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ABSTRACT 

Self-adaptive software systems are capable of adjusting their 
behavior at run-time to achieve certain objectives. Such systems 
typically employ analytical models specified at design-time to 
assess their characteristics at run-time and make the appropriate 
adaptation decisions. However, prior to system’s deployment, 
engineers often cannot foresee the changes in the environment, 
requirements, and system’s operational profile.  Therefore, any 
analytical model used in this setting relies on underlying 
assumptions that if not held at run-time make the analysis and 
hence the adaptation decisions inaccurate. We present and 
evaluate FeatUre-oriented Self-adaptatION (FUSION) 
framework, which aims to solve this problem by learning the 
impact of adaptation decisions on the system’s goals. The 
framework (1) allows for automatic online fine-tuning of the 
adaptation logic to unanticipated conditions, (2) reduces the 
upfront effort required for building such systems, and (3) makes 
the run-time analysis of such systems very efficient.    

Categories and Subject Descriptors 

D.2.10 [Software Engineering]: Design – Methodologies.  

General Terms 

Algorithms, Performance, Design. 

Keywords 

Self-Adaptation, Feature-Orientation, QoS Analysis, Learning. 

1. INTRODUCTION 
The ever-growing complexity of software systems coupled with 
the need to maintain their quality of service (QoS) characteristics, 
even under adverse conditions and highly uncertain environments, 
have instigated the emergence of self-adaptive software systems 
[13]. A self-adaptive software system is capable of modifying 
itself at run-time to achieve certain functional or QoS goals. The 
development of such systems has shown to be significantly more 
challenging than static and predictable software systems [2]. 

In particular, engineering the adaptation logic poses the greatest 
difficult. Since software engineers often cannot foresee all of the 
changes in the environment, requirements, and system’s 
operational profile at design-time, they rely on analytical models 

that given the monitoring data obtained at run-time assess the 
system’s ability to satisfy its goals. The results produced by the 
analytical models thus serve as indicators for making the 
adaptation decisions.  

Generally, this approach suffers from three shortcomings:  

• Unwieldy for use. Existing state of the art self-adaptive 
frameworks require the engineer to construct and utilize 
complex analytical models. Unfortunately, the majority of 
widely used analytical models (e.g., Queueing Network 
models [8] for performance analysis) have to painstakingly be 
customized to the unique characteristics of an application 
domain.  Moreover, for any application-specific goal, an 
appropriate analytical model would have to be developed from 
scratch; a task that is often very difficult, when one considers 
the complexity of today’s software systems. Further 
exacerbating the problem is that software engineering 
practitioners are typically not savvy mathematicians and find 
it difficult to build systems that make use of such models. 

• Wrong assumptions. Analytical models make simplifying 
assumptions or presume certain properties of the running 
system that may not bear out in practice. These models are 
specified at design-time and cannot cope with the run-time 
changes that were not accounted for in their formulation. 
These assumptions could make the analysis and hence the 
adaptation decisions inaccurate. 

• Efficiency. Efficiency of analysis and planning is of utmost 
importance in most self-adaptive software systems that need to 
react quickly to situations that arise at run-time. At the same 
time, searching for an optimal architectural configuration (i.e., 
solution) is often computationally very expensive [2]. 

In this paper, we present an alternative and relatively unexplored 
method of constructing self-adaptive software systems aimed at 
alleviating the three problems mentioned above. Instead of 
manually developing an analytical model that relates the impact of 
adaptation decisions on the system’s goals, we present a learning-
based approach in which such a model is automatically induced 
from the monitored data. The approach not only allows for 
automatic online fine-tuning of the adaptation logic to 
unanticipated conditions, but also reduces the upfront effort 
required for building such systems. 

We describe this research in the context of a framework, entitled 
FeatUre-oriented Self-adaptatION (FUSION), which by using a 
feature-oriented system model learns the impact of feature 
selection and feature interactions on the system’s competing 
(conflicting) goals. It then uses this knowledge to efficiently adapt 
the system to satisfy as many user-defined goals as possible.  

In this paper, we elaborate on three key contributions of FUSION:  
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• FUSION adapts and learns in 
terms of features. A feature is a 
domain and platform independent 
method of representing a 
particular system capability 
[7,12]. This along with the fact 
that FUSION does not prescribe a 
particular analytical model makes 
the approach applicable to any 
software system with minimal 
effort. 

• FUSION copes with the changing 
dynamics of the system, even 
those that were not anticipated, 
through continuous observation 
and induction. In turn, FUSION is 
capable of learning run-time 
behaviors unforeseen at design-
time. 

• FUSION incorporates the 
engineer’s knowledge of the 
system and its capabilities in the 
form of feature relationships. It 
then uses these relationships to 
reduce the valid configuration space significantly, which 
makes not only the learning feasible but also the adaptation 
planning efficient for use at run-time. 

The rest of this paper is organized as follows. Section  2 motivates 
the problem using a system that also serves as a running example 
in this paper. Section  3 provides an overview of FUSION. 
Sections  4,  5, and  6 respectively detail FUSION’s feature-oriented 
model of adaptation, learning method, and adaptation planning. 
Sections  7 and  8 present the implementation and evaluation 
details of FUSION. The paper concludes with an overview of the 
related work and future avenues of research. 

2. MOTIVATION 
We illustrate and evaluate the concepts using an online Travel 
Reservation System (TRS), which is representative of web 
applications used by large organizations for making travel 
reservations. Figure 1c shows a subset of its software architecture 
using the traditional component-and-connector view. TRS aims to 
provide the best airline ticket prices in the market. To make a 
price quote for the user, TRS takes the trip information from the 
user, and consequently discovers and queries various travel agent 
services. The travel agents reply with their itinerary offers, which 
are then sorted and presented in ascending order of quoted price.  

In addition to the functional goals, the system is required to attain 
a number of QoS goals, such as performance, security, and 
accountability. To that end, solutions for each QoS concern were 
developed, e.g., caching for performance, authentication for 
security, and logging of activities for accountability purposes. 

In addition, TRS needs to be self-adaptive to deal with unexpected 
situations, such as traffic spikes or security attacks. For instance, 
enable caching to improve performance during a traffic spike, 
increase authentication to thwart a security attack, and enable 
logging to ensure non-repudiation of transactions (i.e., 
accountability). The adaptation logic of TRS also needs to balance 
tradeoffs (conflicts) when it selects from the available adaptation 
choices, e.g., improving security may degrade response time.  

As mentioned earlier, there are three problems associated with the 
construction of adaptation logic. Consider the issues that may 
arise in the context of TRS: 

• Unwieldy for use. Consider the difficulty of accurately 
estimating the impact of enabling a particular type of 
authentication on the price quotes in TRS. Using a heavy 
authentication protocol increases the system’s response time, 
which forces more timeouts on the client-side. This reduces 
the total number of received offers, and hence the quality of 
price quotes. Quantitatively modeling this trade-off is 
difficult, as it depends on many dynamic parameters: available 
service providers, network characteristics, and so on.  

• Wrong assumptions. Consider an analytical model that 
quantifies the impact of an adaptation decision on the response 
time of receiving price quotes from travel agents (thick lines 
in Figure 1c). Such a model would inevitably make 
simplifying assumptions based on what the engineers believe 
to be the main sources of delay in the system. For instance, if 
fast communication links are assumed, the analytical model 
may ignore the network delay. Since accurately predicting the 
characteristics of a dynamic system is extremely difficult, the 
assumptions may not hold, making the analysis and hence the 
adaptation decisions inaccurate.    

• Efficiency. To satisfy multiple goals, self-adaptation logic 
needs to search in a configuration space that is equivalent to 
the combined complexity of all the analytical models 
involved. As an example, consider how TRS would make use 
of P authentication components for authenticating the network 
traffic between its N software components, which may be 
deployed on M different hardware platforms. Analyzing the 
impact of authentication alone on the system’s goals would 
require exploring a space of (MN possible deployments)P possible 

ways of authentication = MNP possible configurations. Such a 
problem is computationally expensive to solve at run-time for 
any sizable system. This is while authentication may be only 
one concern out of many. 

 

Figure 1. Travel Reservation System: (a) goals are quantified in terms of utility obtained 

for a given level of metric; (b) subset of available features, where features with thick 

borders are selected; (c) software architecture corresponding to the selected features, 

where the thick lines represent an execution scenario associated with goal G1. 



The aforementioned difficulties have shaped our motivation in the 
development of the FUSION framework, as described next. 

3. FUSION OVERVIEW 
Figure 2 depicts the FUSION framework as it adapts a running 
software system. The running system is variable in the sense that 
its features can be selected (i.e., enabled/disabled) on demand. 
FUSION modifies the feature selection to resolve QoS tradeoffs 
and satisfy as many goals as possible. For example, if the TRS 
system violates Quote Response Time goal, it is adapted to a new 
feature selection that brings down the response time and keeps 
other goals satisfied. 

As depicted in Figure 2, FUSION makes such adaptation 
decisions using a continuous loop, called adaptation cycle. The 
adaptation cycle collects metrics (measurements) and optimizes 
the system by executing three activities in the following sequence: 

• Based on the metrics collected from the running system, 
Detect calculates the achieved utility (i.e., measure of user’s 
satisfaction) to determine if a goal violation has occurred.  

• When a goal is violated, Plan searches for an optimal 
configuration (feature selection) that maximizes overall utility. 

• Given a new feature selection, Effect determines a set of 
adaptation steps (i.e., enable/disable features) to ensure 
consistency during adaptation. 

FUSION uses learning cycle (depicted in Figure 2) to learn the 
impact of adaptation decisions in terms of feature selection on the 
system’s goals. The first execution of learning cycle occurs before 
the system’s initial deployment. The system is either simulated or 
executed in offline mode and metrics corresponding to each 
feature selection is collected. This data is used to train FUSION to 
induce a preliminary model of the system’s behavior.  

At run-time, the learning cycle continuously executes, and as the 
dynamics of the system and its environment change, the 
framework tunes itself. For example, when FUSION adapts TRS 
to resolve a “quote response time” violation, it keeps track of the 
gap between the expected and the actual outcome of the 
adaptation. This gap is an indicator of the new behavioral patterns 
in the system. Learning cycle collects such indicators and tunes 
itself by executing two activities in the following sequence: 

• Based on the measurements collected from the system, 
Observe detects any emerging patterns of behavior. An 
emergent pattern is detected when the system sets the wrong 
expectation (i.e., inaccurate impact of adaptation on utility). 

• Induce learns the new behavior through induction and stores 
the refined model in the knowledge base, which is used to 
make (more) informed adaptation decisions in future cycles.  

In the following three sections, we describe FUSION’s underlying 
model, learning cycle, and adaptation cycle in more detail. 

4. FUSION MODEL 
We describe FUSION’s approach to modeling adaptation choices 

and goals. As detailed in Sections  5 and  6, FUSION’s model is the 

key enabler of effective learning and efficient analysis.  

4.1 Feature-Based Adaptation 
In FUSION, the unit of adaptation is a feature. A feature is an 
abstraction of a capability provided by the system. A feature may 
affect either the system’s functional (e.g., ability to print receipts) 
or non-functional (e.g., ability to authenticate) properties. 

The use of features as an abstraction makes the FUSION 
framework independent of a particular implementation platform 
or application domain. For example, in a rule-based system a 
feature may correspond to a set of rules, in a service-oriented 
system it may correspond to a set of services in a workflow, and 
so on. For clarity, in this paper we assume a particular realization 
of a feature: a feature represents an extension of the architecture at 
well-defined variation points. A feature maps to a subset of the 
system’s software architecture. For example, Figure 1b shows the 
mapping of Evidence Generation feature to a subset of the TRS.  

Figure 1b shows a simple feature model for TRS. There are four 
features in the system and one common core. The features in the 
example use two kinds of relationships: dependency, and mutual 
exclusion. The dependency relationship indicates that a feature 
requires the presence of another feature. For example, enabling 
the Evidence Generation feature requires having the core feature 
enabled as well. Mutual exclusion is another relationship, which 
implies that if one of the features in a mutual group is enabled, the 
others must be disabled. For example, Per-Request Authentication 
and Per-Session Authentication cannot be enabled at the same 
time. Feature modeling supports several other types of inter-
feature relationships (see [7]) that for brevity are not detailed here. 

The feature model is used to identify the current system 
configuration in terms of a feature selection string. In a feature 
selection string, enabled features are set to “1”; disabled features 
are set to “0”. For example, one possible configuration of TRS 
would be “1101”, which means that all features from Figure 1b 
are enabled except Per-Request Authentication. The adaptation of 
a system is modeled as a transition from one feature selection 

string to another, which we detail in Section  6.3.  

4.2 Goals 
A goal represents the user’s functional or QoS objectives for a 
particular execution scenario. A goal consists of a metric and a 
utility. A metric is a measurable quantity (e.g., response time) that 
can be obtained from a running system. A utility function is used 
to express the user’s preferences (satisfaction) for achieving a 
particular metric. For instance, goal G1 in Figure 1a specifies the 
user’s degree of satisfaction (U) with achieving a specific value of 
Quote Response Time (M).  

 

Figure 2. Overview of the FUSION framework. 



Elicitation of user’s preferences, while an important prerequisite 
for using the framework, is a topic that has been investigated 
extensively in the existing literature (e.g., [17]), and considered to 
be outside the focus of this paper. FUSION is independent of the 
type of utility functions and the approach employed in 
extrapolating them. Arguably any user can specify hard 
constraints, which can be trivially modeled as step-functions (e.g., 
G4 depicted in Figure 1a). Alternatively a utility function may 
take on more advanced forms (e.g., sigmoid curve), and express 
more complex preferences, such as G1, G2, and G3.  

FUSION places one constraint on the range of utility functions: 
they need to return zero for the metric values that are not 

acceptable to the user.  As will be discussed in Section  6.1, when 

a utility associated with a goal reaches zero, FUSION considers 
that goal violated and initiates adaptation. 

5. FUSION LEARNING CYCLE 
FUSION copes with the changing dynamics of the system through 
learning. Learning discovers relationships between features and 
metrics. Each relationship is represented as a function that 
quantifies the impact of features, including their interactions, on a 
metric. In TRS, for example, the result of learning would be four 
functions, one function for each of the four metrics MG1 through 
MG4. Each function takes a feature selection as input and produces 
an estimated gain/loss value for the metric as output. 

Learning is typically a very computationally intensive process. In 
particular, learning simply at the architectural-level is infeasible 
for any sizable system, which is the reason why its application in 
existing architecture-based adaptation approaches has been 
limited. FUSION’s feature-oriented model offers two 
opportunities for tackling the complexity of learning: 

1.  Learning operates on feature selection space, which is 
significantly smaller than the traditional architectural-level 
configuration space. The features in FUSION encode the 
engineer’s domain knowledge of the practical variation 
points in a given application. For instance, the engineer may 
only consider a small reasonable subset of MNP authentication 

driven architectural choices (recall Section  2). Figure 1b 

shows two authentication strategies modeled as features in 
TRS: F3 and F4. These two features represent what the TRS 
security engineer envisioned to be the reasonable 
applications of authentication in the system.  

2.  By using the inter-feature relationships (e.g., mutual 
exclusions, dependencies), one can significantly reduce the 
feature selection space. For instance, Figure 1b shows a 
mutual exclusion relationship between F3 and F4. This 
relationship is manifestation of the domain knowledge that 
applying two authentication protocols to the same execution 
scenario is not appropriate. Such relationships reduce the 

space of valid feature selections significantly, further aiding 
FUSION to learn their trade-offs with respect to goals.  

Figure 3 is an algorithm that determines the size of the valid 
feature selection space in a feature model recursively. Applying 
this algorithm to the feature model in Figure 1b yields a space of 8 
valid feature selections, calculated as follows:  
2 from F1 × 2 from F2 × (2 from F3 + 2 from F4 – 2). 
Without considering the inter-feature relationships to prune the 
invalid selections, the space of feature selection would have been 
2number of features = 24 = 16. 

Learning starts with a training process that populates FUSION’s 
knowledge base with an initial set of functions. Consequently, at 
run-time, the learning cycle fine-tunes the functions to 
accommodate emergent behaviors. The rest of this section 
describes the two activities that take place to populate and fine-
tune the knowledge base. 

5.1 Observe 
Observe is a continuous execution of two activities: (1) normalize 
raw metric values to make them suitable for learning, and (2) test 
the accuracy of learned functions. We describe each of these 
activities below. 

Learning in terms of raw data hampers the accuracy. For instance, 
consider the fact that the actual impact of a feature on a metric 
may depend on the system’s workload. Therefore, the actual 
metric data obtained from executing the same software system 
(i.e., same feature selection) under different workloads may result 
in starkly different metric readings, thus making it difficult to 
generalize in the form of a learned function.  

To address this issue, Observe takes raw metric data through an 
automated normalization process prior to storing them as 
observation records. Many normalization techniques can be 
applied to transform the learning inputs into a representation that 
is less sensitive to the execution context. In Table 1, observation 
records were normalized using studentized residual [1] as follows: ���� ����	 
 ��/�, where � and � are the mean and the 

standard deviation of the collected data, respectively. 
Normalization using studentized residual does not require 
knowledge of population parameter, such as absolute min-max 
values and population mean. It only requires knowledge of mean 
and standard deviation for sample data. 

Once a preliminary set of functions are learned (details provided 
in the next section), Observe continuously tests the accuracy of 
functions against the latest collected observations. Accuracy is 
defined as the difference between predicted value of a reward 
using the learned functions and actually observed value. For that 
purpose, we use the learning accuracy threshold provided by the 
learning algorithm itself. Note that the majority of learning 
algorithms provide an error threshold that indicates the noise in 
learned functions. On top of this, one may specify an additional 
margin of inaccuracy that can be tolerated, in cases where it is not 
desirable to run the learning algorithm frequently. If the accuracy 
test fails, Observe takes this as an indicator that either learning is 
incomplete or new patterns of behavior are emerging in the 
system and, thus, notifies the Induce activity to fine-tune the 
learned functions using the latest set of observations. 

5.2 Induce 
Based on the collected observations, the Induce activity constructs 
several functions that estimate the impact of making a feature 

SelectionCounter(Feature F) :int 

int Count = 1; 

switch (F.Type) 

case “MutualGroup”:  

for each ( C in F.Children ) 

Count += SelectionCounter(C) - 1; 

case “LeafFeature”:  

Count = 2; 

default:  

for each ( C in F.Children ) 

Count *= SelectionCounter(C); 

Count ++; 

return Count; 

Figure 3. Algorithm for sizing the feature selection space.  



selection on the corresponding metrics. Induce executes two steps. 
The first step is a significance test that determines the features 
with the most significant impact on each metric. This allows us to 
reduce the number of independent variables (recall Table 1) that 
learning needs to consider for each metric. After the significance 
test, we apply the learning, which for each goal, given the 
normalized observations and the features with significance, 
derives the corresponding relationships.  

While FUSION is not tied to a particular learning algorithm, in 
our implementation we have used the M5 model tree (MT) 
algorithm [9], which is a machine learning technique with three 
important properties: (1) ability to eliminate insignificant features 
automatically, (2) fast training and convergence, and (3) efficient 
interaction detection. Table 2 shows the induced relationships 
among features and metrics for TRS.  

The information in this table can also be represented simply as a 
set of functions. For instance, a function estimating ��� 
corresponds to the second column of the table as follows: ���=1.553 F1 
 0.673 F2 + 0.709 F3 + 0.163 F1F3 
 0.843 (1) 

Each feature is assigned a coefficient that is effective only when 
the feature is enabled (i.e., it is set to “1”). For example, the 
expected value of MG1 for a feature selection where only F1 and 
F3 are enabled (“1010”) can be calculated as follows: ���=1.553×1 + 0 + 0.709×1+ 0.163×1×1 
 0.843 = 1.482 (2) 

When making adaptation decisions, values obtained from the 
induced functions (e.g., 1.482 from Eq.  2 above) are 
denormalized by using the inverse of normalization equation 
presented in the previous section. The denormalized value for a 
metric is then plugged into the corresponding utility function to 
determine the impact of feature selection on the goal.   

Note that the induction also captures the impact of feature 
interactions on metrics. For example, Eq. 1 specifies that enabling 
both F1 (Evidence Generation) and F3 (Per-Request 

Authentication) increases ���. This is because according to Table 
2, F1F3 increases the response time by 0.163, which decreases the 
utility of G1 (utility of G1 is shown in Figure 1a). Using Figure 1c 
we can explain this feature interaction as follows. F1 introduces a 
delay by adding a mediator connector, called Log, that records the 
transactions with remote travel agents. At the same time, F3 
changes the behavior of the Log, as it causes an additional delay 
in mediating the exchange of per session authentication 
credentials. Enabling the two features at the same time has a 
negative ramification that is beyond the individual impact of each. 

In some cases, learning may need to incorporate some contextual 
factors as independent variables, due to their impact on metrics. 
Consider a system with drastically different workloads at different 
times of day that cannot be dealt with effectively through 

normalization. In that case, the result of learning would be a set of 
equations that estimate the impact of feature selection in different 
contexts. For example, the following equations estimate the 
impact of feature selection on MG1 under different workloads (w): 

��� � �… � �. ���1 
 �. ���2 � �. ��3 … ,                          �  1.21… � �. !"�1 
 �. �#�2 � �. ��3 … ,            1.21 $ �  1.29… � &. !��1 � &. ##�3 � &. ���1�3 … ,                  � ' 1.29( (3) 

Where w is the average inter-arrival time between requests in 
milliseconds; lower inter-arrival time implies higher workload. 
Here, the generated functions indicate that TRS reaches saturation 
when w is in the range of 1.21–1.29 milliseconds. Since the 
impact of features on MG1 changes dramatically in that range, the 
learning algorithm produces a separate equation targeted at that. 
Although these equations may be of any type (e.g., linear, 
sigmoid, or exponential as in [4]), for clarity we have limited the 
discussion to multi-linear equations only. 

6. FUSION ADAPTATION CYCLE 
In this section, we describe how Detect, Plan and Effect use the 
learned knowledge to adapt a software system in FUSION. The 
underlying principle guiding the adaptation strategy in FUSION is 
simple: if the system works (i.e., satisfies the user), do not change 
it; when it breaks, find the best fix for only the broken part. While 
intuitive, this approach sets FUSION apart from many of the 
existing works that either attempt to continuously optimize the 
entire system, or solely solve the constraints (i.e., violated goals) 
in the system. FUSION adopts a middle ground, which we believe 
to be the most sensible, and achieves the following objectives:  

1.  Reduce Interruption: Adaptation typically interrupts the 
system’s operation (e.g., transient unavailability of certain 
functionality). In turn, even if at run-time a solution with a 
higher utility is found, one may opt not to adapt the system to 
avoid such interruptions. FUSION reduces interruptions by 
adapting the system only when a goal is violated.  

2.  Efficient Analysis: Often in run-time adaptation, the 
performance of analysis is crucial. FUSION uses the learned 
knowledge to scope the analysis to only the parts of the 
system that are affected by the adaptation, hence making it 
significantly more efficient than assessing the entire system. 

3.  Stable Fix: Given the overhead and interruption associated 
with the adaptation, effecting solutions that provide a 
temporary fix are not desirable. We would like FUSION to 
minimize frequent adaptation of the system for the same 
problem. To that end, instead of simply satisfying the 
violated goals, FUSION finds a near optimal solution that is 
less likely to be broken due to fluctuations in the system. 

6.1 Detect 
The adaptation cycle is initiated as soon as Detect determines a 
goal violation. This is achieved by monitoring the utility functions 

Table 2. Learned metric functions. An empty cell means 

that the corresponding feature has no significant impact.  

Significant 

Variables 

Induced Functions 

MG1 MG2 MG3 MG4 .. 

Core - 0.843 - 0.161 1.332 - 0.488 .. 

F1 1.553 1.137   1.548 .. 

F2 - 0.673 - 0.938     .. 

F3 0.709   - 0.672   .. 

F4   - 0.174     .. 

F1F3 0.163       .. 

.. .. .. .. .. .. 

 

Table 1. Normalized observation records 

Indep. Vars Dependent Variables 

F1 F2 F3 F4 MG1 MG2 MG3 MG4 .. 

.. .. .. .. .. .. .. .. .. 

0 0 0 1 - 0.842 - 0.308 1.432 - 0.521 .. 

1 0 0 1 0.650 0.513 1.371 1.501 .. 

0 1 0 1 - 1.470 - 0.719 1.378 - 0.522 .. 

0 0 1 0 - 0.132 -0.103 0.740 - 0.712 .. 

0 0 0 1 - 0.736 - 1.335 1.103 - 0.117 .. 

1 0 1 0 1.574 1.951 0.550 1.566 .. 

1 1 0 1 0.153 0.513 1.090 1.501 .. 

1 1 1 0 0.804 -0.513 0.562 1.566 .. 

.. .. .. .. .. .. .. .. .. 

 



(recall Section  4.2). A utility function serves two purposes in the 

adaptation cycle: (1) when the metric values are unacceptable, 
returns zero to indicate a violated goal, and (2) when the metrics 
satisfy the minimum, returns a positive value less than one to 
indicate the user’s preference for improvement. Therefore, utility 
is not only used to initiate adaptation, but also to perform trade-off 
analysis between competing feature selections, such that an 
optimization of the system can be achieved.  

6.2 Plan 
To achieve the adaptation objectives, FUSION relies on the 
knowledge base to generate a tailored problem: 

• Given a violated goal, we use the knowledge base to eliminate 
all of the features with no significant impact on the goal. We 
call the list of features that may affect a given goal Shared 
Features. Consider a situation in the TRS where G2 is 

violated. By referring to column ��) in Table 2, we can 
eliminate feature F3, since it has no impact on G2’s metric. In 
this example Shared Features = {F1,F2,F4}.  

• Shared Features represent our adaptation parameters. These 
features may also affect other goals, the set of which we call 
the Conflicting Goals. To detect the conflicts, again we use the 
knowledge base, except this time we backtrack the learned 
relationships. For each feature in the Shared Features we find 
the corresponding row in Table 2, and find the other metrics 
that the feature affects. In the above example, we can see that 
features F1, F2, and F4 also affect metrics MG1 and MG4, and 
hence the corresponding goals, G1 and G4.  

By using the knowledge base, FUSION generates an optimization 
problem customized to the running software. The objective is to 
find a selection of Shared Features, F*, that maximizes the 
system’s overall utility for the Conflicting Goals as follows: 

�* � ��+,�-./0123456/5378459: ; <=>=0?@ABCDE7DA= �@3C9 .�=.�:: 
where <= represents the utility function associated with the metric �= for goal g (recall Figure 1a). Since we do not want the solution 

to violate any of the conflicting goals, the problem is subject to: 

F  <=.�=.�:: ' 0>= 0 ?@ABCDE7DA= �@3C9   

Note that we do not need to include the goals that are unaffected 
by Shared Features. To prevent feature selections that violate the 
mutual exclusion, we specify the following constraint: 

>+�H�I 0 J	�K��	 ,HL	�, ;  JE  1>BM0=4@8N   

Here when more than one feature from the same mutually 
exclusive group is selected, the left hand side of the inequality 
brings the total to greater than 1 and violates the constraint. 
Finally, we ensure the dependency relationship as follows: >JE2DC6 0 OP��	L �	�K��	�,  JN345A7 
 JE2DC6 Q 0  

This inequality does not hold if a child (dependent) feature is 
enabled without its parent being enabled. Applying this 
formulation to the TRS scenario in which G2 is violated generates 
the following optimization problem: 

Shared features = {F1, F2, F4} ��+,�-./: <��.���.�:: � <�).��).�:: � <�R.��R.�:: 

Subject to:   <��.���.�:: S <�).��).�:: S <�R.��R.�:: ' 0 �T � �R  1 

Where:  MG1=1.553 F1- 0.673 F2+0.709 F3+0.163 F1F3 - 0.843       

  MG2=1.137 F1 - 0.938 F2 - 0.174 F4 - 0.161 

 MG4 =1.548 F1 - 0.488 

Note that by eliminating <�T and F3 from the optimization 
problem, we obtain an optimization problem tailored to the 
violated goals. The customized problem has less number of 
features and goals than the original problem. In our small 
example, the gain may not seem significant. However, as shown 

in Section  8, in large software systems pruning the optimization 

problem achieves significant performance gains. 

6.3 Effect 
Once an optimal feature selection is determined, the Effect activity 
is initiated to make the system transition from the current feature 
selection to the new one. Effect chooses a path containing several 
adaptation steps (transitions) towards the new feature selection. 
The steps take one of the three forms: enable and disable an 
optional feature, or swap two mutually exclusive features. Figure 
4 shows an adaptation path that takes the TRS system from 
feature selection “1010” to “0101” in three steps. 

Since there are many possible paths to reach a target feature 
selection, the Effect component is responsible for picking a path 
that satisfies feature model constrains in addition to system goals. 
In the above example, enabling F3 and F4 at the same time 
produces a feature selection that violates the mutual exclusion 
relationship in the feature model. If two features are mutually 
exclusive, the system should never be in a state where both 
features are enabled. Similarly, a dependent feature is never 
enabled without its prerequisite (parent) being enabled first. 

7. IMPLEMENTATION 
Figure 5 shows snapshots of a prototype implementation of 
FUSION. This figure closely matches the structure of Figure 1, 
and illustrates the realization of the modeling concepts in 
FUSION. To streamline the development of tool support for 
FUSION, we have adopted, extended, and integrated existing 
tools to the extent possible.  

We have provided support for FUSION’s modeling methodology 
by extending XTEAM [3]. XTEAM supports modeling of 
software architectures using well-known Architectural 
Description Languages (ADLs). It supports Finite State Processes 
(FSP) and eXtensible Architecture Description Language (xADL) 
for modeling the behavioral and structural properties, 
respectively. A snapshot of xADL model for a subset of TRS is 
shown in Figure 5c. The metrics are specified in terms of the 
properties associated with the architectural constructs. For 
example, the response time of a given execution scenario is 
modeled as a summation of the computational delay of its 
components.  

We have enhanced XTEAM with support for modeling goals 
(Figure 5a) and features (Figure 5b). As the arrow in Figure 5b 
indicates, an engineer specifies a mapping for each feature to the 
underlying architectural model snippet that realizes it. The model 
snippet uses references to the constructs in the core architectural 
model to specify the variation introduced by the corresponding 
feature. For example, Figure 5c shows the impact of selecting the 
Caching feature on the core architectural model, i.e., it results in 
the addition of a new 
Cache connector in 
between 
AgentDiscovery and 
BusinessTier. 

When FUSION selects a 
set of features, the 

 

Figure 4. Stepwise adaptation. 



architectural snippets are weaved with the 
base (core) architectural model to form the 
complete architecture of the system. The 
generated architectural models are used at 
run-time (i.e., kept synchronized) with an 
implementation of the system running on top 
of Prism-MW [14]. Prism-MW is a 
middleware platform with extensive support 
for monitoring and dynamic adaptation. 
FUSION and the running system are 
integrated as follows: (1) Monitoring: Prism-
MW’s monitor services provide the 
information for FUSION in terms of raw 
readings of the metrics. (2) Adaptation: 
Whenever FUSION changes the feature 
selection, a new architectural model is 
generated, an architectural diff is performed, 
and the differences are effected through the 
dynamic adaptation services of Prism-MW. 
FUSION sends the change requests in small 
steps (recall Figure 4) to avoid feature 
violations during the adaptation. 

Finally, we have integrated the FUSION’s 
modeling environment with WEKA [20], 
which provides an open source implementation of a number of 
learning algorithms [9] leveraged in our work. 

8. EVALUATION 
We have evaluated a prototype implementation of FUSION 
described in the previous section using an extended version of 
TRS, which consisted of 78 features and 8 goals. To evaluate 
FUSION’s ability to learn and adapt under a variety of conditions, 
we set up a controlled environment. We used XTEAM to simulate 
the execution context of the software (e.g., workload) as well as 
the occurrence of unexpected events (e.g., database indexing 
failure). However, note that neither the TRS software nor 
FUSION was controlled,  which allowed them to behave as they 
would in practice. FUSION was executed on a dedicated Intel 
Quad-Core processor machine with 5GB of RAM. We  conducted 
the evaluation under four different execution scenarios, which 
correspond to the four possible situations FUSION may face:  

(NT) Similar context—the system is placed under a workload 
setting that is comparable to that used during FUSION’s training. 
We use a scenario, called Normal Traffic (NT), in which the 
system is invoked with the typical expected number of requests.  

(VT) Varying context—the system is placed under a workload 
setting that is changing at run-time and different from that used 
during FUSION’s training. We use a scenario, called Varying 
Traffic (VT), in which the system is invoked with a continuously 
changing inter-arrival rate of price quote requests. 

(IF) Unexpected event with emerging pattern—the system 
faces an unexpected change, which results in a new behavioral 
pattern (i.e., change in the impact of features on metrics) that can 
be learned. We use a scenario, called database Index Failure (IF), 
in which the index of a database table used by the Agent 
Discovery component during the execution of the make quote 
workflow (see Figure 1c) fails, and forces a full table scan. 

(DoS) Unexpected event with no pattern— the system faces an 
unexpected change, which results in new random behaviors that 
cannot be accurately learned. We use a scenario, called 

Randomized DoS Traffic (DoS), in which the system is flooded 
with an online denial of service attack that does not follow a 
pattern (e.g., does not correspond to an exponential distribution).  

In our evaluation, an observation corresponds to an adaptation 
decision and its effect. It consists of (1) a new feature selection, 
and (2) the predicted and actual impact of the feature selection on 
metrics. An observation error with respect to a metric is the 
difference between predicted and actual value. In the experiments 
reported here, learning is initiated if the average error in 10 most 
recent observations is more than 5%.  Other learning initiation 
policies are also possible and would present a tradeoff between 
learning overhead and accuracy.  

8.1 Accuracy of Learning 
Figure 6 shows the observation error for the Quote Response Time 
metric in the four scenarios described earlier. The models selected 
for comparison are: (1) offline learning, which corresponds to a 
static learning model that is based on the same observations used 
to train FUSION at design-time; and (2) Queueing Network (QN) 
model, which assumes that workload and service demand 
parameters follow an exponetial distribution.  

Note that since each feature selection may result in a different 
architectural model, and hence a different QN model, 
incorporating QN in our experiments was challenging. In 
particular, a large number of QN models is neededwould have to 
be developed (we estimated a total of 26×1012 valid feature 
selections from the total search space of 278 ≈ 30×1022), which 
corroborates our earlier assertion about the unwieldiness of using 
analytical models. This is while performance may be only one 
goal of interest out of many in the system. In our accuracy 
comparisons reported below we constructed a subset of QN 
models that correspond to the feature selections made by 
FUSION. 

Figure 6a shows the TRS system under the NT scenario, where 
both FUSION and offline learning come to less than 5% error on 
average (i.e., average of the last 10 observations, which as 

 

Figure 5. Subset of TRS in our prototype implementation of FUSION: (a) goals 

and metrics, (b) feature model, (c) implementations of Core and Caching features. 



mentioned earlier is the criteria for initiating run-time learning). 
As exptected, this indicates that both FUSION and offline 
learning achieve good level of accuracy under expected execution 
conditions. QN also shows relatively good level of accuracy with 
average error rate of 2.9% and some spikes of 5-8% errors.  

Figure 6b shows the TRS system under the VT scenario. This 
shows that even when the workload changes significantly, 
FUSION’s observation error remains within 5% error rate on 
average. As a result, a new behavioral pattern sufficient for run-
time learning never emerges. On the contrary, in the case of QN, 
the wrong assumptions about service demands exacerbate the 
prediction errors. 

Figure 6c shows the TRS system under the IF scenario. It shows 
that when there are unexpected events in the system, FUSION is 
capable of learning the new behavior and adjusting its model. 
FUSION’s error rate increases up to 54% at the beginning of the 
execution scenario. This error could be attributed to the fact that 
the model did not anticipate the impact of Caching feature when 
the table scans were taking place in the AgentDiscovery 
component. As you may recall from Figure 1, Caching reduces 
the need for agent discovery, hence it is more effective in 
reducing the response time due to a full table scan for each 
discovery. Caching was estimated to be responsible for 35% of 
FUSION’s prediction error. Gradually, FUSION fine-tunes the 
coefficient of Caching and other features in the learned functions. 
As a result, the observation error rate goes down to less than 5%  
on average and the system reaches a steady state . In constrast, the 
prediction error of QN reaches 80%, since the QN model 
presumes the existence of a table index (i.e., the service demand 
of the queue representing the database in the model is different). 

Figure 6d shows the the DoS scenario. The random nature of 
traffic, makes it impossible for FUSION to converge to an 
induced model that can predict the behavior of the system within 
the on average 5% error rate goal. As soon as a new model is 
induced, the execution conditions change, making the prediction 
models inaccurate. As a result, FUSION’s learning cycle is 
periodically invoked to induce. Even though FUSION does not 
reach the same level of accuracy as in the other execution 
scenarios, it is still significanlty better than QN and offline 
learning. This can be attributed to the fact that FUSION is 
benefiting from the continuous tuning, although it loses accuracy 
in the absense of a stable pattern. 

8.2 Adaptation in Presence of Inaccuracy 
Clearly the quality of adaptation decisions depends on the 
accuracy of induced models. However, when the execution 
context changes, the model is forced to make some adaptation 
decisions under uncertainty, which are in turn used to fine-tune 
the induced models and account for the emerging behavior. An 
important concern is whether the adaptation decisions made 
during this period of time (i.e., using an inaccurate model) could 
worsen the violated goals or not. Figure 7 shows the normalized 
impact of enabling F3 on metrics MG1 and MG3 in the first 
observation for each of the four scenarios of Figure 6.  Recall 
from Figure 6 that the first observation for IF and DOS 
correspond to a situation when there is a high-level of inaccuracy. 
In all cases, FUSION disables F3 with the purpose of  increasing 
MG1 and reducing MG3. While due to the inaccuracy of the induced 
model FUSION fails to predict accurately the magnitude of 
impact on these metrics, it gets the general direction of impact 
(i.e., positive vs. negative) correctly. This result is reasonable 
since a given feature typically has a similar general impact on 
metrics. For instance, one would expect an authentication feature 
to improve the system’s security, while degrading its 
performance. Hence, even in the presence of inaccurate 
knowledge, FUSION does not make decisions that worsen the 
situation. Instead it makes decisions that are good, but not 
necessarily optimal, until the knowledge base is refined.  

8.3 Overhead of Learning 
FUSION enables adjustment of the system to changing conditions 
by continuously incorporating observation records in the learning 
process. An important concern is the execution overhead of the 
online learning. One of the principle factors affecting learning 
overhead is the number of observations required to make accurate 
inductions. Table 3 lists the execution time for a given number of 
observations. Simple linear regression takes insignificant amount 
of time with large number of observations, which makes it an 
appealing choice when there is a large number of observation 
(e.g., initial training at design-time, when large number of 
observations can be obtained). In our experiments FUSION 
performed online learning on a maximum of 10 observations, 
which from Table 3 could be verified to have presented an 
insignificant overhead of less than 20 milliseconds. This 

 

Figure 6. Accuracy of learned functions for “Quote Response 

Time” metric: (a) Normal Traffic, (b) Varying Traffic, (c) 

Database Indexing Failure, (d) Randomized DoS Traffic. 

Figure 7. Impact of Feature “Per-Request Authentication” on 

Metrics “Quote Response Time” and “Quote Quality”. 



efficiency is due to the pruning of the feature space and 

significance test described in Section  5.   

8.4 Quality of Feature Selection 
We evaluate the quality of solution (feature selection) found by 
FUSION against two competing technqiues. The first technique is 
Traditional Optimization (TO), which maximizes the global utility 
of the system, and includes all of the feature variables and goals in 
the optimization problem. The second technique is Constraint 
Satisfaction (CS), which finds a feature combination that satisfies 
all of the goals, regardless of the quality of the solution. As you 

may recall from Section  6, FUSION adopts a middle ground with 

two objectives: (1) find solutions with comparable quality to those 
provided by TO, but at a fraction of time it takes to executing TO, 
and (2) find solutions that are significantly better in quality than 
CS (i.e., stable fix), but with a comparable execution time.  

Figure 8 plots the global utility obtained from running the 
optimization at 3 different points in time for each of the 4 
evaluation scenarios discussed earlier. Each data point represents 
the global utility value (recall the objective function in Section 

 6.2) obtained for each experiment. FUSION produces solutions 

that are only slightly less in quality than TO in all of the 
experiments. Note that TO finds the optimal solution. This 
demostrates that our feature space pruning heuristics do not 
significnatly impact the quality of found solutions. Table 4 shows 
the average number of features that are considered for solving 
each of the experiments, which is only a small fraction of the 
entire feature space. Figure 8 also shows that FUSION find 
solutions that are significantly better than CS. In turn, this 

corroborates our assertion in Section  6.2 that FUSION produces a 

stable fix to goal violations by placing the system in a near-
optimal configuration. On the other hand, since CS may find 
borderline solutions that barely satisfy the goals, due to slight 
fluctuations in the system, goals may be violated and thus 
frequent adaptations of the system ensue.  

Finally, we should point out that the quality of solutions found in 
all of the methods, including FUSION’s approach, depends on the 
accuracy of induced model. In particular, FUSION’s feature space 
pruning heuristics depend on this. In fact, the spike in the number 
of DoS features that are considered in Table 4 demonstrates that 
feature space pruning heuristics were not as successful as other 
scenarios where a more accurate knowledge base was available.    

8.5 Efficiency of Optimization 
In Section  6.2 we described how FUSION achieves efficient 

anaysis by using the knowledge base to dynamically tailor an 
optimization problem to the violated goals in the system. In 
comparison, TO conducts a full optimization problem where the 
complexity of the problem is O(2F). Figure 9 shows the execution 
time for solving the optimization problem in FUSION, TO, and 
CS for the same instances of TRS as those shown in Figure 8 and 
Table 4. Note that the execution time of FUSION is comparable to 
CS and is significanly faster than TO. This in turn along with the 
results shown in the previous section demonstrates that FUSION 
is not only able to find solutions that are comparable in quality to 
those found by TO, but also achieves this at a speed that is 
comparable to CS. Note that since TO runs exponentially in the 
number of features, for systems with slighlty larger number of 
features, TO could take several hours for completion, which 
would make it inapplicable for use at run-time.   

9. RELATED WORK 
Over the past decade, researchers and practitioners have 
developed a variety of methodologies, frameworks, and 
technologies intended to support the construction of self-adaptive 
systems [2]. We provide an overview of the most notable research 
in this area and examine them in light of FUSION.  

Architecture-based adaptation. IBM’s Autonomic Computing 
initiative advocates a reference model known as MAPE [10], 
which is structured as hierarchical levels of feedback-control loop 
consisting of the following activities: Monitor, Analyze, Plan, and 
Execute. Oreizy et al. pioneered the architecture-based approach 
to run-time adaptation and evolution management in their seminal 
work [16]. Garlan et al. present Rainbow framework [5], a style-
based approach for developing reusable self-adaptive systems. 
Rainbow monitors a running system for violation of the invariant 
imposed by the architectural model, and applies the appropriate 
adaptation strategy to resolve such violations. All of the above 
approaches, including many others (e.g., see [2,15]), share three 
traits: (1) use analytical models for making adaptation decisions, 
and (2) rely on architectural models for the analysis, and (3) effect 
a new solution through architecture-based adaptation. These 
works have clearly formed the foundation of our work and have 
guided our research as manifested by the key role of architecture 
in FUSION. However, unlike these approaches, FUSION adopts a 

 

Figure 8. Global utility for different scenarios. 

 

Figure 9. Optimization execution time for different scenarios. 

Table 3. Induction execution time in milliseconds 

# of Observations 50 500 528 822 903 1227 1809 

    M5 Model Tree 60 110 130 130 130 160 230 

    Linear Regression 20 30 30 50 60 70 80 

 

Table 4. Effect of feature reduction heuristics.  
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feature-based approach to analysis and adaptation, which not only 
makes learning feasible, but also makes the analysis efficient and 
reduces the effort required in applying FUSION to existing 
systems. Moreover, unlike them, FUSION is capable of coping 
with unanticipated changes through learning.  

Policy-based adaptation. Related to our research are adaptation 
frameworks that employ logic and policy based methods of 
induction. Sykes et al. [18] present an online planning approach to 
architecture-based self-managed systems. Based on a three-layer 
model for self-management [13], their work describes plan (i.e., a 
set of condition-action rules) generation with respect to a change 
in the environment or a system failure. Georgas and Taylor [6] 
present a knowledge-based approach, such that the adaptation 
polices are specified as logic rules, which are in turn leveraged to 
induce new policies. These approaches bear resemblance to our 
work in their use of induction. While policy-based approaches 
have been shown useful in some settings (e.g., ensuring certain 
properties hold in the system), they cannot be used for making 
quantitative analysis of QoS trade-offs. These approaches may 
also suffer from conflicting rules in the knowledge base.  

Reinforcement learning adaptation. Finally, related to our work 
are autonomic approaches that have employed reinforcement 
learning. Kim and Park [11] propose a reinforcement learning-
based approach to online planning for robots. Their work focuses 
on improving the robot’s behavior by learning from prior 
experience and by dynamically discovering adaptation plans in 
response to environmental changes. Tesauro et al. [19] have 
proposed a hybrid approach that combines queueing network with 
reinforced learning to make resource allocation decisions in data 
centers. FUSION provides a general-purpose framework for self-
adaption of any feature-oriented application software, which is 
fundamentally different from these domain-specific solutions.  

10. CONCLUSION 
We presented FUSION, a new method of engineering self-
adaptive systems that combines feature-orientation, learning, and 
dynamic optimization to alleviate some of the crucial challenges 
in this setting. Instead of relying on analytical models that are 
unwieldy for use and subject to wrong assumptions, FUSION uses 
online learning to analyze and self-tune the adaptive behavior of 
the system to unanticipated changes. Learning is enabled by a 
dynamic feature-oriented representation of the system that 
incorporates the engineer’s knowledge of the application and its 
domain. Learning in turn enables FUSION to dynamically tailor 
the optimization problem to the violated goals, and hence achieve 
efficiency of analysis without trading accuracy. Using a prototype 
implementation of the system and a travel reservation system we 
have extensively validated the approach and its properties.  

In our future work, we intend to investigate opportunistic self-
training as a way to detect emerging behaviors before adaptation 
decisions are made. We are exploring a self-training method that 
takes place using a shadow clone of the running system during 
periods of low utilization. In addition, we intend to empirically 
compare FUSION against other self-adaptation frameworks. 
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