
Towards Multi-Design of Situated Service-Oriented Systems
João Pedro Sousa, Zeynep Zengin, Sam Malek
Computer Science Department, George Mason University

4400 University Drive, 4A5, Fairfax VA 22030, USA
ph: +1-703 993 1530

{jpsousa, zzengin, smalek}@gmu.edu

ABSTRACT
This paper discusses ongoing changes to the boundaries and roles
of design and run time in the software lifecycle. Specifically, it
focuses on changes caused by the emergence of situated systems
in open pervasive computing environments. Clearly, such changes
have a direct repercussion on the roles and tasks of system
developers, stakeholders, and users.

The paper proposes extensions to current software design
notations, concerning (a) service discovery and ways to scope it to
user-defined physical locations, and (b) the ability to incorporate
and shed features and behaviors at run time, depending on which
users are present and on their goals, and including the ability to
resolve conflicts between such goals. Five small but illustrative
example systems demonstrate the benefits of these extensions.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – representations.

General Terms
Design.

Keywords
Pervasive computing, user-centric design, situated systems, multi-
user, conflict resolution.

1. INTRODUCTION
The boundaries of design and run time in the software lifecycle
are in a state of flux. The push for self-healing and self-adaptive
systems propelled service discovery at runtime: the decision of
which component to invoke used to be made during design in
component-based software and early service-oriented systems but
can now be made automatically at run time [1,2].

Paradoxically, that shift of responsibility from design to run
time created the need to expand design, enriching it with
specifications of service types and constraints on quality of
service (QoS). It also created the need for machine-readable
models to guide automatic service discovery at run time: service
ontologies and registries, models to estimate delivered QoS, etc.

A further push to optimize QoS led to self-architecting: the
decision of which architectural pattern to use to promote a certain
aspect of quality for a given feature is no longer necessarily made
during design and can now be made automatically during
deployment and re-examined as needed at run time [3,4].

This other shift of responsibility from design to run time created
the need for machine-readable run-time models of architectural
patterns and of the QoS aspects they promote or detract.

This paper focuses on an additional shift of responsibilities that
results from the push towards pervasive computing. Pervasive
computing goes beyond the use of mobile devices, encompassing
the use of devices embedded or scattered in spaces ranging from
homes to subway stations to outdoors such as streets and forests.

The merge of computation and the physical world requires
systems to, first, become aware of the spatial relations between
users and parts of the system, and second, to serve the multiple
users who may be present in a space. For that, run-time service
discovery must additionally become situated, and self-architecting
must take into account the goals of multiple users.

Our work takes a user-centric perspective of multi-user situated
systems. A traditional multi-user system is endowed with a set of
features and a design that enables it to serve multiple users. In
contrast, the kinds of systems we target are capable of
automatically adopting multiple designs and adjusting their
features to better serve each user who approaches the system with
individual goals and expectations in mind.

As before, these added responsibilities at run time entail
extending design specifications, e.g., with rules for recognizing
situations and deciding when to adopt a given design. Such rules
must be entirely machine readable and carry enough semantics to
enable the automatic deployment and adjustment of designs.

The contributions of this paper include proposed extensions to a
design notation towards (a) situating service discovery, and (b)
specifying multi-design, i.e. the ability to serve multiple user-
specific goals, including resolution should the goals of the users
who are present at a specific time be conflicting in some way.
The baseline notation is SAS (Service Activity Schemas), which
is based on OMG's BPMN [5], and was introduced in prior work
on self-architecting: SASSY [4,6].

Clearly, the profound changes in the roles of design and run
time described above affect the roles of software engineers,
stakeholders, and users in the software lifecycle.

In the remainder of this paper, Section 2 elaborates on the
challenges, and contrasts the work presented here with related
work. Section 3 summarizes the SAS notation and the relevant
concepts of self-architecting. Sections 4 and 5 present the
proposed SAS extensions by example, respectively for situated
discovery and for multi-design. Section 6 discusses limitations
and Section 7 summarizes the main points of the paper.

2. CHALLENGES AND RELATED WORK
Situated systems are an exciting new area with applications to
managing heating and cooling in buildings, surveillance, assisted
living and healthcare, transportation, emergency response, etc.

A body of work originates in mobile computing and explores
applications such as context aware reminders and navigation,
medicine cabinets, etc. [7,8]. Here, researchers have focused on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PESOS ’10, May 1-2, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-963-3/10/05 ...$10.00.

57

building prototypes pushing the limits of technology and
evaluating user acceptance and engagement. From a software
engineering point of view, these are embedded custom-made
applications where decisions are captured at code level.

Larger applications have been built for spaces such as hospitals,
where the components, their interconnections, and permissible
flows of information are carefully crafted and controlled [9,10].

It is harder to develop situated systems for open environments
such as homes, office buildings, or mass transportation. Although
existing situated systems demonstrate exciting new capabilities, it
is unclear how to achieve scalability and adaptability to situations
where users and devices come and go freely. Such applications
may easily overstep the users’ boundaries, causing users to feel at
the mercy, rather than in control of technology [11]. For example,
suppose that a user programmed a clothes dryer to automatically
interrupt its activity during energy peak hours, but somebody else
who doesn't share the same concern wants to use the dryer. Logic
that might work in the context of a personal application running
on a cell phone becomes rigid and brittle in shared spaces.

The goal becomes applying good practices of software design
and construction to situated systems, capturing important
decisions at the design level, and using proven approaches to
achieve openness and adaptability, such as service orientation.

Activity languages such as BPMN raise the level of abstraction
of design. They neither represent directly the code view nor the
run time view of a system, but they capture what the system is
intended to achieve. Recent work automatically translates BPMN
schemas into views of service-oriented systems, e.g. [12].

SAS’s precise semantics enables taking the next step and fully
generate and deploy systems automatically. In SASSY, the
equivalents of the traditional code and run-time views of a system
become internal representations generated by tools and
manipulated by run-time infrastructures [4]. Like BPMN, SAS is
intended for use by domain experts.

BPMN targets primarily computational activities that compute
some result and terminate. Services are frequently invoked
synchronously and are expected to return a result as soon as
possible. In addition to computational activities, SAS activities
may last for a long time, supporting human activities or carrying
out tasks autonomously for years. Services are frequently
provided by devices, such as smoke detectors, which run
asynchronously once started and communicate when necessary.

Activity-oriented computing (AoC) targets supporting lasting
human activities in pervasive computing environments [13,14].
AoC shares with SASSY the principle that individual users may
define their own activities, which may then be deployed,
interrupted, and resumed at will and at run time by leveraging a
service-oriented infrastructure.

Existing work in AoC differs from SASSY in two ways. First,
it defines no activity design language. Models of activities are
captured implicitly and consist of describing a collection of
applications and files that support an end user in activities such as
analyzing the results of medical exams and editing documents.
Second, there is no provision for users to scope service discovery,
which is implicitly done within the network domain the user is in.

More broadly, different kinds of service discovery are in use
today. A significant number of systems are currently developed
using mechanisms such as the Web Services Description
Language (WSDL [15]), or Universal Description, Discovery and
Integration (UDDI [16]). These mechanisms support service
descriptions meant for human eyes to inspect during system

development, and the decision of which service provider to invoke
is then set in the code.

A variety of other mechanisms enable service discovery at run
time, such as Microsoft's UPnP, IETF's SLP, etc. [2]. Ontology
plays a key role in matching requests from service consumers with
announcements from service providers. However, mechanisms to
guide discovery at run time according to QoS goals are seldom
available, and commonly, the decision of how to scope discovery
geographically is set by some combination of coding and
administrative network configuration.

To the authors' best knowledge the work herein is the first to
promote situated discovery to a first-class construct at the design
level. SAS additionally supports QoS-guided discovery at run
time by associating utility functions with scenarios [4].

Multi-design is distinct from self-modifying software. A self-
modifying program may alter some of its own code, either as a
result of initialization parameters or upon reaching a certain state,
usually to improve performance [17]. In contrast, activity schemas
are not self-modifiable, but they contain rules for modifying the
run-time organization of the system, i.e. for changing which
services are marshaled and how they are interconnected.

Such rules trigger changes to the system design upon observing
changes in situation, such as user location or the presence of other
users. Specifically, when multiple users share a system or parts
thereof, conflicts may arise as to the intended behaviors, setting of
properties such as ambient temperature, etc.

Several communities have contributed bodies of work in
conflict resolution. In economics, auctions support a form of ne-
gotiation among multiple parties competing for a limited resource
[18]. The agents community developed protocols for multi-
attribute negotiation [19], and mechanism design is a subfield of
game theory that investigates incentive-punishment mechanisms
for promoting desired behaviors among independent actors [20].

To the authors' best knowledge the work herein is the first to
promote resolution mechanisms to the design level. This enables
stakeholders to design their own solutions for resolution, choosing
among a variety of mechanisms, and changing that choice as
needed. This is in contrast with other work where a mechanism
that promotes a specific model of resolution is chosen and
imparted in the code. For example, current work in context-
aware smart spaces, frequently uses some form of priority schema
to automatically resolve conflicts among users [21].

3. SASSY AND EXTENSIONS
SAS is a graphical language for modeling activities in terms of
functional, coordination, and QoS requirements for service-
oriented systems. A complete description of the baseline SAS, a
comparison with related languages, and description of tool
support can be found in [6]. Here we summarize the SAS
constructs used in this paper and discuss the relation between
activity schemas and running systems.

Figure 1 summarizes SAS. Plain round-corner rectangles refer
either to sub-activities, for hierarchical decomposition of schemas,
or to system-supported activities, e.g., delay used for timing.

Gateways follow the notation used in BPMN: a diamond
labeled with a + for parallel gateways, and with an o, for inclusive
gateways. Parallel gateways relay a message to each outgoing arc
once all incoming arcs have received a message. Inclusive
gateways do so as soon as a message arrives in one incoming arc.
Gateways may marshal incoming message parameters to outgoing
message parameters as needed. Also, sending a message on an

58

outgoing arc may be further constrained by a condition associated
to the arc, e.g., expressed as a function of message parameters.

Round corner rectangles with a server icon denote services to
be discovered: a single box for one service, a stacked box for all
services of the indicated type that can be discovered. Messages to
and from service providers are indicated by white and black
envelopes, respectively. When an envelope is next to a set of
services (stacked box), the notation provider.message is used to
specify the source/target provider. Message parameters may be
shown in parenthesis, when relevant, but the SAS tools support
editing the definition of a message as needed.

In the proposed extensions, spaces are defined administratively
and used as units to manage trust and authorization for accessing
the services within each space. Some spaces may be physically
occupied by users, such as rooms and cars, and may be contained
in other spaces, e.g., a room within a building. Spaces may be
confined to a device, such as a cell phone, which at times acts as a
user's only computational support. The constructs shown in the
figure are explained by example in Section 4.

The set of activity schemas defined and available to be initiated
in a space changes as users and their devices come and go. Users
initiate and retire activities at will. For starting an activity,
SASSY discovers the required services and deploys a service
coordinator thread which reads the activity schema and performs
the desired coordination logic.

While some activities run to completion (computational
activities typically do), lasting activities such as controlling the
temperature in a room may last until situational events are
observed (see example in Figure 6) or the user decides to retire the
activity (see example in Figure 3).

Figure 2 informally depicts an example with two spaces: a
house and an office building. Two of the currently available
activity schemas at the house have been deployed, one of which
marshaled a service at the office (see also Figure 4).

Traditional notions of software evolution and adaptation fail to
capture the highly dynamic relation between activity schemas and
running systems in open, pervasive computing spaces. The design
of a situated system, i.e., which components it includes and how
they are interconnected, changes with the activities that multiple
users bring to the space and decide to initiate, thus adding features
and behaviors to the running system. We call this multi-design.

4. SITUATED DISCOVERY
In situated systems, service discovery must itself become situated.
Because the components of a situated system interact with their
physical surroundings, it matters where those components are
deployed: traditional situated systems are often embedded in a
target device, such as a phone or a medicine cabinet [8,22]. This
is in contrast with web-based systems, in which services may run
anywhere on the network as long as functional and quality
requirements are met.

The tenets of situated discovery are that: (a) situated services
are aware of, and announce their location, and (b) service requests
are scoped to a geographic area. We distinguish two kinds of
scoping for situated discovery: one in the vicinity of a mobile
entity, such as a person or device; the other within fixed spaces,
such as rooms, buildings, and streets.

Figure 3 shows an example activity schema where discovery is
scoped to the vicinity of a user. All services shown on top of the
rounded shaded area are to be discovered within a radius of the
location indicated in the area's label, which is of the form: name @
radius * location, to be read, name at radius around location.

Sensing the location of users may be implemented by a variety
of mechanisms based either on following proxy devices such as
cell phones, or on mechanisms embedded on spaces such as face
recognition and id card readers, and which may be combined for
better accuracy [23]. At the design level, the location of entities
known to a system is referred to in the form entityId.location.

The stacked service boxes for c:restCoupon in the figure
indicates that all service instances of type restCoupon within the
specified vicinity are to be marshaled into the system. As with
regular discovery, this could be guided by additional constraints
on properties and quality of the services.

Because the discovery of such instances may occur at any time
while Fred moves around, the design captures a notification issued
by the discovery infrastructure (not by the provider) for each
service that comes in range: notifyDiscovery. The notification
includes the identity of the discovered service, which can be used
to direct subsequent calls, as in the example.

This example illustrates how activity schemas can situate the
discovery of services in the vicinity of a mobile user, and also
capture at the design level how to react to the dynamic discovery
of new services that come into range.

To illustrate scoping discovery to spaces, consider the example
of an alarm system at Fred's home. When motion detectors are
triggered, Fred receives a phone call at the location he currently
is, which may be directed to his cell phone if he happens to be
carrying it. Fred may press keys on the phone to interact with the
system; for example, to ask video to be streamed to a screen in
that same space, or to indicate a false alarm. Video capture
follows the possible intruder by activating a camera in the vicinity
of the latest motion detector to be triggered. If Fred cannot be

Figure 1. Baseline syntax of SAS, on the left, and
proposed extensions, on the right.

s: type

act

o

+

{c1}
{c2}

local activity

one s to be discovered

message towards provider
message from provider

{c1}
{c2}

s: type all s's that can be
discovered

discovery in
a vicinity

discovery within
a space

scope

scope

inclusive gateway

parallel gateway enter leave

start/end when
user enters/leaves

a space

 c:restCoupon

Figure 3. Example of vicinity discovery: Fred receives an
SMS for each restaurant coupon found within 500 meters of

Fred's location, possibly while he walks around the city.

p:phone notifyDiscovery(c)

couponInfo
c.getDetails

findLunch @ 0.5km * Fred.location

SMS

_ @ myCell

Figure 2. Relation between activity schemas and systems.

...

run-time
view

SASSY infrastructure

...
SASSY infrastructure

... ...

59

reached within a set time, a call to 911 is automatically placed.
Figure 4 shows the corresponding activity schema. All services

on top of a shaded rectangle are to be discovered within the space
indicated on the rectangle's label. The rectangle on the left refers
to the part of the system deployed at Fred's home. Fixed locations
are named using a notation with support for aliasing similar to
URLs on the internet. For example, fairfax.va.us/22030/university-
drive/4400 represents the same space as gmu.edu.

The rectangle on the right refers to the space Fred happens to
be in. This is indicated by a label of the form name # entity @
possibleSpace, to be read, name for entity at possibleLocation. The
entity's location is tracked as for vicinity discovery and matched
for containment in possibleSpace. When the entity enters a
matching space an enter event is issued, and conversely, upon
leaving the space, a leave event is issued.

In this example, Fred.location is tracked and matched against the
alias trustedSpaces, which refers to a list of spaces defined by Fred,
such as his office, or a virtual "space" defined by a device such as
his laptop or cell phone. The most likely space, physical or
virtual, Fred is actually in is judged by the location mechanisms
for determining Fred.location [23].

As before, the stacked boxes for d:motionDetector refer to all
services of that type discovered within Fred's home. Whenever
one of those services, d, issues a motion detected message, d.location
is used to scope the discovery of a camera within 10 ft.

The {n:1} label on the incoming arc to the parallel gateway
prevents each subsequent d.motion from initiating an extra phone
call. Also, the {1:n} label associated with the screen discovery and
Fred's consent enables the redirection of video streaming from
new cameras following each activated detector.

This example illustrates the discovery of services within spaces,
both at a fixed location and at a location identified by the presence
of an entity of interest, such as a user. The example introduces
the enter and leave events, which signal the presence of entities in
spaces, and here these events are used to enable the part of the
system for alerting Fred. As in the previous example, this one
also illustrates vicinity discovery, this time following the location
of varying entities: the newly triggered motion detectors.

5. MULTI-DESIGN
The fundamental tenet of multi-design is that the design of a
situated system depends on which users are present, and on the
intent of those users. In other words, the function and design of a

system may change at run time, as multiple users come and go
bringing their intentions and expectations. This is in contrast with
traditional software systems, where there is a clear demarcation
between design and run time, and often a complex, human labor-
intense process to deploy a system.

Different users think and act independently and frequently
approach a situated system with different intentions and
preferences. For example, when sharing a car, some users may
prefer to enjoy the landscape while others prefer to minimize the
duration of the trip. As another example, when two users
exchange a large volume of data in real time, one user may prefer
to make communication secure while the other may be in a rush
and unwilling to bear the overhead of encryption.

Differences such as these need to be resolved during the self-
configuration of a situated system serving multiple users. In the
remainder of this section, we discuss different kinds of resolution.

5.1 Resolving Features
Each user may expect a different set of features or activities to be
automatically carried out by a situated system. For example,
suppose that Bob installed a smart power meter at his home which
issues pricing signals reflecting the load on the power grid [24].
Because the clothes dryer is a heavy energy consumer, Bob would
like it to suspend drying during high rates and to resume only
when night rates are in effect. However, Bob’s wife Mary would
like to have her clothes dry regardless of such issues.

Figure 5 shows the activity schema for saving energy defined
by Bob. The activity starts when Bob enters the laundry room,
and then the dryer receives suspend and resume messages
corresponding to the rates announced by the smart meter. The
activity finishes once the drying cycle is done or if Bob leaves the
laundry room without having started the dryer.

Figure 4. Fred's home surveillance system is a distributed system that includes services at Fred's home and at whichever
location Fred happens to be, among a defined set of trusted locations. Fred entering and leaving one such location has no

computational effect other than establishing the scope of service discovery for alerting purposes.

s:screen
notifyDiscovery(s)

stream(s)
c:camera

p2:phone

p1:phone

delay

+

o

o

d.motion

+

issueCall(911,intrusionMsg2)

receiveCall(intrusionMsg1)

stop +
keyPress(2)

keyPress(9)

keyPress(5)

m ok
{m && !ok}

video @ 10ft * d.location

surveillance @ Fred.org/home alert # Fred @ trustedSpaces

enter leave

accept(c)

{n:1} +
{1:n}

d:motionDetector
+

Figure 5. Saving energy at Bob's house: an example of
activating a system feature depending on who is present.

started

peak

saveEnergy # Bob @ Bob.org/home

d:Dryer
m:smartMeter enter o

day

night
{leave &&
!started}

done suspend

resume

@ ../laundry

60

This activity, and the interconnections between the smart meter
and the dryer that support it, only take place when it is Bob who is
present in the laundry room. Should Mary agree to have this
feature activated for her as well, Bob could add Mary to the label
of the schema: saveEnergy # Bob, Mary @ etc., or Mary could have
her own activity schema reflecting her preferences; for example,
interrupting the dryer only when peak rates are in effect.

The activity schema in Figure 5 clearly reflects at the design
level the relationship between a user, a situation, and an expected
feature in that situation. Such activity schemas are used by a
situated system to determine the required design, i.e. which
services to marshal and how to interconnect those services,
depending on which users are present.

5.2 Resolving Values
An important kind of services is characterized by a value, or
values desired by users. For example, the channel on a radio or
TV, the sound volume on the same, the level of lighting in a room,
or the temperature set for heating and air conditioning.

Multiple users may intentionally share a service of that kind, or
sharing may be incidental by virtue of being present at the same
space. In such cases, the situated system can do a better job at
serving the users, first, if their preferences are known, and second,
if the differences among such preferences can be resolved in a
way perceived as fair by the users.

The ability to automatically take into account the preferences of
individual users present at a space represents a significant
improvement over current practice. Today, building automation
systems adopt one-size-fits-all settings, typically based on a
standard work schedule and oblivious of which spaces are actually
occupied, let alone of the preferences of different occupants.

Figure 6 shows an example concerning the temperature setting
for heating systems in spaces such as rooms and vehicles. Users
express their preferences by creating activity schemas that
discover the thermostat for the space and, upon detecting the user
entering the space, set the thermostat for the preferred
temperature. Parts (a) and (b) show examples of such schemas
created by Bob, who prefers 72º Fahrenheit, and by Fred, who
prefers 68. Both users made their schemas unconstrained as far as
location by labeling the location with the keyword anywhere.

Bob’s schema reflects his concern to reset the thermostat back
to the default temperature once he leaves the space, while Fred
was not sure what to do, since there might be other people left in
the room, so he did not specify an action for when leaving.

Part (c) of the figure shows the activity schema created by the
stakeholders at a specific space, the eng building at gmu.edu in this
example, for regulating the access to the thermostat service. Here,
the communication between any activity and the thermostat goes
through a value resolver that enforces a least misery (LM) policy.
This resolver outputs the average of the current requests, or a
default value set by the stakeholders when no requests are
outstanding. This activity schema accommodates any activity that
issues setT messages to a thermostat and that detects and is willing
to communicate when the user leaves the space.

The resolution process supported by SASSY includes reconcil-
ing activity schemas such as the ones in Figure 6. Reconciliation
may include interaction with users for confirming their
willingness to have their activity schemas adjusted for compatibil-
ity. For example, Fred would be asked to consent to have his
leaving (indirectly) known to the thermostat, while Bob would be
asked to have the default message redirected to a different message
targeted at the thermostat (a setT issued by the resolver). To avoid
the repetition of such interactions at each space, users may
annotate their schemas for consenting to any adjustments during
reconciliation of the interactions with thermostats.

Part (d) of Figure 6 shows the general form of a value resolver.
The resolver is annotated with a policy for accessing the service
downstream, labeled by a lock, and with a resolution mechanism,
labeled R. The access policies currently supported are P, for
pseudonym, and A, for authorized access only. In the later case,
user identities need to be registered beforehand with an access
control mechanism to which the resolver initialization refers.

The two input messages ask (for a value V) and rem include an
identification of the issuing user, U, to help maintain the
correspondence between each request and withdrawal, to enable
access control, and to enable some of the resolution mechanisms.

The value resolution mechanisms currently supported are least
misery (LM), priority (Pr), majority (Maj), frequent users (Freq), and
infrequent users (Infreq). Priority requires the resolver to refer to a
classification of user priorities, i.e. to prior knowledge of user
identities similarly to an access control mechanism. Majority
takes the mode of the requests, adopting a tie-break policy
initialized in the resolver, such as highest value, average, etc.
Both Freq and Infreq keep statistical tallies of user requests, Freq
giving precedence to the requests of frequent users, similarly to a
frequent customer program, and Infreq giving precedence to
infrequent users, similarly to the notion of fairness adopted in
round-robin mechanisms. The stakeholders of the space may

resolveTemperature @ gmu.edu/eng

Figure 6. Example of how different designs concerning the usage of a shared physical service can be reconciled.
In this example, reconciliation concerns the value to be set on the service.

t:thermostat

enter leave setT(72)

default

t:thermostat

leave setT(68)

t:thermostat
setT

any
setT

leave

ask

rem P LM
 R

set(value)

ask(U,V)

rem(U)
 R

(c) Schema made by the stakeholders at a specific space (a) Schema made by Bob

(b) Schema made by Fred
(d) Value resolver. Possible values for the access are P and A;

possible values for resolution are LM, Pr, Maj, Freq, and Infreq

myHeating # Fred @ anywhere

heating # Bob @ anywhere

enter

61

choose the value resolution they deem appropriate and fair.
This example demonstrates how activity schemas can capture

(a) user preferences with respect to setting values in situated
services, and (b) the design of mechanisms to resolve differences
in such preferences. It also illustrates how small variations in the
interactions with such services can be reconciled dynamically.

5.3 Resolving Architectural Patterns
In addition to the functional aspects described so far in activity
schemas, quality of service (QoS) plays a key role in distributed
systems with constrained resources, as it is often the case in
situated systems. For example, a service that would be a perfect
fit from a functional standpoint may be deemed unacceptable by
users due to low computing power, small screen, low battery, poor
connectivity, etc.

SASSY optimizes QoS by automatically generating a number
of candidate patterns for replacing what functionally constitutes
each single service, and by choosing the pattern that best serves
user defined QoS goals [4,25]. For example, for promoting
availability, a service may be replaced by a redundancy pattern.
Such goals are defined at the design level by highlighting paths of
interest, so called Service Sequence Scenarios (SSSs), in an
activity schema and annotating those with utility functions for the
QoS aspects considered relevant by users.

What is new in multi-design is that each end user is enabled to
associate personalized QoS goals for the same situated system,
which is then reconfigured dynamically depending on which users
are present. This is in contrast with current practices of software
design, where it is assumed that stakeholders come to agree on the
QoS goals for a system before deployment.

As a simple example, suppose that two users Bob and Fred
work in shifts at an outdoors facility, such as a harbor or power
plant. Their job includes carrying a wearable computer with a
speech frontend to help them diagnose situations and create work
logs. The schema for their activity includes several distributed
services, such as a domain-specific database running on the
company server, and a speech recognition service running on the
wearable.

Aware that speech recognition is computationally intense, Bob
is willing to articulate more clearly, disambiguating among
candidate transcriptions if necessary, for the tradeoff of longer
battery life and more computing cycles available for other tasks.
For that he defined an SSS that includes the recognition service,
Figure 7(a), and using interfaces such as in [26] he specified
utility functions reflecting his preference. Fred also defined an
SSS for the activity schema he shares with his coworker Bob, but
instead he prefers to have high recognition accuracy despite the
draw on computing resources.

The self-architecting algorithms in SASSY produce and deploy
the design in Figure 7(b) whenever Bob dons the wearable, and
the design in Figure 7(c) whenever it is Fred donning it.

This example illustrates how personalized QoS annotations in
SSSs support system redesign at run time to optimally match the
expectations of the user who is present at each given time. This is
in contrast with current practice. Today, users need to agree on a
common ground for QoS constraints, which then is used to guide
self-architecting and deployment of the system.

6. DISCUSSION
A question not addressed in this paper is how to reconcile QoS
goals when multiple users are present simultaneously. Referring
to the last example in the previous section, what should happen if
Bob and Fred share the equipment while working as a team?

Ongoing work investigates design notations for specifying the
resolution of QoS goals following similar principles to the
notation for resolving values, discussed in Section 5.2.

A different and harder problem concerns general mechanisms
to reconcile desired features. The example in Section 5.1
illustrates features being added and shed from a situated system
depending on which user is present. But what should happen
when two users who disagree are present? Furthermore, how to
recognize a disagreement in the first place? For example, if Fred's
schema sends an output of service A to an input in B, and Bob's
schema sends that same output to service C, do they disagree? Or
should the output be sent to both service B and C?

Current software design notations include only positive
statements, making it very hard to detect conflicts of desired
features. Future work includes investigating notations for
expressing undesirable features, which would make it possible to
detect, as a pre-requisite to resolve, conflicts at the feature level.
An important challenge for such extensions is making them both
effective and usable by stakeholders and domain experts.

How to guarantee the scalability, security and privacy of
service discovery is not specific to the proposed extensions, nor to
SASSY, but a general engineering challenge for service discovery
at run time. A promising approach is to combine results in the
trust management body of work [27] with mechanisms similar to
internet's Domain Naming System (DNS) for facilitating the
interoperation of discovery mechanisms in different spaces.

7. CONCLUSION
The emergence of contemporary computing environments, such as
smart spaces and pervasive systems, calls for rethinking the way
software systems are currently designed, composed, and deployed.
Many traditional principles and practices employed by the
software engineering community are not applicable in this setting.

For example, location transparency, a common technique used
to address the complexity of engineering distributed systems, is
not a viable option in such setting. Moreover, establishing user
requirements prior to system deployment is often not feasible,
given that the users of such systems are often not known at design
time, and if they are, their requirements may change at run time.

Figure 7. Example of the effects of QoS preferences by different users in self-architecting and the resulting system design.
In this example, Bob prefers low overhead at the expense of accuracy, resulting in a single service call; while Fred prefers

accurate recognition, resulting in a system that combines the results of several recognition algorithms run in parallel.

r:speechRecog
utterance text

(a) Fragment of SSS (c) Resulting design for Fred (b) Resulting design for Bob

utterance text

recognizer
utterance

replica
integrator

text

u
u

t
t

recognizer2 recognizer1

u u t t

(d) Legend

service

connector

port

62

In this paper, we presented an approach that targets the
aforementioned difficulties, and forms the centerpiece of SASSY.
SASSY automates the composition and adaptation of service-
oriented software systems. Through the use of an activity
modeling language, the users specify functional, QoS, and spatial
requirements of a situated software system. These requirements
enable situated discovery of services, in which services are aware
of, and announce their location, and service requests are scoped to
a geographic area. The spatial requirements and situated discovery
are in turn used by SASSY to automatically resolve conflicting
preferences among the users of the system.

The traditional methods of engineering multi-user pervasive
systems often force the users to make undesirable compromises,
and arrive at a common, and often restrictive, set of requirements.

The work in this paper brings a paradigm shift. Not only it
allows users to express and change their requirements at run-time,
but it also exploits run-time properties of the system (e.g., location
of users and services) to automatically resolve conflicting
requirements. As a result, SASSY resolves conflicts in a more
refined manner. Instead of enforcing an overly constrained set of
requirements on the system (i.e., common denominator of all the
users’ preferences), it resolves them on a case-by-case basis and
through the most effective means. We believe our approach also
provides a more natural separation of humans’ responsibilities:
engineers develop services, ontologies, and infrastructure
capabilities, while stakeholders specify system requirements in a
more flexible and fluid fashion.

Avenues of future work include complementing our approach
by incorporating temporal properties. This would allow us to
resolve service providers not only based on the location of a user,
but also based on the time of day, or potentially both. Our ongoing
work also involves the development of the required monitoring
facilities for enabling situated discovery in smart spaces, as well
as a detailed empirical evaluation of the overhead and scalability
of the approach in real-world situated systems.

8. ACKNOWLEDGEMENT
The work herein was funded in part by the National Science
Foundation (NSF) under grant CCF-0820060. Any opinions,
findings and conclusions expressed in this material are those of
the author and do not necessarily reflect the views of the NSF.

9. REFERENCES
[1] A.G. Ganek and T.A. Corbi, “The dawning of the autonomic

computing era,” IBM Systems Journal, v. 42, 2003, pp. 5-18.
[2] F. Zhu, M. Mutka, and L. Ni, “Service Discovery in

Pervasive Computing Environments,” IEEE Pervasive
Computing, vol. 4, Oct. 2005, pp. 81-90.

[3] V. Cardellini, et al., “Qos-driven runtime adaptation of
service oriented architectures,” joint ESEC/FSE, ACM
Sigsoft, 2009, pp. 131-140.

[4] S. Malek, et al., “Self-Architecting Software SYstems
(SASSY) from QoS-Annotated Activity Models,” Intl
Workshop on Principles of Engineering Service Oriented
Systems, Vancouver, Canada: IEEE CS, 2009, pp. 62-69.

[5] Object Management Group, “BPMN Information Home,”
http://www.bpmn.org/.

[6] N. Esfahani, et al., “A Modeling Language for Activity-
Oriented Composition of Service-Oriented Software
Systems,” 12th Intl Conf on Model Driven Engineering
Languages and Systems, Denver, CO: Springer LNCS, 2009.

[7] P. Ludford, et al., “Because I Carry My Cell Phone Anyway:

Functional Location-Based Reminder Applications,” SIGCHI
Conference on Human Factors in Computing Systems,
Montréal, Canada: ACM, 2006, pp. 889-898.

[8] A. Gershman, et al., “Situated Computing: Bridging the Gap
between Intention and Action,” 3rd Intl Symp on Wearable
Computing, San Francisco, CA: IEEE CS, 1999.

[9] J.E. Bardram, “Applications of context-aware computing in
hospital work: examples and design principles,” ACM New
York, NY, USA, 2004, pp. 1574-1579.

[10] T. May, “El Camino wants paperless hospital,” San Jose
Business Journal, Apr. 2002.

[11] L. Barkhuus and A. Dey, “Is context-aware computing taking
control away from the user? Three levels of interactivity
examined,” 5th Intl Conf Ubiquitous Computing, Seattle,
WA: Springer LNCS, 2003, pp. 159-166.

[12] J. Touzi, F. Bénaben, and H. Pingaud, “Prototype to Support
Morphism between BPMN Collaborative Process Model and
SOA Architecture Model,” Enterprise Interoperability III,
Springer, 2008, pp. 145-157.

[13] J.P. Sousa, et al., “Activity-oriented Computing,” Advances in
Ubiquitous Computing: Future Paradigms and Directions,
IGI Publishing, 2008, pp. 280-315.

[14] J. Bardram, “From Desktop Task Management to Ubiquitous
Activity-Based Computing,” Integrated Digital Work
Environments: Beyond the Desktop Metaphor, MIT Press,
2007, pp. 49-78.

[15] W3C, “Web Services Description Language (WSDL 2.0),”
http://www.w3.org/TR/wsdl20-primer/.

[16] OASIS Consortium, “Universal Description, Discovery and
Integration (UDDI),” http://www.oasis-open.org/committees/
uddi-spec/doc/tcspecs.htm.

[17] H. Cai, Z. Shao, and A. Vaynberg, “Certified self-modifying
code,” Conf on Programming Language Design and
Implementation, ACM, 2007, pp. 66-77.

[18] Paul Milgrom, “Auctions and Bidding: a primer,” Journal of
Economic Perspectives, vol. 3, 1989, pp. 3-22.

[19] S. Fatima, M. Wooldridge, and N.R. Jennings, “An agenda-
based framework for multi-issue negotiation,” Artificial
Intelligence, vol. 152, Jan. 2004, pp. 1 - 45.

[20] H.R. Varian, “Economic Mechanism Design for
Computerized Agents,” USENIX Workshop Electronic
Commerce, USENIX Association, 1995, pp. 13-21.

[21] G.S. Thyagaraju, et al., “Conflict Resolution in Multiuser
Context-Aware Environments,” Intl Conf on Computational
Intelligence for Modelling Control & Automation, Vienna,
Austria: IEEE CS, 2008, pp. 332-338.

[22] R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards
Situated Computing,” 1st Intl Symp on Wearable Computers,
1997, pp. 146-153.

[23] J. Hightower, G. Borriello, “Location Systems for Ubiquitous
Computing,” IEEE Computer, vol. 34, 2001, pp. 57-66.

[24] Smart Meter News Network, “Smart Meters,”
http://www.smartmeters.com/.

[25] D. Menascé, et al., “A Framework for Utility-Based Service
Oriented Design in SASSY,” Joint WOSP/SIPEW, San Jose,
California, 2010, pp. 27-36.

[26] J.P. Sousa, et al. “A Software Infrastructure for User-Guided
Quality-of-Service Tradeoffs,” Software and Data
Technologies, Springer CCIS, 47, 2009, pp. 48-61.

[27] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and
reputation systems for online service provision,” Decision
Support Systems, vol. 43, 2007, pp. 618-644.

63

