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ABSTRACT 
This paper discusses ongoing changes to the boundaries and roles 
of design and run time in the software lifecycle.  Specifically, it 
focuses on changes caused by the emergence of situated systems 
in open pervasive computing environments. Clearly, such changes 
have a direct repercussion on the roles and tasks of system 
developers, stakeholders, and users.  

The paper proposes extensions to current software design 
notations, concerning (a) service discovery and ways to scope it to 
user-defined physical locations, and (b) the ability to incorporate 
and shed features and behaviors at run time, depending on which 
users are present and on their goals, and including the ability to 
resolve conflicts between such goals.  Five small but illustrative 
example systems demonstrate the benefits of these extensions. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – representations. 

General Terms 
Design. 

Keywords 
Pervasive computing, user-centric design, situated systems, multi-
user, conflict resolution. 

1. INTRODUCTION 
The boundaries of design and run time in the software lifecycle 
are in a state of flux.  The push for self-healing and self-adaptive 
systems propelled service discovery at runtime: the decision of 
which component to invoke used to be made during design in 
component-based software and early service-oriented systems but 
can now be made automatically at run time [1,2]. 

Paradoxically, that shift of responsibility from design to run 
time created the need to expand design, enriching it with 
specifications of service types and constraints on quality of 
service (QoS).  It also created the need for machine-readable 
models to guide automatic service discovery at run time: service 
ontologies and registries, models to estimate delivered QoS, etc. 

A further push to optimize QoS led to self-architecting: the 
decision of which architectural pattern to use to promote a certain 
aspect of quality for a given feature is no longer necessarily made 
during design and can now be made automatically during 
deployment and re-examined as needed at run time [3,4]. 

This other shift of responsibility from design to run time created 
the need for machine-readable run-time models of architectural 
patterns and of the QoS aspects they promote or detract. 

This paper focuses on an additional shift of responsibilities that 
results from the push towards pervasive computing.  Pervasive 
computing goes beyond the use of mobile devices, encompassing 
the use of devices embedded or scattered in spaces ranging from 
homes to subway stations to outdoors such as streets and forests.   

The merge of computation and the physical world requires 
systems to, first, become aware of the spatial relations between 
users and parts of the system, and second, to serve the multiple 
users who may be present in a space.  For that, run-time service 
discovery must additionally become situated, and self-architecting 
must take into account the goals of multiple users. 

Our work takes a user-centric perspective of multi-user situated 
systems.  A traditional multi-user system is endowed with a set of 
features and a design that enables it to serve multiple users.  In 
contrast, the kinds of systems we target are capable of 
automatically adopting multiple designs and adjusting their 
features to better serve each user who approaches the system with 
individual goals and expectations in mind. 

As before, these added responsibilities at run time entail 
extending design specifications, e.g., with rules for recognizing 
situations and deciding when to adopt a given design.  Such rules 
must be entirely machine readable and carry enough semantics to 
enable the automatic deployment and adjustment of designs. 

The contributions of this paper include proposed extensions to a 
design notation towards (a) situating service discovery, and (b) 
specifying multi-design, i.e. the ability to serve multiple user-
specific goals, including resolution should the goals of the users 
who are present at a specific time be conflicting in some way.  
The baseline notation is SAS (Service Activity Schemas), which 
is based on OMG's BPMN [5], and was introduced in prior work 
on self-architecting: SASSY [4,6]. 

Clearly, the profound changes in the roles of design and run 
time described above affect the roles of software engineers, 
stakeholders, and users in the software lifecycle. 

In the remainder of this paper, Section 2 elaborates on the 
challenges, and contrasts the work presented here with related 
work.  Section 3 summarizes the SAS notation and the relevant 
concepts of self-architecting.  Sections 4 and 5 present the 
proposed SAS extensions by example, respectively for situated 
discovery and for multi-design.  Section 6 discusses limitations 
and Section 7 summarizes the main points of the paper. 

2. CHALLENGES AND RELATED WORK 
Situated systems are an exciting new area with applications to 
managing heating and cooling in buildings, surveillance, assisted 
living and healthcare, transportation, emergency response, etc. 

A body of work originates in mobile computing and explores 
applications such as context aware reminders and navigation, 
medicine cabinets, etc. [7,8].  Here, researchers have focused on 
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building prototypes pushing the limits of technology and 
evaluating user acceptance and engagement.  From a software 
engineering point of view, these are embedded custom-made 
applications where decisions are captured at code level. 

Larger applications have been built for spaces such as hospitals, 
where the components, their interconnections, and permissible 
flows of information are carefully crafted and controlled [9,10]. 

It is harder to develop situated systems for open environments 
such as homes, office buildings, or mass transportation.  Although 
existing situated systems demonstrate exciting new capabilities, it 
is unclear how to achieve scalability and adaptability to situations 
where users and devices come and go freely.  Such applications 
may easily overstep the users’ boundaries, causing users to feel at 
the mercy, rather than in control of technology [11].  For example, 
suppose that a user programmed a clothes dryer to automatically 
interrupt its activity during energy peak hours, but somebody else 
who doesn't share the same concern wants to use the dryer.   Logic 
that might work in the context of a personal application running 
on a cell phone becomes rigid and brittle in shared spaces. 

The goal becomes applying good practices of software design 
and construction to situated systems, capturing important 
decisions at the design level, and using proven approaches to 
achieve openness and adaptability, such as service orientation. 

Activity languages such as BPMN raise the level of abstraction 
of design.  They neither represent directly the code view nor the 
run time view of a system, but they capture what the system is 
intended to achieve.  Recent work automatically translates BPMN 
schemas into views of service-oriented systems, e.g. [12].  

SAS’s precise semantics enables taking the next step and fully 
generate and deploy systems automatically. In SASSY, the 
equivalents of the traditional code and run-time views of a system 
become internal representations generated by tools and 
manipulated by run-time infrastructures [4].  Like BPMN, SAS is 
intended for use by domain experts. 

BPMN targets primarily computational activities that compute 
some result and terminate. Services are frequently invoked 
synchronously and are expected to return a result as soon as 
possible.  In addition to computational activities, SAS activities 
may last for a long time, supporting human activities or carrying 
out tasks autonomously for years.  Services are frequently 
provided by devices, such as smoke detectors, which run 
asynchronously once started and communicate when necessary. 

Activity-oriented computing (AoC) targets supporting lasting 
human activities in pervasive computing environments [13,14].  
AoC shares with SASSY the principle that individual users may 
define their own activities, which may then be deployed, 
interrupted, and resumed at will and at run time by leveraging a 
service-oriented infrastructure. 

Existing work in AoC differs from SASSY in two ways.  First, 
it defines no activity design language.  Models of activities are 
captured implicitly and consist of describing a collection of 
applications and files that support an end user in activities such as 
analyzing the results of medical exams and editing documents.  
Second, there is no provision for users to scope service discovery, 
which is implicitly done within the network domain the user is in. 

More broadly, different kinds of service discovery are in use 
today.  A significant number of systems are currently developed 
using mechanisms such as the Web Services Description 
Language (WSDL [15]), or Universal Description, Discovery and 
Integration (UDDI [16]).  These mechanisms support service 
descriptions meant for human eyes to inspect during system 

development, and the decision of which service provider to invoke 
is then set in the code. 

A variety of other mechanisms enable service discovery at run 
time, such as Microsoft's UPnP, IETF's SLP, etc. [2].  Ontology 
plays a key role in matching requests from service consumers with 
announcements from service providers.  However, mechanisms to 
guide discovery at run time according to QoS goals are seldom 
available, and commonly, the decision of how to scope discovery 
geographically is set by some combination of coding and 
administrative network configuration.   

To the authors' best knowledge the work herein is the first to 
promote situated discovery to a first-class construct at the design 
level.  SAS additionally supports QoS-guided discovery at run 
time by associating utility functions with scenarios [4]. 

Multi-design is distinct from self-modifying software.  A self-
modifying program may alter some of its own code, either as a 
result of initialization parameters or upon reaching a certain state, 
usually to improve performance [17]. In contrast, activity schemas 
are not self-modifiable, but they contain rules for modifying the 
run-time organization of the system, i.e. for changing which 
services are marshaled and how they are interconnected. 

Such rules trigger changes to the system design upon observing 
changes in situation, such as user location or the presence of other 
users.  Specifically, when multiple users share a system or parts 
thereof, conflicts may arise as to the intended behaviors, setting of 
properties such as ambient temperature, etc. 

Several communities have contributed bodies of work in 
conflict resolution.  In economics, auctions support a form of ne-
gotiation among multiple parties competing for a limited resource 
[18].  The agents community developed protocols for multi-
attribute negotiation [19], and mechanism design is a subfield of 
game theory that investigates incentive-punishment mechanisms 
for promoting desired behaviors among independent actors [20]. 

To the authors' best knowledge the work herein is the first to 
promote resolution mechanisms to the design level.  This enables 
stakeholders to design their own solutions for resolution, choosing 
among a variety of mechanisms, and changing that choice as 
needed.   This is in contrast with other work where a mechanism 
that promotes a specific model of resolution is chosen and 
imparted in the code.  For example,  current work in context-
aware smart spaces, frequently uses some form of priority schema 
to automatically resolve conflicts among users [21]. 

3. SASSY AND EXTENSIONS 
SAS is a graphical language for modeling activities in terms of 
functional, coordination, and QoS requirements for service-
oriented systems.  A complete description of the baseline SAS, a 
comparison with related languages, and description of tool 
support can be found in [6].  Here we summarize the SAS 
constructs used in this paper and discuss the relation between 
activity schemas and running systems. 

Figure 1 summarizes SAS.  Plain round-corner rectangles refer 
either to sub-activities, for hierarchical decomposition of schemas, 
or to system-supported activities, e.g., delay used for timing. 

Gateways follow the notation used in BPMN: a diamond 
labeled with a + for parallel gateways, and with an o, for inclusive 
gateways.  Parallel gateways relay a message to each outgoing arc 
once all incoming arcs have received a message.  Inclusive 
gateways do so as soon as a message arrives in one incoming arc.  
Gateways may marshal incoming message parameters to outgoing 
message parameters as needed.  Also, sending a message on an 
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outgoing arc may be further constrained by a condition associated 
to the arc, e.g., expressed as a function of message parameters. 

Round corner rectangles with a server icon denote services to 
be discovered: a single box for one service, a stacked box for all 
services of the indicated type that can be discovered.  Messages to 
and from service providers are indicated by white and black 
envelopes, respectively.  When an envelope is next to a set of 
services (stacked box), the notation provider.message is used to 
specify the source/target provider.  Message parameters may be 
shown in parenthesis, when relevant, but the SAS tools support 
editing the definition of a message as needed. 

In the proposed extensions, spaces are defined administratively 
and used as units to manage trust and authorization for accessing 
the services within each space.  Some spaces may be physically 
occupied by users, such as rooms and cars, and may be contained 
in other spaces, e.g., a room within a building.  Spaces may be 
confined to a device, such as a cell phone, which at times acts as a 
user's only computational support.  The constructs shown in the 
figure are explained by example in Section 4. 

The set of activity schemas defined and available to be initiated 
in a space changes as users and their devices come and go.  Users 
initiate and retire activities at will.  For starting an activity, 
SASSY discovers the required services and deploys a service 
coordinator thread which reads the activity schema and performs 
the desired coordination logic. 

While some activities run to completion (computational 
activities typically do), lasting activities such as controlling the 
temperature in a room may last until situational events are 
observed (see example in Figure 6) or the user decides to retire the 
activity (see example in Figure 3). 

Figure 2 informally depicts an example with two spaces: a 
house and an office building.  Two of the currently available 
activity schemas at the house have been deployed, one of which 
marshaled a service at the office (see also Figure 4).  

Traditional notions of software evolution and adaptation fail to 
capture the highly dynamic relation between activity schemas and 
running systems in open, pervasive computing spaces. The design 
of a situated system, i.e., which components it includes and how 
they are interconnected, changes with the activities that multiple 
users bring to the space and decide to initiate, thus adding features 
and behaviors to the running system.  We call this multi-design. 

4. SITUATED DISCOVERY 
In situated systems, service discovery must itself become situated. 
Because the components of a situated system interact with their 
physical surroundings, it matters where those components are 
deployed: traditional situated systems are often embedded in a 
target device, such as a phone or a medicine cabinet [8,22].  This 
is in contrast with web-based systems, in which services may run 
anywhere on the network as long as functional and quality 
requirements are met. 

The tenets of situated discovery are that: (a) situated services 
are aware of, and announce their location, and (b) service requests 
are scoped to a geographic area.  We distinguish two kinds of 
scoping for situated discovery: one in the vicinity of a mobile 
entity, such as a person or device; the other within fixed spaces, 
such as rooms, buildings, and streets. 

Figure 3 shows an example activity schema where discovery is 
scoped to the vicinity of a user.  All services shown on top of the 
rounded shaded area are to be discovered within a radius of the 
location indicated in the area's label, which is of the form: name @ 
radius * location, to be read, name at radius around location. 

Sensing the location of users may be implemented by a variety 
of mechanisms based either on following proxy devices such as 
cell phones, or on mechanisms embedded on spaces such as face 
recognition and id card readers, and which may be combined for 
better accuracy [23].  At the design level, the location of entities  
known to a system is referred to in the form entityId.location. 

The stacked service boxes for c:restCoupon in the figure 
indicates that all service instances of type restCoupon within the 
specified vicinity are to be marshaled into the system.  As with 
regular discovery, this could be guided by additional constraints 
on properties and quality of the services. 

Because the discovery of such instances may occur at any time 
while Fred moves around, the design captures a notification issued 
by the discovery infrastructure (not by the provider) for each 
service that comes in range: notifyDiscovery.  The notification 
includes the identity of the discovered service, which can be used 
to direct subsequent calls, as in the example. 

This example illustrates how activity schemas can situate the 
discovery of services in the vicinity of a mobile user, and also 
capture at the design level how to react to the dynamic discovery 
of new services that come into range. 

To illustrate scoping discovery to spaces, consider the example 
of an alarm system at Fred's home.  When motion detectors are 
triggered, Fred receives a phone call at the location he currently 
is, which may be directed to his cell phone if he happens to be 
carrying it.  Fred may press keys on the phone to interact with the 
system; for example, to ask video to be streamed to a screen in 
that same space, or to indicate a false alarm.  Video capture 
follows the possible intruder by activating a camera in the vicinity 
of the latest motion detector to be triggered.  If Fred cannot be 

 

Figure 1. Baseline syntax of SAS, on the left, and 
proposed extensions, on the right. 

s: type 

act 

o 

+ 

{c1} 
{c2} 

local activity 

one s to be discovered 

message towards provider 
message from provider 

{c1} 
{c2} 

s: type all s's that can  be 
discovered 

discovery in 
a vicinity 

discovery within 
a space 

scope 

scope 

inclusive gateway 

parallel gateway enter leave 

start/end when 
user enters/leaves 

a space 

 c:restCoupon 

Figure 3.  Example of vicinity discovery: Fred receives an 
SMS for each restaurant coupon found within 500 meters of 

Fred's location, possibly while he walks around the city. 

p:phone notifyDiscovery(c) 

couponInfo 
c.getDetails 

findLunch @ 0.5km * Fred.location 

SMS 

_ @ myCell 

Figure 2. Relation between activity schemas and systems. 

... 

run-time 
view 

SASSY infrastructure 

... 
SASSY infrastructure 

... ... 
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reached within a set time, a call to 911 is automatically placed. 
Figure 4 shows the corresponding activity schema.  All services 

on top of a shaded rectangle are to be discovered within the space 
indicated on the rectangle's label.  The rectangle on the left refers 
to the part of the system deployed at Fred's home.  Fixed locations 
are named using a notation with support for aliasing similar to 
URLs on the internet.  For example, fairfax.va.us/22030/university-
drive/4400 represents the same space as gmu.edu. 

The rectangle on the right refers to the space Fred happens to 
be in.  This is indicated by a label of the form name # entity @ 
possibleSpace, to be read, name for entity at possibleLocation. The 
entity's location is tracked as for vicinity discovery and matched 
for containment in possibleSpace.  When the entity enters a 
matching space an enter event is issued, and conversely, upon 
leaving the space, a leave event is issued.  

In this example, Fred.location is tracked and matched against the 
alias trustedSpaces, which refers to a list of spaces defined by Fred, 
such as his office, or a virtual "space" defined by a device such as 
his laptop or cell phone.  The most likely space, physical or 
virtual, Fred is actually in is judged by the location mechanisms 
for determining Fred.location [23]. 

As before, the stacked boxes for d:motionDetector refer to all 
services of that type discovered within Fred's home.  Whenever 
one of those services, d, issues a motion detected message, d.location 
is used to scope the discovery of a camera within 10 ft. 

The {n:1} label on the incoming arc to the parallel gateway 
prevents each subsequent d.motion from initiating an extra phone 
call.  Also, the {1:n} label associated with the screen discovery and 
Fred's consent enables the redirection of video streaming from 
new cameras following each activated detector. 

This example illustrates the discovery of services within spaces, 
both at a fixed location and at a location identified by the presence 
of an entity of interest, such as a user.  The example introduces 
the enter and leave events, which signal the presence of entities in 
spaces, and here these events are used to enable the part of the 
system for alerting Fred.  As in the previous example, this one 
also illustrates vicinity discovery, this time following the location 
of varying entities: the newly triggered motion detectors. 

5. MULTI-DESIGN 
The fundamental tenet of multi-design is that the design of a 
situated system depends on which users are present, and on the 
intent of those users.  In other words, the function and design of a 

system may change at run time, as multiple users come and go 
bringing their intentions and expectations.  This is in contrast with 
traditional software systems, where there is a clear demarcation 
between design and run time, and often a complex, human labor-
intense process to deploy a system. 

Different users think and act independently and frequently 
approach a situated system with different intentions and 
preferences.  For example, when sharing a car, some users may 
prefer to enjoy the landscape while others prefer to minimize the 
duration of the trip.  As another example, when two users 
exchange a large volume of data in real time, one user may prefer 
to make communication secure while the other may be in a rush 
and unwilling to bear the overhead of encryption. 

Differences such as these need to be resolved during the self-
configuration of a situated system serving multiple users. In the 
remainder of this section, we discuss different kinds of resolution. 

5.1 Resolving Features 
Each user may expect a different set of features or activities to be 
automatically carried out by a situated system.  For example, 
suppose that Bob installed a smart power meter at his home which 
issues pricing signals reflecting the load on the power grid [24].  
Because the clothes dryer is a heavy energy consumer, Bob would 
like it to suspend drying during high rates and to resume only 
when night rates are in effect.  However, Bob’s wife Mary would 
like to have her clothes dry regardless of such issues. 

Figure 5 shows the activity schema for saving energy defined 
by Bob.  The activity starts when Bob enters the laundry room, 
and then the dryer receives suspend and resume messages 
corresponding to the rates announced by the smart meter.  The 
activity finishes once the drying cycle is done or if Bob leaves the 
laundry room without having started the dryer. 

 

Figure 4. Fred's home surveillance system is a distributed system that includes services at Fred's home and at whichever 
location Fred happens to be, among a defined set of trusted locations.  Fred entering and leaving one such location has no 

computational effect other than establishing the scope of service discovery for alerting purposes. 

s:screen 
notifyDiscovery(s) 

stream(s) 
c:camera 

p2:phone 

p1:phone 

delay 

+ 

o 

o 

d.motion 

+ 

issueCall(911,intrusionMsg2) 

receiveCall(intrusionMsg1) 

stop + 
keyPress(2) 

keyPress(9) 

keyPress(5) 

m ok 
{m && !ok} 

video @ 10ft * d.location 

surveillance @ Fred.org/home alert # Fred @ trustedSpaces 

enter leave 

accept(c) 

{n:1} + 
{1:n} 

d:motionDetector 
+ 

 

Figure 5.  Saving energy at Bob's house: an example of 
activating a system feature depending on who is present. 

started 

peak 

saveEnergy # Bob @ Bob.org/home 

d:Dryer 
m:smartMeter enter o 

day 

night 
{leave && 
!started} 

done suspend 

resume 

@ ../laundry 
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This activity, and the interconnections between the smart meter 
and the dryer that support it, only take place when it is Bob who is 
present in the laundry room.  Should Mary agree to have this 
feature activated for her as well, Bob could add Mary to the label 
of the schema: saveEnergy # Bob, Mary @ etc., or Mary could have 
her own activity schema reflecting her preferences; for example, 
interrupting the dryer only when peak rates are in effect. 

The activity schema in Figure 5 clearly reflects at the design 
level the relationship between a user, a situation, and an expected 
feature in that situation.  Such activity schemas are used by a 
situated system to determine the required design, i.e. which 
services to marshal and how to interconnect those services, 
depending on which users are present. 

5.2 Resolving Values 
An important kind of services is characterized by a value, or 
values desired by users.  For example, the channel on a radio or 
TV, the sound volume on the same, the level of lighting in a room, 
or the temperature set for heating and air conditioning. 

Multiple users may intentionally share a service of that kind, or 
sharing may be incidental by virtue of being present at the same 
space.  In such cases, the situated system can do a better job at 
serving the users, first, if their preferences are known, and second, 
if the differences among such preferences can be resolved in a 
way perceived as fair by the users. 

The ability to automatically take into account the preferences of 
individual users present at a space represents a significant 
improvement over current practice.  Today, building automation 
systems adopt one-size-fits-all settings, typically based on a 
standard work schedule and oblivious of which spaces are actually 
occupied, let alone of the preferences of different occupants. 

Figure 6 shows an example concerning the temperature setting 
for heating systems in spaces such as rooms and vehicles.  Users 
express their preferences by creating activity schemas that 
discover the thermostat for the space and, upon detecting the user 
entering the space, set the thermostat for the preferred 
temperature.  Parts (a) and (b) show examples of such schemas 
created by Bob, who prefers 72º Fahrenheit, and by Fred, who 
prefers 68.  Both users made their schemas unconstrained as far as 
location by labeling the location with the keyword anywhere.   

Bob’s schema reflects his concern to reset the thermostat back 
to the default temperature once he leaves the space, while Fred 
was not sure what to do, since there might be other people left in 
the room, so he did not specify an action for when leaving. 

Part (c) of the figure shows the activity schema created by the 
stakeholders at a specific space, the eng building at gmu.edu in this 
example, for regulating the access to the thermostat service.  Here, 
the communication between any activity and the thermostat goes 
through a value resolver that enforces a least misery (LM) policy.  
This resolver outputs the average of the current requests, or a 
default value set by the stakeholders when no requests are 
outstanding.  This activity schema accommodates any activity that 
issues setT messages to a thermostat and that detects and is willing 
to communicate when the user leaves the space. 

The resolution process supported by SASSY includes reconcil-
ing activity schemas such as the ones in Figure 6.  Reconciliation 
may include interaction with users for confirming their 
willingness to have their activity schemas adjusted for compatibil-
ity.  For example, Fred would be asked to consent to have his 
leaving (indirectly) known to the thermostat, while Bob would be 
asked to have the default message redirected to a different message 
targeted at the thermostat (a setT issued by the resolver).  To avoid 
the repetition of such interactions at each space, users may 
annotate their schemas for consenting to any adjustments during 
reconciliation of the interactions with thermostats. 

Part (d) of Figure 6 shows the general form of a value resolver.  
The resolver is annotated with a policy for accessing the service 
downstream, labeled by a lock, and with a resolution mechanism, 
labeled R.  The access policies currently supported are P, for 
pseudonym, and A, for authorized access only.  In the later case, 
user identities need to be registered beforehand with an access 
control mechanism to which the resolver initialization refers. 

The two input messages ask (for a value V) and rem include an 
identification of the issuing user, U, to help maintain the 
correspondence between each request and withdrawal, to enable 
access control, and to enable some of the resolution mechanisms. 

The value resolution mechanisms currently supported are least 
misery (LM), priority (Pr), majority (Maj), frequent users (Freq), and 
infrequent users (Infreq).  Priority requires the resolver to refer to a 
classification of user priorities, i.e. to prior knowledge of user 
identities similarly to an access control mechanism. Majority 
takes the mode of the requests, adopting a tie-break policy 
initialized in the resolver, such as highest value, average, etc.  
Both Freq and Infreq keep statistical tallies of user requests, Freq 
giving precedence to the requests of frequent users, similarly to a 
frequent customer program, and Infreq giving precedence to 
infrequent users, similarly to the notion of fairness adopted in 
round-robin mechanisms.  The stakeholders of the space may 

resolveTemperature @ gmu.edu/eng 

 

Figure 6. Example of how different designs concerning the usage of a shared physical service can be reconciled. 
In this example, reconciliation concerns the value to be set on the service. 

t:thermostat 

enter leave setT(72) 

default 

t:thermostat 

leave setT(68) 

t:thermostat 
setT 

any 
setT 

leave 

ask 

rem P       LM 
      R 

set(value) 

ask(U,V) 

rem(U) ...       ... 
      R 

(c) Schema made by the stakeholders at a specific space (a) Schema made by Bob 

(b) Schema made by Fred 
(d) Value resolver. Possible values for the access are P and A; 

possible values for resolution are LM, Pr, Maj, Freq, and Infreq 

myHeating # Fred @ anywhere 

heating # Bob @ anywhere 

enter 
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choose  the value resolution they deem appropriate and fair.  
This example demonstrates how activity schemas can capture 

(a) user preferences with respect to setting values in situated 
services, and (b) the design of mechanisms to resolve differences 
in such preferences. It also illustrates how small variations in the 
interactions with such services can be reconciled dynamically.  

5.3  Resolving Architectural Patterns 
In addition to the functional aspects described so far in activity 
schemas, quality of service (QoS) plays a key role in distributed 
systems with constrained resources, as it is often the case in 
situated systems.  For example, a service that would be a perfect 
fit from a functional standpoint may be deemed unacceptable by 
users due to low computing power, small screen, low battery, poor 
connectivity, etc.  

SASSY optimizes QoS by automatically generating a number 
of candidate patterns for replacing what functionally constitutes 
each single service, and by choosing the pattern that best serves 
user defined QoS goals [4,25].  For example, for promoting 
availability, a service may be replaced by a redundancy pattern.  
Such goals are defined at the design level by highlighting paths of 
interest, so called Service Sequence Scenarios (SSSs), in an 
activity schema and annotating those with utility functions for the 
QoS aspects considered relevant by users. 

What is new in multi-design is that each end user is enabled to 
associate personalized QoS goals for the same situated system, 
which is then reconfigured dynamically depending on which users 
are present.  This is in contrast with current practices of software 
design, where it is assumed that stakeholders come to agree on the 
QoS goals for a system before deployment. 

As a simple example, suppose that two users Bob and Fred 
work in shifts at an outdoors facility, such as a harbor or power 
plant.  Their job includes carrying a wearable computer with a 
speech frontend to help them diagnose situations and create work 
logs.  The schema for their activity includes several distributed 
services, such as a domain-specific database running on the 
company server, and a speech recognition service running on the 
wearable. 

Aware that speech recognition is computationally intense, Bob 
is willing to articulate more clearly, disambiguating among 
candidate transcriptions if necessary, for the tradeoff of longer 
battery life and more computing cycles available for other tasks.  
For that he defined an SSS that includes the recognition service, 
Figure 7(a), and using interfaces such as in [26] he specified 
utility functions reflecting his preference.  Fred also defined an 
SSS for the activity schema he shares with his coworker Bob, but 
instead he prefers to have high recognition accuracy despite the 
draw on computing resources. 

The self-architecting algorithms in SASSY produce and deploy 
the design in Figure 7(b) whenever Bob dons the wearable, and 
the design in Figure 7(c) whenever it is Fred donning it. 

This example illustrates how personalized QoS annotations in 
SSSs support system redesign at run time to optimally match the 
expectations of the user who is present at each given time.  This is 
in contrast with current practice.  Today, users need to agree on a 
common ground for QoS constraints, which then is used to guide 
self-architecting and deployment of the system. 

6. DISCUSSION 
A question not addressed in this paper is how to reconcile QoS 
goals when multiple users are present simultaneously.  Referring 
to the last example in the previous section, what should happen if 
Bob and Fred share the equipment while working as a team? 

Ongoing work investigates design notations for specifying the 
resolution of QoS goals following similar principles to the 
notation for resolving values, discussed in Section 5.2. 

A different and harder problem concerns general mechanisms 
to reconcile desired features.  The example in Section 5.1 
illustrates features being added and shed from a situated system 
depending on which user is present.  But what should happen 
when two users who disagree are present?  Furthermore, how to 
recognize a disagreement in the first place?  For example, if Fred's 
schema sends an output of service A to an input in B, and Bob's 
schema sends that same output to service C, do they disagree?  Or 
should the output be sent to both service B and C?  

Current software design notations include only positive 
statements, making it very hard to detect conflicts of desired 
features.  Future work includes investigating notations for 
expressing undesirable features, which would make it possible to 
detect, as a pre-requisite to resolve, conflicts at the feature level.  
An important challenge for such extensions is making them both 
effective and usable by stakeholders and domain experts.  

How to guarantee the scalability, security and privacy of 
service discovery is not specific to the proposed extensions, nor to 
SASSY, but a general engineering challenge for service discovery 
at run time.  A promising approach is to combine results in the 
trust management body of work [27] with mechanisms similar to 
internet's Domain Naming System (DNS) for facilitating the 
interoperation of discovery mechanisms in different spaces. 

7. CONCLUSION 
The emergence of contemporary computing environments, such as 
smart spaces and pervasive systems, calls for rethinking the way 
software systems are currently designed, composed, and deployed. 
Many traditional principles and practices employed by the 
software engineering community are not applicable in this setting. 

For example, location transparency, a common technique used 
to address the complexity of engineering distributed systems, is 
not a viable option in such setting.  Moreover, establishing user 
requirements prior to system deployment is often not feasible, 
given that the users of such systems are often not known at design 
time, and if they are, their requirements may change at run time.   

Figure 7. Example of the effects of QoS preferences by different users in self-architecting and the resulting system design. 
In this example, Bob prefers low overhead at the expense of accuracy, resulting in a single service call; while Fred prefers 

accurate recognition, resulting in a system that combines the results of several recognition algorithms run in parallel. 
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In this paper, we presented an approach that targets the 
aforementioned difficulties, and forms the centerpiece of SASSY. 
SASSY automates the composition and adaptation of service-
oriented software systems. Through the use of an activity 
modeling language, the users specify functional, QoS, and spatial 
requirements of a situated software system.  These requirements 
enable situated discovery of services, in which services are aware 
of, and announce their location, and service requests are scoped to 
a geographic area. The spatial requirements and situated discovery 
are in turn used by SASSY to automatically resolve conflicting 
preferences among the users of the system.  

The traditional methods of engineering multi-user pervasive 
systems often force the users to make undesirable compromises, 
and arrive at a common, and often restrictive, set of requirements. 

The work in this paper brings a paradigm shift. Not only it 
allows users to express and change their requirements at run-time, 
but it also exploits run-time properties of the system (e.g., location 
of users and services) to automatically resolve conflicting 
requirements.  As a result, SASSY resolves conflicts in a more 
refined manner.  Instead of enforcing an overly constrained set of 
requirements on the system (i.e., common denominator of all the 
users’ preferences), it resolves them on a case-by-case basis and 
through the most effective means.  We believe our approach also 
provides a more natural separation of humans’ responsibilities: 
engineers develop services, ontologies, and infrastructure 
capabilities, while stakeholders specify system requirements in a 
more flexible and fluid fashion.  

Avenues of future work include complementing our approach 
by incorporating temporal properties. This would allow us to 
resolve service providers not only based on the location of a user, 
but also based on the time of day, or potentially both. Our ongoing 
work also involves the development of the required monitoring 
facilities for enabling situated discovery in smart spaces, as well 
as a detailed empirical evaluation of the overhead and scalability 
of the approach in real-world situated systems. 
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