
to obtain machine readable maps of the roads in the region.
The Weather service type provides current and predicted
weather information about the region and the ID Possible

Threats service type identifies possible threats for the region
and assigns probabilities to each threat. After all three ac-
tivities complete, i.e., join, the Make Evac Plan service type
is invoked to generate an evacuation plan, which is passed
to the Eval Evac Plan service type for an analysis and eval-
uation of the evacuation plan. The result of the evaluation
is tested at the conditional gateway (see rhombus with an
“×” in the middle at the output of Eval Evac Plan). If the
plan is not approved, a new one will have to be produced.

Figure 2: Example of a service activity schema
(SAS) for an emergency response application.

Using a list of QoS metrics (e.g., performance, availability,
and security) defined in the domain ontology, the domain ex-
pert can specify desired QoS properties in an SAS through
one or more service sequence scenarios. Each SSS is associ-
ated to one of the QoS metrics. An SSS is a set of one or
more service types in an SAS connected by links in an SAS.

Figure 3 displays three SSSs: the Execution Time SSS,
the Availability SSS, and the Secure Comm SSS. The Exe-
cution Time SSS includes the fork-and-join of Road Map,
Weather, and ID Possible Threats followed by the exe-
cution of Make Eval Plan and Eval Evac Plan. The QoS
metric associated with this SSS is execution time. The
Availability SSS has the same structure as the Execu-

tion Time SSS except that its metric is availability. Thus,
two or more SSSs may have the same structure as long as
they have different metrics associated with them.

The SecureComm SSS includes the connection between ID

Possible Threats, Make Eval Plan, and Eval Evac Plan.
The metric associated to this SSS is the security level of its
communication.

A utility function is associated with each SSS. Utility func-
tions are used in economics and autonomic computing to
assign a value to the usefulness of a system based on its at-
tributes [3]. The attribute associated with the utility func-
tion of each SSS is its QoS metric. Consider for example the
Availability SSS (top part of Fig. 3) and let a be the value
of its availability. Then, an example of the utility function,

28

UAvailability(a), of this SSS is:

UAvailability(a) =

0 a < 0.9
0.5 0.9 ≤ a < 0.95
1 0.95 ≤ a < 1

(1)

In this example, the utility of this SSS is zero if its avail-
ability is less than 0.9. The utility is 0.5 for an availability
in the interval [0.9,0.95) and it is 1 when the availability is
equal to 0.95 or more.

Utility functions are established by the domain experts
in consultation with all stakeholders. Note that the actual
value of the availability a, or more generally, the value of the
metric associated with any SSS can only be computed when
actual service providers (SPs) are selected for each service
type in the SAS. However, one can derive an analytic model
for the value of the metric associated with an SSS. This
model can be expressed as a function of the metrics obtained
from the SPs of the service types appearing in that SSS. For
example, the expression for the availability a is simply

a = aRoad Map × aWeather × aID Possible Threats ×

aMake EvacPlan × aEval Evac Plan (2)

because all services involved need to be available in order
for the SSS to be available.

Figure 3: Top: Execution Time or Availability SSS
(they have the same structure); Bottom: Secure

Comm SSS

Consider now the Execution Time SSS. The expression
for the execution time e for this SSS is:

e = max{eRoad Map, eWeather, eID Possible Threats}+

eMake EvacPlan + eEval Evac Plan. (3)

The utility, Ug, for the entire SAS is defined by the do-
main expert as a function of the utilities of all SSSs. This
global utility function encompasses domain information by
reflecting SSS priorities and any interactions between SSSs.

A system service architecture (SSA) consisting of compo-
nents, associated to SPs, and connectors is automatically
generated from the requirements above. The architecture
is optimized with respect to QoS requirements through the
selection of the most suitable SPs and application of QoS
architectural patterns. This architecture is determined with
the help of QoS analytic models and optimization techniques
aimed at finding near optimal choices that maximize system
utility as described here.

SASSY’s monitoring support services generate triggers that
cause self-adaptation. SPs may be automatically replaced
and the software architecture may be automatically regen-
erated by SASSY when the system utility degrades beyond
a certain threshold. The search space for self-adaptation in-
cludes a set of alternative candidate software architectures,
derived from an analysis of critical SSSs, and the SPs that
support the services in each architecture. For example, a
candidate architecture that uses replication to address fault
tolerance may be considered if the observed availability de-
grades considerably. Similarly, a load balancing architec-
tural pattern can be used to improve response time and
availability at the same time.

The SASSY approach is self-healing, self-managing, and
self-optimizing since, when SPs fail or are unable to meet
their QoS goals, SASSY’s monitoring services trigger SP re-
placement through a new round of service discovery, op-
timal SP selection, and possible determination of alterna-
tive architectures. Our approach for dynamic monitoring
and adaptation builds on previous research on dynamic soft-
ware architectures [8, 13]. This approach is consistent with
the widely accepted three layer architecture model of self-
management [10], which consists of: 1) Goal Management
Layer—planning for change—often human assisted, 2) Change
Management Layer—execute the change in response to changes
in state (environment) reported from lower layer or in re-
sponse to goal changes from above, and 3) Component Con-
trol Layer—executing architecture—actually implements the
run-time adaptation. More details about SASSY’s activity
modeling language can be found in [7, 12].

3. FROM SAS TO SSA
The System Service Architecture (SSA) offers structural

and behavioral models for an SOA system. Unlike tradi-
tional software architectural models that are mainly used
during the design phase, an SSA is intended for use at
run-time by the SASSY framework. The SSA is an ac-
curate representation of the running software system, and
is utilized to support run-time reasoning with respect to
evolution and adaptation. The SSA’s structural model is
based on the eXtensible Architectural Description Language
(xADL) [6], which provides the traditional component-and-
connector view of the software architecture.

29

We have extended the core xADL language by introducing
the concept of service instances, which are modeled as soft-
ware components or composition of software components. A
service instance is the realization of a service type defined
in the ontology. The SSA also provides a mapping between
each service instance and the concrete SP that is used at a
given point in time. The middleware enabling integration
and communication among the services is modeled as soft-
ware connectors. Finally, the components and connectors
bind to one another using required and provided interfaces.

The top part of Fig. 4 shows the structural view of a base
SSA that corresponds to the SSA of Fig. 2. The base SSA
is automatically generated by SASSY using GReAT [1, 2],
which is a graph transformation tool. The base architecture
associates one component to each service type and creates
one component to represent the logic of a coordinator that
orchestrates the communication between all service types.
The bottom part of Fig. 4 shows a modified version of that
base SSA in which the component Eval Evac Plan was re-
placed by a fault-tolerant component.

The SSA’s behavioral models provide a state machine view
for representing how the service instances collaborate with
one another to fulfill the system requirements. In other
words, a behavioral model corresponds to the executable
logic of service coordination in SOA. SSA’s behavioral mod-
els are based on Finite State Processes (FSP) [9], which
unlike many other state machine languages provides a rich
set of abstraction constructs, thereby making it scalable
for modeling the behavior of large-scale software systems.
SASSY automatically generates the SSA’s behavioral mod-
els based on the requirements specified by the domain expert
in the SAS. Since the SSA contains both structural and be-
havioral models, the SSA needs only a set of selected service
instances and bindings with those services to become exe-
cutable.

The relationship between SSSs, components, service types,
QoS metrics, and utility functions can be better described
with the help of the class diagram of Fig. 5. Each SSS has
a single utility function associated with it and that utility
function is a function of a single QoS metric. An analytic
QoS model is used to compute the value of that QoS metric.
See for example Eq. (3), which is a QoS model for the case
of execution time for the Execution Time SSS. The SASSY
framework uses a library of architectural patterns to assist in
the self-architecting process. Each pattern consists of one or
more components which may be linked by connectors. Each
of these components may be associated with one or more ser-
vice types, which are instantiated by one or more SPs. The
structural and behavioral aspect of a pattern are described in
xADL [6] and FSP [9], respectively. A pattern also includes
one or more QoS metrics and the corresponding QoS model
for the metrics they influence. Some architectural patterns
such as load balancing and fault tolerant have more than
one component associated to them.

Consider for example the fault tolerant architectural pat-
tern used in the bottom of Fig. 4. This pattern influences
two QoS metrics: availability and execution time. If the
behavior of this pattern is such that its execution is con-
sidered to be complete whenever the first of the two com-
ponents, (Eval Evac Plan 1 and Eval Evac Plan 2), com-
plete, then the availability is a function of the availabilities
a1 and a2 of the individual components and the execution
time is a function of the execution times e1 and e2 of the

Figure 4: Top: Base SSA corresponding to the SAS
of Fig. 2; Bottom: SSA showing the replacement
of component Eval Evac Plan with a fault tolerant
component.

individual components. Then, the QoS models for the avail-
ability A and the execution time E for the fault tolerant
pattern are:

A = 1− (1− a1)(1− a2) (4)

assuming failure independence, and

E =
a1(1− a2)

A
e1 +

a2(1− a1)

A
e2 +

a1a2

A
min{e1, e2}. (5)

4. THE OPTIMIZATION PROBLEM
The optimization problem addressed in this paper deals

with the issue of finding an architecture and a set of service
providers (SPs) that implement the service types in the SAS
in a way that optimizes the SAS utility function Ug.

More formally, the optimization problem can be expressed
as:

Find an architecture A∗ and a corresponding SP allocation
Z∗ such that

(A∗, Z∗) = argmax(A,Z) Ug(A, Z) (6)

This optimization problem may be modified by adding a
cost constraint. In the cost-constrained case, one assumes

30

that there is a cost associated with each SP for providing a
certain QoS level. The example we describe in the experi-
mental section uses a cost constraint.

The number of different architectures is O(pn) where p
is the average number of architectural patterns that can be
used to replace any component and n is the number of com-
ponents in the architecture. The number of possible SP
selections for an architecture with n components is O(sn)
where s is the average number of SPs that can be used to
implement each component. Thus, the size of the solution
space for this optimization problem is O((p×s)n). It is very
clear that the solution space is huge even for small values of
p, s and n. For example, for p = 5, s = 2, and n = 10, the
size of the solution space is on the order of 1010, i.e., 10 bil-
lion possible solutions! In fact, the problem is NP-hard. We
describe in what follows a near optimal solution technique to
avoid an exhaustive and computationally unfeasible search.

4.1 Solving the Optimization Problem
The general approach for obtaining a near optimal archi-

tecture and service selection consists of the following steps.
First, a base architecture is built. As explained in Section 3,
the SASSY framework automatically generates a base archi-
tecture from the SAS. In this architecture, each service type
is mapped to a single component in the architecture. Then,
an optimal selection of SPs for that architecture is carried
out which maximizes the global utility function Ug.

The optimal selection of SPs for a given architecture is
similar to the problem of optimal service allocation for busi-
ness processes in SOAs as described in [15]. The difference
is that in [15] the goal was to minimize end-to-end execu-
tion time and here the goal is to maximize global utility. In
this paper, we do not dwell on the optimal service allocation
problem. We focus on near optimal architecture selection.

4.2 General Approach
The general approach is described in very simple terms

by Algorithm 1. We start by assigning the base architecture
Abase to the currently visited architecture Avisited. Perform
an optimal selection of SPs for Avisited (line 3) and compute
the value of its utility function (line 4). Then, iteratively,
using local search techniques such as hill climbing, we se-
lect a new architecture to visit within a neighborhood N ofS S SU t i l i t y F u n c t i o nQ o S M e t r i cQ o S M o d e l

P a t t e r nC o m p o n e n tS e r v i c e T y p eS e r v i c eP r o v i d e r
1 11

1 . . *
1 . . *1 . . * 1 . . * 1 . . *H a sU s e sC o m p u t e d B y

I n c l u d e sI n c l u d e sI n c l u d e sI m p l e m e n t e d B y
I n f l u e n c e s

Figure 5: Class diagram for SSSs.

Avisited using the function GenerateNeighborhood (line 8).
For each architecture in N , perform an optimal SP selection
(line 10). Select as the next architecture to visit, the neigh-
bor that provides the largest improvement in the value of
the utility Ug.

One may stop the search if there are no such neighbors,
in which case the near optimal architecture is the last vis-
ited architecture. Other stopping criteria such as a limited
search budget (i.e., maximum number of iterations) can be
used. One can also re-start the search from a random archi-
tecture if a neighborhood does not provide an improvement
in the value of the utility function. This is done to reduce
the chances of the search being stuck in a local optimum.
Our implementation uses re-start by generating a random
architecture from the base architecture as follows. We ran-
domly select an architectural pattern to replace a component
in the base architecture and randomly select the number of
instances of multi-service provider patterns. We also ran-
domly select the security level of each security option.

Algorithm 1 General Search Approach (k)

1: function GeneralSearch ()

2: Avisited ← Abase; /* initialization */
3: OptimalServiceProviderSelection (Avisited);
4: Ug ← Utility (Avisited) /* utility computation */
5: Searching← TRUE
6: while Searching do
7: Aopt ← Avisited

8: N ← GenerateNeighborhood (Avisited, k)
9: for all Ai ∈ N do

10: OptimalServiceProviderSelection (Ai)
11: end for
12: A← argmaxAi∈N {Utility(Ai)}
13: if Utility (A) > Ug then
14: Avisited ← A
15: OptimalServiceProviderSelection (Avisited);
16: Ug ← Utility(Avisited) /* utility computation */
17: else
18: Searching← FALSE
19: end if
20: end while
21: end function

There are many ways to define the neighborhood of a
given architecture. One of them, which we call unfiltered,
replaces every component of every SSS with an architec-
tural pattern that improves the metric associated with the
SSS. This approach tends to generate a rather large neigh-
borhood. The other approach, called filtered, reduces the
size of the neighborhood by concentrating on the SSSs that
can provide better gains to the utility function. The smaller
the neighborhood, the higher the likelihood that the search
will be trapped in a local optimum. On the other hand,
large neighborhoods imply larger computational costs.

Our filtering approach is described at a very high level in
Algorithm 2. We start by determining the set Sk of prob-
lem SSSs, i.e., the set of k (a tunable parameter) SSSs that
exhibit the lowest numerical contribution to the global util-
ity function (line 3). These are the SSSs that, if improved,
could contribute the most towards improving the global util-
ity. The contribution of an SSS towards the global utility
function depends on the value of its own utility function and

31

on the weight of the SSS’s utility function with respect to
the global utility function.

For each SSS s in Sk, determine the set P of architectural
patterns in the library that improve the metric associated
with that SSS (line 7). Then, for each component c in the
set C of components of SSS s (line 8) and for each pattern
p in P (line 9) add a new architecture to the neighborhood
N of Avisited by replacing c by p in Avisited.

There are other details of the process of finding the neigh-
borhood that are not described in detail in Algorithm 2 due
to lack of space. They are however implemented in SASSY.
The first has to do with multiple instances of SPs for pat-
terns such as load balancing or fault tolerant. A new ar-
chitecture can be generated from Avisited by increasing or
decreasing by one the number of service instances of the ar-
chitectural pattern. The second aspect not described in the
algorithm has to do with the security option. Neighbors may
be generated by increasing or decreasing by one notch the
security level of a security option.

Algorithm 2 Generate Neighborhood

1: function GenerateNeighborhood (Avisited, k)
2: N ← φ; /* initialize with empty neighborhood */
3: Sk ← Set of SSSs with k lowest contribution to Ug

4: for all s ∈ Sk do
5: m← s.QoSmetric
6: C ← Set of components of s
7: P ← Set of patterns that improve m
8: for all c ∈ C do
9: for all p ∈ P do

10: N ← N
⋃

Replace(Avisited, c, p)
11: end for
12: end for
13: end for
14: return N
15: end function

5. EXPERIMENTAL RESULTS
This section describes a detailed example of the use of

the framework presented here for the emergency response
example presented before. The section presents the utility
functions used, the list of SPs used to support the service
types of the application, the patterns available in the library
and their QoS models, the QoS models of the SSSs, and the
results of applying the approach to the base architecture.

5.1 Utility Functions Used
In this emergency response example, the domain expert

has defined utility functions for execution time, availabil-
ity, and throughput SSSs that follow a sigmoid curve. Sig-
moid functions are used to connote sensitivity to a particular
threshold value of a QoS metric [11]. However, the domain
expert could choose other utility functions for these QoS
metrics. For example, a log function could be applied to
throughput if the application is not sensitive to a particular
rate threshold. The specific form of the sigmoid function
used here is as follows:

Ui(v) = Ki
eαi (βi−v)

1 + eαi (βi−v)
(7)

where Ki is a normalizing factor equal to

Ki =

(1 + eαiβi)/eαiβi for execution time
1 for throughput

(1 + eαi(βi−1))/eαi(βi−1) for availability,
(8)

βi is the QoS goal for the metric associated with SSSi, and
αi is a sensitivity parameter that defines the sharpness of
the curve. The sign of αi determines whether the sigmoid
decreases (αi > 0) with v or increases (αi < 0) with v. The
maximum value of the utility function defined above is 1.
These maximum values occur at v = 0 for execution time,
v = 1 for availability, and for v → ∞ for throughput. A
decreasing utility function is used for execution time and an
increasing one is used for throughput and availability. The
values of αi and βi for the Execution Time, Availability,
and Throughput SSSs are shown in Table 2.

For SSSs that have a security metric associated to them,
the utility function is discretized. The Secure Comm utility
function is:

USecure Comm =

0.2 low security
0.8 medium security
1.0 high security.

(9)

The different levels of security are determined by the type
of encryption algorithm used and the key length.

The utility function of the Secure Store1 and Secure

Store2 SSSs are the same

USecure Store1 = USecure Store2 =

0.4 low security
0.7 medium security
1.0 high security.

(10)
The use of security mechanisms has an impact on other

metrics [14] and can increase execution times and reduce
capacity. Table 1 quantifies these impacts, which changes
the values of QoS metrics, thereby affecting the value of the
utility. The execution time for each service instance within a
component is modified by adding the delay values in Table 1
for the component’s selected security levels. Similarly, the
capacity is modified by the capacity reduction values shown
in Table 1. These delay and capacity impacts are fixed and
not scaled.

Level Delay Capacity

Secure Communication

Low 0.00 0.0
Medium 0.05 -1.5
High 0.12 -3.0

Secure Storage

Low 0.00 0.0
Medium 0.04 -1.4
High 0.10 -2.8

Table 1: Performance impacts of security levels.

The global utility function Ug used in the experiments is
the weighted geometric mean of the utility functions of all
SSSs (the weights used are shown in Table 2):

Ug =

(

N
∏

i=1

Uwi
i

)1/
∑N

j wj

. (11)

32

SSS No. SSS Name Weight in Ug αi βi

1 Secure Comm 0.2 - -
2 Secure Store 1 0.1 - -
3 Secure Store 2 0.1 - -
4 Execution Time 0.2 0.5 65.0
5 Availability 0.2 -100.0 0.95
6 Throughput 0.2 -0.5 14.0

Table 2: Weights of the SSSs in the global utility
function and values of αi and βi.

5.2 List of Service Providers Used
Table 3 shows a list of service providers (SPs) used in our

numerical example. There are four SPs for Road Map, four
for Weather, three for ID Threat, three for Make Plan, and
three for Eval Plan. These SPs have different performance
and cost characteristics. The characteristics include the ca-
pacity Ci in tps, the execution time Ei in sec, the availability
Ai, and the cost per monthly subscription, in US$. The ex-
amples described in this section assume a cost constraint of
US$ 5,500.00. We assume that the service description lan-
guage used for registering the services is QoS-aware similar
to [5].

5.3 Patterns Available
For the experiments reported here we consider three types

of architectural components: basic (B), load balancing (LB),
and fast fault tolerant (fFT). The basic architectural pattern
consists of a single component that can be instantiated by a
single SP. The load balancing architectural component con-
sists of a front-end load balancer connector that dispatches
requests to one of n components using a weighted round-
robin rule. The weight applied to component i is propor-
tional to its capacity, i.e., Ci/

∑n
j=1 Cj . The fast fault toler-

ant architectural pattern consists of a connector that sends
a request to n functionally equivalent components and waits
for the first to reply.

We present now the analytic models used to derive the
availability A, the throughput X, and the execution time E
of the three architectural patterns described above. These
analytic models consider individual service instances to be
black boxes. That is to say the models assume that a service
instance when offered a load less than its advertised capacity
will provide its advertised levels of QoS. In the expressions
below, Ai, Xi, and Ei denote, respectively, the availability,
throughput, and execution time of the i-th component of a
pattern once allocated to an SP. Note that Xi = Ai Ci.

The analytic models for the basic architectural pattern
are quite trivial: A = Ai, X = Xi = Ai Ci, and E =
Ei. The analytic models for the LB pattern are as follows.
The probability that a request is sent to component i is
Ci/

∑n
j=1 Cj and the availability of that component is Ai.

Thus, the average availability is given by

A =
n
∑

i=1

Ci
∑n

j=1 Cj
Ai. (12)

The throughput of component i is equal to its capacity Ci

multiplied by the probability, Ai, it is available. Thus, the

average throughput of the LB pattern is given by

X =
n
∑

i=1

Ci
∑n

j=1 Cj
(Ci ×Ai). (13)

A request is completed by component i when the component
is available, which happens with probability Ai and when the
component i is selected. Thus, the average execution time
is

E =
n
∑

i=1

Ci Ai
∑n

j=1 Cj Aj
Ei. (14)

The ratio (Ci Ai)/(
∑n

j=1 Cj Aj) represents the fraction of
completed requests that are submitted to component i.

The analytic models for the fFT pattern are given below.
The fFT pattern is available when at least one of the n
components is available. Thus,

A = 1−
n
∏

i=1

(1−Ai). (15)

The throughput for fFT is given by

X = Xargmini=1,...,n{Xi}. (16)

The execution time E depends on the combination of com-
ponents that are available. In order to rule out the case in
which none of of the components are available, one needs to
divide the probability of each combination occurring by A,
So, for n = 2 we would get

E =
A1 ×A2

A
min{E1, E2}+

A1(1−A2)

A
E1 +

A2(1−A1)

A
E2. (17)

5.4 QoS Models for the Various SSSs
As indicated in Section 2, an analytic model can be de-

rived for the computation of the various QoS metrics for
an SSS as a function of the metrics of the components that
compose the SSS. The following general rules, when applied
recursively, can be used to obtain the SSS QoS models for
availability, execution time, and throughput.

• Availability: the availability of a sequence is the prod-
uct of the availabilities of the components in the se-
quence. The availability of a fork-and-join is the prod-
uct of the availabilities of all of its branches.

• Execution time: the execution time of a sequence is
the sum of the execution times of the components in
the sequence. The execution time of a fork-and-join is
the maximum execution time of each of its branches.

• Throughput: the throughput of a sequence is the min-
imum throughput of the components in the sequence.
The throughput of a fork-and-join is the minimum
throughput of its branches.

5.5 Numerical Results
Figure 6 illustrates the variation of the global utility as

a function of the number of evaluated architectures during
the search. We ran four experiments for different types of
neighborhood-finding approaches: unfiltered, k = 1, k = 2,
and k = 3, where k is the number of SSS’s considered when
filtering the neighborhood. We can observe that:

33

SP i Capacity Ci (in tps) Ei (in sec) Availability (Ai) Cost (in US$)

Road Map Acme 15.0 0.2 0.900 50
Road Map Pinnacle 12.5 3.0 0.990 100
Road Map ServiceTron 7.5 0.3 0.985 150
Road Map Apex 17.5 1.0 0.975 250
Weather Acme 16.5 0.1 0.980 100
Weather Pinnacle 13.5 5.0 0.999 200
Weather ServiceTron 10.0 0.8 0.995 300
Weather Apex 18.0 0.6 0.990 250
ID Threat Intellifort 13.0 1.5 0.990 500
ID Threat InfoSafe 15.5 2.9 0.985 400
ID Threat CryptIT 17.0 1.8 0.995 550
Make Plan DataCrunch 15.0 48.5 0.940 1500
Make Plan OR Gurus 19.0 92.0 0.990 2000
Make Plan Master Plan 7.0 83.2 0.965 1600
Eval Plan DataCrunch 17.0 5.2 0.985 150
Eval Plan OR Gurus 14.5 9.8 0.995 200
Eval Plan Master Plan 7.5 3.9 0.990 250

Table 3: Service providers (SPs) and their characteristics.

• After 780 evaluations, all approaches converge to the
same architecture, described in what follows, that has
a global utility equal to 0.656.

• The k = 2 approach converges more rapidly than the
other approaches (after 54 evaluations). This is fol-
lowed by the k = 3 approach, which converges after
66 evaluations. The k = 1 approach converges after
530 evaluations. The unfiltered approach is the last to
converge and that happens after 780 evaluations. A
single-threaded C++ implementation of the k = 2 ap-
proach was able to evaluate 3,000 architectures in 2.25
seconds on a Linux system with two dualcore 2.6 GHz
Opteron CPUs. The other approaches executed in a
similar amount of time. This demonstrates that these
architecture search techniques can be used in near real-
time.

The final architecture obtained through this process is
shown in Fig. 7. Specific details about the SPs used by each

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800

P
re

d
ic

te
d
 U

g

Number of Evaluated Architectures

k = 2
k = 3

no filter
k = 1

Figure 6: Variation of the global utility during the
search.

service type, architectural patterns, number of instances of
each, and security levels are given in Table 4. The perfor-
mance characteristics of this architecture are as follows. The
numbers in parentheses indicate the corresponding QoS val-
ues for the base (starting architecture): execution time =
59.4 (56.7) sec, availability = 0.965 (0.889), and throughput
= 12.1 (12.4) tps. The cost of the near optimal architecture
is US$ 5,500, which is equal to the cost constraint. The cost
of the base architecture is US$2,350. It should be noted
from Table 2 that security accounts for 40% of the weight
of the global utility and availability for 20%. Table 4 indi-
cates that the near-optimal architecture uses secure commu-
nication and secure storage while the base architecture did
not. Also, the availability of the near optimal architecture is
higher than that of the base architecture. A different utility
function would yield different results.

One of the advantages of the approach presented here is
that it can be used for autonomous adaptation of an archi-

Figure 7: Optimal architecture.

34

Service Type Service Provider(s) Pattern No. Instances Sec. Comm. Level Sec. Sto. Level

Road Map Pinnacle Basic 1 Low Low
Weather Acme and Pinnacle fFT 2 Low Low
ID Possible Threats Intellifort, InfoSafe, and CryptIT LB 3 Medium Medium
Make Eval Plan Data Crunch and OR Gurus fFT 2 Medium Medium
Eval Evac Plan Data Crunch Basic 1 Medium Low

Table 4: Details of the near optimal architecture.

Service Type Service Provider(s) Pattern No. Instances Sec. Comm. Level Sec. Sto. Level

Road Map Acme and Apex fFT 2 Low Low
Weather Acme and Pinnacle fFT 2 Low Low
ID Possible Threats Intellifort and InfoSafe LB 2 Medium Low
Make Eval Plan Data Crunch and OR Gurus fFT 2 Medium Medium
Eval Evac Plan Data Crunch and OR Gurus fFT 2 Medium Low

Table 5: Details of the near optimal architecture after adaptation.

tecture. Consider that after we settled for the near optimal
architecture described above, the Pinnacle Road Map SP
degrades its performance. In particular, its capacity goes
down to 6.5 tps from the original 12.5 tps, its execution
time goes up from 3 sec to 12 sec, and its availability de-
creases from 0.99 to 0.75. With the performance problem
of the Pinnacle Road Map SP, Ug plummets to 0.003. The
approach presented here first replaces the Pinnacle Road
Map service with the Acme Road Map service, and Ug im-
proves to 0.160 (it was previously 0.656). It then searches
for a new architecture and finds one with Ug equal to 0.643.
Figure 8 shows the variation of Ug during the adaptation
process. The details of the adapted architecture can be seen
in Fig. 9 and Table 5. The performance characteristics of
the new adapted archictecture are (values in parentheses
are pre-adaptation): execution time = 58.8 sec (68.4 sec),
availability = 0.985 (0.731), and throughput = 12.1 tps (4.9
tps). In the adapted architecture, the secure storage level is
reduced from medium to low.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500

P
re

d
ic

te
d
 U

g

Number of Evaluated Architectures

no filter
k = 3
k = 2
k = 1

Figure 8: Variation of the global utility during the
search due to adaptation.

Figure 9: Optimal architecture after adaptation.

6. CONCLUDING REMARKS
SASSY brings several new contributions with respect to

the existing autonomic service composition approaches (e.g.,
JOpera [18]): (1) models the system’s requirements in a
high-level visual language that is intuitively understood by
the domain experts, and semantically well-defined through a
domain ontology; (2) maintains four types of run-time mod-
els, which are synchronized with one another, and collec-
tively support a rich set of alternatives for satisfying the sys-
tem’s requirements; and (3) provides a uniform approach to
automated composition, adaptation, and evolution of SOA
software systems.

The experimental results demonstrate that SASSY’s ap-
proach to architectural search can find near-optimal archi-
tectures in near real-time on small and medium sized prob-
lems. In fact, our implementation was able to perform 3,000
architecture evaluations in just over 2 seconds. The discov-
ered near-optimal architecture provided a substantial im-

35

provement over the initial SASSY base architecture. Our
results also show that the search procedures used for initial
optimization were able to successfully adapt to the degra-
dation of a key service instance. The adaptation example
presented here indicates that a small change in the environ-
ment can lead to substantial changes in the structure and
features of near-optimal architectures. This point illustrates
the value of autonomic management in SOAs: autonomic
management can elevate the end user experience by reacting
to emergent problems on the scale of seconds, while human
administrators would need hours, possibly days, to devise
and implement a new architecture that would properly re-
store the application’s performance.

In our future work, we will devise an algorithm for the
autonomatic generation of SSS performance models to make
SASSY’s architecture optimization more generally applica-
ble. We already have some of the rules for this model gen-
eration process (see Section 5.4), but more work is required
to devise a general algorithm.

While this paper introduces a relatively simple neighbor-
hood filter for hill-climbing, more investigation is required
to assess its value. The filter could be expanded to focus
on other aspects of the problem including the top n com-
ponents contributing to a poor metric value in an SSS. An
effective neighborhood filter could also allow us to expand
the neighborhood by constructing neighbors through multi-
ple modifications of the currently visited architecture. This
could help the hill-climbing heuristic to avoid local optima
and converge more rapidly.

In addition to hill-climbing, we plan to consider other lo-
cal search techniques including beam search, simulated an-
nealing, and tabu search. Evolutionary approaches such as
genetic algorithms may also prove effective and could be
readily applied to the SASSY architecture search process.
We would like to test the SASSY architecture optimization
process against a large set of test problems ranging in size
and composition. This will help us to quantify the strengths
and weaknesses of various architecture optimization search
procedures in SASSY.

Finally, it is worth noting that SASSY’s approach can
also be used for evolution. When requirements change, they
need to be reflected at the SAS level. From that point,
SASSY regenerates a near optimal architecture that satisfies
the requirements of the evolved system.

7. REFERENCES
[1] A. Agrawal, G. Karsai, and F. Shi. Generative

programming via graph transformations in the
model-driven architecture. In OOPSLA Workshop on
Generative Techniques in the Context of Model Driven
Architecture, pages 229–240, Seattle, WA, Nov. 2002.

[2] A. Agrawal, G. Karsai, and F. Shi. Graph
transformations on domain-specific models. Technical
report, Institute for Software Integrated Systems, Nov.
2003.

[3] M.N. Bennani and D.A. Menascé. Resource allocation
for autonomic data centers using analytic performance
models. In Proceedings of the 2nd IEEE International
Conference on Autonomic Computing (ICAC’05),
pages 229–240, Seattle, WA, June 2005.

[4] M.B. Blake. Decomposing composition:
Service-oriented software engineers. IEEE Software,
24:68–77, Nov. 2007.

[5] A. D’Ambrogio. Model-driven WSDL extension for
describing the qos of web services. In IEEE
International Conference on Web Services (ICWS’06),
pages 789–796, Chicago, IL, Sept. 2006.

[6] E. Dashofy, A. van der Hoek, and R.N. Taylor. An
infrastructure for the rapid development of
XML-based architecture description languages. In
Proceedings of the 24th International Conference on
Software Engineering, pages 266–276, Orlando, FL,
May 2002.

[7] N. Esfahani, S. Malek, J.P. Sousa, H. Gomaa and D.A.
Menascé. A modeling language for activity-oriented
composition of service-oriented software systems. In
Proceedings of the 12th ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems MODELS’09, Denver, CO, Oct. 2009.

[8] H. Gomaa and M. Hussein. Software reconfiguration
patterns for dynamic evolution of software
architectures. In Proceedings of the 4th Working
IEEE/IFIP Working Conference on Software
Architecture, pages 79–88, Oslo, Norway, June 2004.

[9] J. Kramer and J. Magee. Analyzing dynamic change
in software architectures: A case study. In Proceedings
of the 4th IEEE International Conference on
Configurable Distributed Systems, pages 91–100,
Annapolis, MD, May 2007.

[10] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software
Engineering (FOSE’07), pages 259–268, Minneapolis,
MN, May 2007.

[11] J.W. Lee, R. Mazumdar, and N. B. Shroff. Non-convex
optimization and rate control for multi-class services
in the internet. IEEE/ACM Transactions on
Networking, 13(4):827–840, Aug. 2005.

[12] S. Malek, N. Esfahani, D.A. Menascé, J.P. Sousa, and
H. Gomaa. Self-architecting software systems
(SASSY) from QoS-annotated models. In Principles of
Engineering Service Oriented Systems (PESOS’09),
pages 62–69, Vancouver, Canada, May 2009.

[13] S. Malek, M. Mikic-Raki, and N. Medvidovic. A
style-aware architectural middleware for
resource-constrained, distributed systems. IEEE
Transactions on Software Engineering, 31(3):256–272,
Mar. 2005.

[14] D.A. Menascé. Security performance. IEEE Internet
Computing, 7(3):84–87, May 2003.

[15] D.A. Menascé, E. Casalicchio, and V. Dubey. A
heuristic approach to optimal service selection in
service oriented architectures. In Proceedings of the 7th
International Workshop on Software and Performance
(WOSP 2008), pages 13–24, Princeton, NJ, June 2008.

[16] O. Nano and A. Zisman. Realizing service-centric
software systems. IEEE Software, 24(6):28–30, Nov.
2007.

[17] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-oriented computing: State of the
art and research challenges. IEEE Computer,
40(11):38–45, Nov. 2007.

[18] C. Pautasso, T. Heinis, and G. Alonso. JOpera:
Autonomic service orchestration. IEEE Data
Engineering Bulletin, 29(3):32–39, Sept. 2006.

36

