
FUSION: A Framework for Engineering
Self-Tuning Self-Adaptive Software Systems

Ahmed Elkhodary
Department of Computer Science

George Mason University

aelkhoda@gmu.edu

Naeem Esfahani
Department of Computer Science

George Mason University

nesfaha2@gmu.edu

Sam Malek
Department of Computer Science

George Mason University

smalek@gmu.edu

ABSTRACT

Self-adaptive software systems are capable of adjusting their
behavior at run-time to achieve certain objectives. Such systems
typically employ analytical models specified at design-time to
assess their characteristics at run-time and make the appropriate
adaptation decisions. However, prior to system’s deployment,
engineers often cannot foresee the changes in the environment,
requirements, and system’s operational profile. Therefore, any
analytical model used in this setting relies on underlying
assumptions that if not held at run-time make the analysis and
hence the adaptation decisions inaccurate. We present and
evaluate FeatUre-oriented Self-adaptatION (FUSION)
framework, which aims to solve this problem by learning the
impact of adaptation decisions on the system’s goals. The
framework (1) allows for automatic online fine-tuning of the
adaptation logic to unanticipated conditions, (2) reduces the
upfront effort required for building such systems, and (3) makes
the run-time analysis of such systems very efficient.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design – Methodologies.

General Terms

Algorithms, Performance, Design.

Keywords

Self-Adaptation, Feature-Orientation, QoS Analysis, Learning.

1. INTRODUCTION
The ever-growing complexity of software systems coupled with
the need to maintain their quality of service (QoS) characteristics,
even under adverse conditions and highly uncertain environments,
have instigated the emergence of self-adaptive software systems
[13]. A self-adaptive software system is capable of modifying
itself at run-time to achieve certain functional or QoS goals. The
development of such systems has shown to be significantly more
challenging than static and predictable software systems [2].

In particular, engineering the adaptation logic poses the greatest
difficult. Since software engineers often cannot foresee all of the
changes in the environment, requirements, and system’s
operational profile at design-time, they rely on analytical models

that given the monitoring data obtained at run-time assess the
system’s ability to satisfy its goals. The results produced by the
analytical models thus serve as indicators for making the
adaptation decisions.

Generally, this approach suffers from three shortcomings:

• Unwieldy for use. Existing state of the art self-adaptive
frameworks require the engineer to construct and utilize
complex analytical models. Unfortunately, the majority of
widely used analytical models (e.g., Queueing Network
models [8] for performance analysis) have to painstakingly be
customized to the unique characteristics of an application
domain. Moreover, for any application-specific goal, an
appropriate analytical model would have to be developed from
scratch; a task that is often very difficult, when one considers
the complexity of today’s software systems. Further
exacerbating the problem is that software engineering
practitioners are typically not savvy mathematicians and find
it difficult to build systems that make use of such models.

• Wrong assumptions. Analytical models make simplifying
assumptions or presume certain properties of the running
system that may not bear out in practice. These models are
specified at design-time and cannot cope with the run-time
changes that were not accounted for in their formulation.
These assumptions could make the analysis and hence the
adaptation decisions inaccurate.

• Efficiency. Efficiency of analysis and planning is of utmost
importance in most self-adaptive software systems that need to
react quickly to situations that arise at run-time. At the same
time, searching for an optimal architectural configuration (i.e.,
solution) is often computationally very expensive [2].

In this paper, we present an alternative and relatively unexplored
method of constructing self-adaptive software systems aimed at
alleviating the three problems mentioned above. Instead of
manually developing an analytical model that relates the impact of
adaptation decisions on the system’s goals, we present a learning-
based approach in which such a model is automatically induced
from the monitored data. The approach not only allows for
automatic online fine-tuning of the adaptation logic to
unanticipated conditions, but also reduces the upfront effort
required for building such systems.

We describe this research in the context of a framework, entitled
FeatUre-oriented Self-adaptatION (FUSION), which by using a
feature-oriented system model learns the impact of feature
selection and feature interactions on the system’s competing
(conflicting) goals. It then uses this knowledge to efficiently adapt
the system to satisfy as many user-defined goals as possible.

In this paper, we elaborate on three key contributions of FUSION:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FSE’10, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11…$10.00.

• FUSION adapts and learns in
terms of features. A feature is a
domain and platform independent
method of representing a
particular system capability
[7,12]. This along with the fact
that FUSION does not prescribe a
particular analytical model makes
the approach applicable to any
software system with minimal
effort.

• FUSION copes with the changing
dynamics of the system, even
those that were not anticipated,
through continuous observation
and induction. In turn, FUSION is
capable of learning run-time
behaviors unforeseen at design-
time.

• FUSION incorporates the
engineer’s knowledge of the
system and its capabilities in the
form of feature relationships. It
then uses these relationships to
reduce the valid configuration space significantly, which
makes not only the learning feasible but also the adaptation
planning efficient for use at run-time.

The rest of this paper is organized as follows. Section 2 motivates
the problem using a system that also serves as a running example
in this paper. Section 3 provides an overview of FUSION.
Sections 4, 5, and 6 respectively detail FUSION’s feature-oriented
model of adaptation, learning method, and adaptation planning.
Sections 7 and 8 present the implementation and evaluation
details of FUSION. The paper concludes with an overview of the
related work and future avenues of research.

2. MOTIVATION
We illustrate and evaluate the concepts using an online Travel
Reservation System (TRS), which is representative of web
applications used by large organizations for making travel
reservations. Figure 1c shows a subset of its software architecture
using the traditional component-and-connector view. TRS aims to
provide the best airline ticket prices in the market. To make a
price quote for the user, TRS takes the trip information from the
user, and consequently discovers and queries various travel agent
services. The travel agents reply with their itinerary offers, which
are then sorted and presented in ascending order of quoted price.

In addition to the functional goals, the system is required to attain
a number of QoS goals, such as performance, security, and
accountability. To that end, solutions for each QoS concern were
developed, e.g., caching for performance, authentication for
security, and logging of activities for accountability purposes.

In addition, TRS needs to be self-adaptive to deal with unexpected
situations, such as traffic spikes or security attacks. For instance,
enable caching to improve performance during a traffic spike,
increase authentication to thwart a security attack, and enable
logging to ensure non-repudiation of transactions (i.e.,
accountability). The adaptation logic of TRS also needs to balance
tradeoffs (conflicts) when it selects from the available adaptation
choices, e.g., improving security may degrade response time.

As mentioned earlier, there are three problems associated with the
construction of adaptation logic. Consider the issues that may
arise in the context of TRS:

• Unwieldy for use. Consider the difficulty of accurately
estimating the impact of enabling a particular type of
authentication on the price quotes in TRS. Using a heavy
authentication protocol increases the system’s response time,
which forces more timeouts on the client-side. This reduces
the total number of received offers, and hence the quality of
price quotes. Quantitatively modeling this trade-off is
difficult, as it depends on many dynamic parameters: available
service providers, network characteristics, and so on.

• Wrong assumptions. Consider an analytical model that
quantifies the impact of an adaptation decision on the response
time of receiving price quotes from travel agents (thick lines
in Figure 1c). Such a model would inevitably make
simplifying assumptions based on what the engineers believe
to be the main sources of delay in the system. For instance, if
fast communication links are assumed, the analytical model
may ignore the network delay. Since accurately predicting the
characteristics of a dynamic system is extremely difficult, the
assumptions may not hold, making the analysis and hence the
adaptation decisions inaccurate.

• Efficiency. To satisfy multiple goals, self-adaptation logic
needs to search in a configuration space that is equivalent to
the combined complexity of all the analytical models
involved. As an example, consider how TRS would make use
of P authentication components for authenticating the network
traffic between its N software components, which may be
deployed on M different hardware platforms. Analyzing the
impact of authentication alone on the system’s goals would
require exploring a space of (MN possible deployments)P possible

ways of authentication = MNP possible configurations. Such a
problem is computationally expensive to solve at run-time for
any sizable system. This is while authentication may be only
one concern out of many.

Figure 1. Travel Reservation System: (a) goals are quantified in terms of utility obtained

for a given level of metric; (b) subset of available features, where features with thick

borders are selected; (c) software architecture corresponding to the selected features,

where the thick lines represent an execution scenario associated with goal G1.

The aforementioned difficulties have shaped our motivation in the
development of the FUSION framework, as described next.

3. FUSION OVERVIEW
Figure 2 depicts the FUSION framework as it adapts a running
software system. The running system is variable in the sense that
its features can be selected (i.e., enabled/disabled) on demand.
FUSION modifies the feature selection to resolve QoS tradeoffs
and satisfy as many goals as possible. For example, if the TRS
system violates Quote Response Time goal, it is adapted to a new
feature selection that brings down the response time and keeps
other goals satisfied.

As depicted in Figure 2, FUSION makes such adaptation
decisions using a continuous loop, called adaptation cycle. The
adaptation cycle collects metrics (measurements) and optimizes
the system by executing three activities in the following sequence:

• Based on the metrics collected from the running system,
Detect calculates the achieved utility (i.e., measure of user’s
satisfaction) to determine if a goal violation has occurred.

• When a goal is violated, Plan searches for an optimal
configuration (feature selection) that maximizes overall utility.

• Given a new feature selection, Effect determines a set of
adaptation steps (i.e., enable/disable features) to ensure
consistency during adaptation.

FUSION uses learning cycle (depicted in Figure 2) to learn the
impact of adaptation decisions in terms of feature selection on the
system’s goals. The first execution of learning cycle occurs before
the system’s initial deployment. The system is either simulated or
executed in offline mode and metrics corresponding to each
feature selection is collected. This data is used to train FUSION to
induce a preliminary model of the system’s behavior.

At run-time, the learning cycle continuously executes, and as the
dynamics of the system and its environment change, the
framework tunes itself. For example, when FUSION adapts TRS
to resolve a “quote response time” violation, it keeps track of the
gap between the expected and the actual outcome of the
adaptation. This gap is an indicator of the new behavioral patterns
in the system. Learning cycle collects such indicators and tunes
itself by executing two activities in the following sequence:

• Based on the measurements collected from the system,
Observe detects any emerging patterns of behavior. An
emergent pattern is detected when the system sets the wrong
expectation (i.e., inaccurate impact of adaptation on utility).

• Induce learns the new behavior through induction and stores
the refined model in the knowledge base, which is used to
make (more) informed adaptation decisions in future cycles.

In the following three sections, we describe FUSION’s underlying
model, learning cycle, and adaptation cycle in more detail.

4. FUSION MODEL
We describe FUSION’s approach to modeling adaptation choices

and goals. As detailed in Sections 5 and 6, FUSION’s model is the

key enabler of effective learning and efficient analysis.

4.1 Feature-Based Adaptation
In FUSION, the unit of adaptation is a feature. A feature is an
abstraction of a capability provided by the system. A feature may
affect either the system’s functional (e.g., ability to print receipts)
or non-functional (e.g., ability to authenticate) properties.

The use of features as an abstraction makes the FUSION
framework independent of a particular implementation platform
or application domain. For example, in a rule-based system a
feature may correspond to a set of rules, in a service-oriented
system it may correspond to a set of services in a workflow, and
so on. For clarity, in this paper we assume a particular realization
of a feature: a feature represents an extension of the architecture at
well-defined variation points. A feature maps to a subset of the
system’s software architecture. For example, Figure 1b shows the
mapping of Evidence Generation feature to a subset of the TRS.

Figure 1b shows a simple feature model for TRS. There are four
features in the system and one common core. The features in the
example use two kinds of relationships: dependency, and mutual
exclusion. The dependency relationship indicates that a feature
requires the presence of another feature. For example, enabling
the Evidence Generation feature requires having the core feature
enabled as well. Mutual exclusion is another relationship, which
implies that if one of the features in a mutual group is enabled, the
others must be disabled. For example, Per-Request Authentication
and Per-Session Authentication cannot be enabled at the same
time. Feature modeling supports several other types of inter-
feature relationships (see [7]) that for brevity are not detailed here.

The feature model is used to identify the current system
configuration in terms of a feature selection string. In a feature
selection string, enabled features are set to “1”; disabled features
are set to “0”. For example, one possible configuration of TRS
would be “1101”, which means that all features from Figure 1b
are enabled except Per-Request Authentication. The adaptation of
a system is modeled as a transition from one feature selection

string to another, which we detail in Section 6.3.

4.2 Goals
A goal represents the user’s functional or QoS objectives for a
particular execution scenario. A goal consists of a metric and a
utility. A metric is a measurable quantity (e.g., response time) that
can be obtained from a running system. A utility function is used
to express the user’s preferences (satisfaction) for achieving a
particular metric. For instance, goal G1 in Figure 1a specifies the
user’s degree of satisfaction (U) with achieving a specific value of
Quote Response Time (M).

Figure 2. Overview of the FUSION framework.

Elicitation of user’s preferences, while an important prerequisite
for using the framework, is a topic that has been investigated
extensively in the existing literature (e.g., [17]), and considered to
be outside the focus of this paper. FUSION is independent of the
type of utility functions and the approach employed in
extrapolating them. Arguably any user can specify hard
constraints, which can be trivially modeled as step-functions (e.g.,
G4 depicted in Figure 1a). Alternatively a utility function may
take on more advanced forms (e.g., sigmoid curve), and express
more complex preferences, such as G1, G2, and G3.

FUSION places one constraint on the range of utility functions:
they need to return zero for the metric values that are not

acceptable to the user. As will be discussed in Section 6.1, when

a utility associated with a goal reaches zero, FUSION considers
that goal violated and initiates adaptation.

5. FUSION LEARNING CYCLE
FUSION copes with the changing dynamics of the system through
learning. Learning discovers relationships between features and
metrics. Each relationship is represented as a function that
quantifies the impact of features, including their interactions, on a
metric. In TRS, for example, the result of learning would be four
functions, one function for each of the four metrics MG1 through
MG4. Each function takes a feature selection as input and produces
an estimated gain/loss value for the metric as output.

Learning is typically a very computationally intensive process. In
particular, learning simply at the architectural-level is infeasible
for any sizable system, which is the reason why its application in
existing architecture-based adaptation approaches has been
limited. FUSION’s feature-oriented model offers two
opportunities for tackling the complexity of learning:

1. Learning operates on feature selection space, which is
significantly smaller than the traditional architectural-level
configuration space. The features in FUSION encode the
engineer’s domain knowledge of the practical variation
points in a given application. For instance, the engineer may
only consider a small reasonable subset of MNP authentication

driven architectural choices (recall Section 2). Figure 1b

shows two authentication strategies modeled as features in
TRS: F3 and F4. These two features represent what the TRS
security engineer envisioned to be the reasonable
applications of authentication in the system.

2. By using the inter-feature relationships (e.g., mutual
exclusions, dependencies), one can significantly reduce the
feature selection space. For instance, Figure 1b shows a
mutual exclusion relationship between F3 and F4. This
relationship is manifestation of the domain knowledge that
applying two authentication protocols to the same execution
scenario is not appropriate. Such relationships reduce the

space of valid feature selections significantly, further aiding
FUSION to learn their trade-offs with respect to goals.

Figure 3 is an algorithm that determines the size of the valid
feature selection space in a feature model recursively. Applying
this algorithm to the feature model in Figure 1b yields a space of 8
valid feature selections, calculated as follows:
2 from F1 × 2 from F2 × (2 from F3 + 2 from F4 – 2).
Without considering the inter-feature relationships to prune the
invalid selections, the space of feature selection would have been
2number of features = 24 = 16.

Learning starts with a training process that populates FUSION’s
knowledge base with an initial set of functions. Consequently, at
run-time, the learning cycle fine-tunes the functions to
accommodate emergent behaviors. The rest of this section
describes the two activities that take place to populate and fine-
tune the knowledge base.

5.1 Observe
Observe is a continuous execution of two activities: (1) normalize
raw metric values to make them suitable for learning, and (2) test
the accuracy of learned functions. We describe each of these
activities below.

Learning in terms of raw data hampers the accuracy. For instance,
consider the fact that the actual impact of a feature on a metric
may depend on the system’s workload. Therefore, the actual
metric data obtained from executing the same software system
(i.e., same feature selection) under different workloads may result
in starkly different metric readings, thus making it difficult to
generalize in the form of a learned function.

To address this issue, Observe takes raw metric data through an
automated normalization process prior to storing them as
observation records. Many normalization techniques can be
applied to transform the learning inputs into a representation that
is less sensitive to the execution context. In Table 1, observation
records were normalized using studentized residual [1] as follows: ���� ����	
 ��/�, where � and � are the mean and the

standard deviation of the collected data, respectively.
Normalization using studentized residual does not require
knowledge of population parameter, such as absolute min-max
values and population mean. It only requires knowledge of mean
and standard deviation for sample data.

Once a preliminary set of functions are learned (details provided
in the next section), Observe continuously tests the accuracy of
functions against the latest collected observations. Accuracy is
defined as the difference between predicted value of a reward
using the learned functions and actually observed value. For that
purpose, we use the learning accuracy threshold provided by the
learning algorithm itself. Note that the majority of learning
algorithms provide an error threshold that indicates the noise in
learned functions. On top of this, one may specify an additional
margin of inaccuracy that can be tolerated, in cases where it is not
desirable to run the learning algorithm frequently. If the accuracy
test fails, Observe takes this as an indicator that either learning is
incomplete or new patterns of behavior are emerging in the
system and, thus, notifies the Induce activity to fine-tune the
learned functions using the latest set of observations.

5.2 Induce
Based on the collected observations, the Induce activity constructs
several functions that estimate the impact of making a feature

SelectionCounter(Feature F) :int

int Count = 1;

switch (F.Type)

case “MutualGroup”:

for each (C in F.Children)

Count += SelectionCounter(C) - 1;

case “LeafFeature”:

Count = 2;

default:

for each (C in F.Children)

Count *= SelectionCounter(C);

Count ++;

return Count;

Figure 3. Algorithm for sizing the feature selection space.

selection on the corresponding metrics. Induce executes two steps.
The first step is a significance test that determines the features
with the most significant impact on each metric. This allows us to
reduce the number of independent variables (recall Table 1) that
learning needs to consider for each metric. After the significance
test, we apply the learning, which for each goal, given the
normalized observations and the features with significance,
derives the corresponding relationships.

While FUSION is not tied to a particular learning algorithm, in
our implementation we have used the M5 model tree (MT)
algorithm [9], which is a machine learning technique with three
important properties: (1) ability to eliminate insignificant features
automatically, (2) fast training and convergence, and (3) efficient
interaction detection. Table 2 shows the induced relationships
among features and metrics for TRS.

The information in this table can also be represented simply as a
set of functions. For instance, a function estimating ���
corresponds to the second column of the table as follows: ���=1.553 F1
 0.673 F2 + 0.709 F3 + 0.163 F1F3
 0.843 (1)

Each feature is assigned a coefficient that is effective only when
the feature is enabled (i.e., it is set to “1”). For example, the
expected value of MG1 for a feature selection where only F1 and
F3 are enabled (“1010”) can be calculated as follows: ���=1.553×1 + 0 + 0.709×1+ 0.163×1×1
 0.843 = 1.482 (2)

When making adaptation decisions, values obtained from the
induced functions (e.g., 1.482 from Eq. 2 above) are
denormalized by using the inverse of normalization equation
presented in the previous section. The denormalized value for a
metric is then plugged into the corresponding utility function to
determine the impact of feature selection on the goal.

Note that the induction also captures the impact of feature
interactions on metrics. For example, Eq. 1 specifies that enabling
both F1 (Evidence Generation) and F3 (Per-Request

Authentication) increases ���. This is because according to Table
2, F1F3 increases the response time by 0.163, which decreases the
utility of G1 (utility of G1 is shown in Figure 1a). Using Figure 1c
we can explain this feature interaction as follows. F1 introduces a
delay by adding a mediator connector, called Log, that records the
transactions with remote travel agents. At the same time, F3
changes the behavior of the Log, as it causes an additional delay
in mediating the exchange of per session authentication
credentials. Enabling the two features at the same time has a
negative ramification that is beyond the individual impact of each.

In some cases, learning may need to incorporate some contextual
factors as independent variables, due to their impact on metrics.
Consider a system with drastically different workloads at different
times of day that cannot be dealt with effectively through

normalization. In that case, the result of learning would be a set of
equations that estimate the impact of feature selection in different
contexts. For example, the following equations estimate the
impact of feature selection on MG1 under different workloads (w):

��� � �… � �. ���1
 �. ���2 � �. ��3 … , � 1.21… � �. !"�1
 �. �#�2 � �. ��3 … , 1.21 $ � 1.29… � &. !��1 � &. ##�3 � &. ���1�3 … , � ' 1.29((3)

Where w is the average inter-arrival time between requests in
milliseconds; lower inter-arrival time implies higher workload.
Here, the generated functions indicate that TRS reaches saturation
when w is in the range of 1.21–1.29 milliseconds. Since the
impact of features on MG1 changes dramatically in that range, the
learning algorithm produces a separate equation targeted at that.
Although these equations may be of any type (e.g., linear,
sigmoid, or exponential as in [4]), for clarity we have limited the
discussion to multi-linear equations only.

6. FUSION ADAPTATION CYCLE
In this section, we describe how Detect, Plan and Effect use the
learned knowledge to adapt a software system in FUSION. The
underlying principle guiding the adaptation strategy in FUSION is
simple: if the system works (i.e., satisfies the user), do not change
it; when it breaks, find the best fix for only the broken part. While
intuitive, this approach sets FUSION apart from many of the
existing works that either attempt to continuously optimize the
entire system, or solely solve the constraints (i.e., violated goals)
in the system. FUSION adopts a middle ground, which we believe
to be the most sensible, and achieves the following objectives:

1. Reduce Interruption: Adaptation typically interrupts the
system’s operation (e.g., transient unavailability of certain
functionality). In turn, even if at run-time a solution with a
higher utility is found, one may opt not to adapt the system to
avoid such interruptions. FUSION reduces interruptions by
adapting the system only when a goal is violated.

2. Efficient Analysis: Often in run-time adaptation, the
performance of analysis is crucial. FUSION uses the learned
knowledge to scope the analysis to only the parts of the
system that are affected by the adaptation, hence making it
significantly more efficient than assessing the entire system.

3. Stable Fix: Given the overhead and interruption associated
with the adaptation, effecting solutions that provide a
temporary fix are not desirable. We would like FUSION to
minimize frequent adaptation of the system for the same
problem. To that end, instead of simply satisfying the
violated goals, FUSION finds a near optimal solution that is
less likely to be broken due to fluctuations in the system.

6.1 Detect
The adaptation cycle is initiated as soon as Detect determines a
goal violation. This is achieved by monitoring the utility functions

Table 2. Learned metric functions. An empty cell means

that the corresponding feature has no significant impact.

Significant

Variables

Induced Functions

MG1 MG2 MG3 MG4 ..

Core - 0.843 - 0.161 1.332 - 0.488 ..

F1 1.553 1.137 1.548 ..

F2 - 0.673 - 0.938 ..

F3 0.709 - 0.672 ..

F4 - 0.174 ..

F1F3 0.163 ..

..

Table 1. Normalized observation records

Indep. Vars Dependent Variables

F1 F2 F3 F4 MG1 MG2 MG3 MG4 ..

..

0 0 0 1 - 0.842 - 0.308 1.432 - 0.521 ..

1 0 0 1 0.650 0.513 1.371 1.501 ..

0 1 0 1 - 1.470 - 0.719 1.378 - 0.522 ..

0 0 1 0 - 0.132 -0.103 0.740 - 0.712 ..

0 0 0 1 - 0.736 - 1.335 1.103 - 0.117 ..

1 0 1 0 1.574 1.951 0.550 1.566 ..

1 1 0 1 0.153 0.513 1.090 1.501 ..

1 1 1 0 0.804 -0.513 0.562 1.566 ..

..

(recall Section 4.2). A utility function serves two purposes in the

adaptation cycle: (1) when the metric values are unacceptable,
returns zero to indicate a violated goal, and (2) when the metrics
satisfy the minimum, returns a positive value less than one to
indicate the user’s preference for improvement. Therefore, utility
is not only used to initiate adaptation, but also to perform trade-off
analysis between competing feature selections, such that an
optimization of the system can be achieved.

6.2 Plan
To achieve the adaptation objectives, FUSION relies on the
knowledge base to generate a tailored problem:

• Given a violated goal, we use the knowledge base to eliminate
all of the features with no significant impact on the goal. We
call the list of features that may affect a given goal Shared
Features. Consider a situation in the TRS where G2 is

violated. By referring to column ��) in Table 2, we can
eliminate feature F3, since it has no impact on G2’s metric. In
this example Shared Features = {F1,F2,F4}.

• Shared Features represent our adaptation parameters. These
features may also affect other goals, the set of which we call
the Conflicting Goals. To detect the conflicts, again we use the
knowledge base, except this time we backtrack the learned
relationships. For each feature in the Shared Features we find
the corresponding row in Table 2, and find the other metrics
that the feature affects. In the above example, we can see that
features F1, F2, and F4 also affect metrics MG1 and MG4, and
hence the corresponding goals, G1 and G4.

By using the knowledge base, FUSION generates an optimization
problem customized to the running software. The objective is to
find a selection of Shared Features, F*, that maximizes the
system’s overall utility for the Conflicting Goals as follows:

�* � ��+,�-./0123456/5378459: ; <=>=0?@ABCDE7DA= �@3C9 .�=.�::
where <= represents the utility function associated with the metric �= for goal g (recall Figure 1a). Since we do not want the solution

to violate any of the conflicting goals, the problem is subject to:

F <=.�=.�:: ' 0>= 0 ?@ABCDE7DA= �@3C9

Note that we do not need to include the goals that are unaffected
by Shared Features. To prevent feature selections that violate the
mutual exclusion, we specify the following constraint:

>+�H�I 0 J	�K��	 ,HL	�, ; JE 1>BM0=4@8N

Here when more than one feature from the same mutually
exclusive group is selected, the left hand side of the inequality
brings the total to greater than 1 and violates the constraint.
Finally, we ensure the dependency relationship as follows: >JE2DC6 0 OP��	L �	�K��	�, JN345A7
 JE2DC6 Q 0

This inequality does not hold if a child (dependent) feature is
enabled without its parent being enabled. Applying this
formulation to the TRS scenario in which G2 is violated generates
the following optimization problem:

Shared features = {F1, F2, F4} ��+,�-./: <��.���.�:: � <�).��).�:: � <�R.��R.�::

Subject to: <��.���.�:: S <�).��).�:: S <�R.��R.�:: ' 0 �T � �R 1

Where: MG1=1.553 F1- 0.673 F2+0.709 F3+0.163 F1F3 - 0.843

 MG2=1.137 F1 - 0.938 F2 - 0.174 F4 - 0.161

 MG4 =1.548 F1 - 0.488

Note that by eliminating <�T and F3 from the optimization
problem, we obtain an optimization problem tailored to the
violated goals. The customized problem has less number of
features and goals than the original problem. In our small
example, the gain may not seem significant. However, as shown

in Section 8, in large software systems pruning the optimization

problem achieves significant performance gains.

6.3 Effect
Once an optimal feature selection is determined, the Effect activity
is initiated to make the system transition from the current feature
selection to the new one. Effect chooses a path containing several
adaptation steps (transitions) towards the new feature selection.
The steps take one of the three forms: enable and disable an
optional feature, or swap two mutually exclusive features. Figure
4 shows an adaptation path that takes the TRS system from
feature selection “1010” to “0101” in three steps.

Since there are many possible paths to reach a target feature
selection, the Effect component is responsible for picking a path
that satisfies feature model constrains in addition to system goals.
In the above example, enabling F3 and F4 at the same time
produces a feature selection that violates the mutual exclusion
relationship in the feature model. If two features are mutually
exclusive, the system should never be in a state where both
features are enabled. Similarly, a dependent feature is never
enabled without its prerequisite (parent) being enabled first.

7. IMPLEMENTATION
Figure 5 shows snapshots of a prototype implementation of
FUSION. This figure closely matches the structure of Figure 1,
and illustrates the realization of the modeling concepts in
FUSION. To streamline the development of tool support for
FUSION, we have adopted, extended, and integrated existing
tools to the extent possible.

We have provided support for FUSION’s modeling methodology
by extending XTEAM [3]. XTEAM supports modeling of
software architectures using well-known Architectural
Description Languages (ADLs). It supports Finite State Processes
(FSP) and eXtensible Architecture Description Language (xADL)
for modeling the behavioral and structural properties,
respectively. A snapshot of xADL model for a subset of TRS is
shown in Figure 5c. The metrics are specified in terms of the
properties associated with the architectural constructs. For
example, the response time of a given execution scenario is
modeled as a summation of the computational delay of its
components.

We have enhanced XTEAM with support for modeling goals
(Figure 5a) and features (Figure 5b). As the arrow in Figure 5b
indicates, an engineer specifies a mapping for each feature to the
underlying architectural model snippet that realizes it. The model
snippet uses references to the constructs in the core architectural
model to specify the variation introduced by the corresponding
feature. For example, Figure 5c shows the impact of selecting the
Caching feature on the core architectural model, i.e., it results in
the addition of a new
Cache connector in
between
AgentDiscovery and
BusinessTier.

When FUSION selects a
set of features, the

Figure 4. Stepwise adaptation.

architectural snippets are weaved with the
base (core) architectural model to form the
complete architecture of the system. The
generated architectural models are used at
run-time (i.e., kept synchronized) with an
implementation of the system running on top
of Prism-MW [14]. Prism-MW is a
middleware platform with extensive support
for monitoring and dynamic adaptation.
FUSION and the running system are
integrated as follows: (1) Monitoring: Prism-
MW’s monitor services provide the
information for FUSION in terms of raw
readings of the metrics. (2) Adaptation:
Whenever FUSION changes the feature
selection, a new architectural model is
generated, an architectural diff is performed,
and the differences are effected through the
dynamic adaptation services of Prism-MW.
FUSION sends the change requests in small
steps (recall Figure 4) to avoid feature
violations during the adaptation.

Finally, we have integrated the FUSION’s
modeling environment with WEKA [20],
which provides an open source implementation of a number of
learning algorithms [9] leveraged in our work.

8. EVALUATION
We have evaluated a prototype implementation of FUSION
described in the previous section using an extended version of
TRS, which consisted of 78 features and 8 goals. To evaluate
FUSION’s ability to learn and adapt under a variety of conditions,
we set up a controlled environment. We used XTEAM to simulate
the execution context of the software (e.g., workload) as well as
the occurrence of unexpected events (e.g., database indexing
failure). However, note that neither the TRS software nor
FUSION was controlled, which allowed them to behave as they
would in practice. FUSION was executed on a dedicated Intel
Quad-Core processor machine with 5GB of RAM. We conducted
the evaluation under four different execution scenarios, which
correspond to the four possible situations FUSION may face:

(NT) Similar context—the system is placed under a workload
setting that is comparable to that used during FUSION’s training.
We use a scenario, called Normal Traffic (NT), in which the
system is invoked with the typical expected number of requests.

(VT) Varying context—the system is placed under a workload
setting that is changing at run-time and different from that used
during FUSION’s training. We use a scenario, called Varying
Traffic (VT), in which the system is invoked with a continuously
changing inter-arrival rate of price quote requests.

(IF) Unexpected event with emerging pattern—the system
faces an unexpected change, which results in a new behavioral
pattern (i.e., change in the impact of features on metrics) that can
be learned. We use a scenario, called database Index Failure (IF),
in which the index of a database table used by the Agent
Discovery component during the execution of the make quote
workflow (see Figure 1c) fails, and forces a full table scan.

(DoS) Unexpected event with no pattern— the system faces an
unexpected change, which results in new random behaviors that
cannot be accurately learned. We use a scenario, called

Randomized DoS Traffic (DoS), in which the system is flooded
with an online denial of service attack that does not follow a
pattern (e.g., does not correspond to an exponential distribution).

In our evaluation, an observation corresponds to an adaptation
decision and its effect. It consists of (1) a new feature selection,
and (2) the predicted and actual impact of the feature selection on
metrics. An observation error with respect to a metric is the
difference between predicted and actual value. In the experiments
reported here, learning is initiated if the average error in 10 most
recent observations is more than 5%. Other learning initiation
policies are also possible and would present a tradeoff between
learning overhead and accuracy.

8.1 Accuracy of Learning
Figure 6 shows the observation error for the Quote Response Time
metric in the four scenarios described earlier. The models selected
for comparison are: (1) offline learning, which corresponds to a
static learning model that is based on the same observations used
to train FUSION at design-time; and (2) Queueing Network (QN)
model, which assumes that workload and service demand
parameters follow an exponetial distribution.

Note that since each feature selection may result in a different
architectural model, and hence a different QN model,
incorporating QN in our experiments was challenging. In
particular, a large number of QN models is neededwould have to
be developed (we estimated a total of 26×1012 valid feature
selections from the total search space of 278 ≈ 30×1022), which
corroborates our earlier assertion about the unwieldiness of using
analytical models. This is while performance may be only one
goal of interest out of many in the system. In our accuracy
comparisons reported below we constructed a subset of QN
models that correspond to the feature selections made by
FUSION.

Figure 6a shows the TRS system under the NT scenario, where
both FUSION and offline learning come to less than 5% error on
average (i.e., average of the last 10 observations, which as

Figure 5. Subset of TRS in our prototype implementation of FUSION: (a) goals

and metrics, (b) feature model, (c) implementations of Core and Caching features.

mentioned earlier is the criteria for initiating run-time learning).
As exptected, this indicates that both FUSION and offline
learning achieve good level of accuracy under expected execution
conditions. QN also shows relatively good level of accuracy with
average error rate of 2.9% and some spikes of 5-8% errors.

Figure 6b shows the TRS system under the VT scenario. This
shows that even when the workload changes significantly,
FUSION’s observation error remains within 5% error rate on
average. As a result, a new behavioral pattern sufficient for run-
time learning never emerges. On the contrary, in the case of QN,
the wrong assumptions about service demands exacerbate the
prediction errors.

Figure 6c shows the TRS system under the IF scenario. It shows
that when there are unexpected events in the system, FUSION is
capable of learning the new behavior and adjusting its model.
FUSION’s error rate increases up to 54% at the beginning of the
execution scenario. This error could be attributed to the fact that
the model did not anticipate the impact of Caching feature when
the table scans were taking place in the AgentDiscovery
component. As you may recall from Figure 1, Caching reduces
the need for agent discovery, hence it is more effective in
reducing the response time due to a full table scan for each
discovery. Caching was estimated to be responsible for 35% of
FUSION’s prediction error. Gradually, FUSION fine-tunes the
coefficient of Caching and other features in the learned functions.
As a result, the observation error rate goes down to less than 5%
on average and the system reaches a steady state . In constrast, the
prediction error of QN reaches 80%, since the QN model
presumes the existence of a table index (i.e., the service demand
of the queue representing the database in the model is different).

Figure 6d shows the the DoS scenario. The random nature of
traffic, makes it impossible for FUSION to converge to an
induced model that can predict the behavior of the system within
the on average 5% error rate goal. As soon as a new model is
induced, the execution conditions change, making the prediction
models inaccurate. As a result, FUSION’s learning cycle is
periodically invoked to induce. Even though FUSION does not
reach the same level of accuracy as in the other execution
scenarios, it is still significanlty better than QN and offline
learning. This can be attributed to the fact that FUSION is
benefiting from the continuous tuning, although it loses accuracy
in the absense of a stable pattern.

8.2 Adaptation in Presence of Inaccuracy
Clearly the quality of adaptation decisions depends on the
accuracy of induced models. However, when the execution
context changes, the model is forced to make some adaptation
decisions under uncertainty, which are in turn used to fine-tune
the induced models and account for the emerging behavior. An
important concern is whether the adaptation decisions made
during this period of time (i.e., using an inaccurate model) could
worsen the violated goals or not. Figure 7 shows the normalized
impact of enabling F3 on metrics MG1 and MG3 in the first
observation for each of the four scenarios of Figure 6. Recall
from Figure 6 that the first observation for IF and DOS
correspond to a situation when there is a high-level of inaccuracy.
In all cases, FUSION disables F3 with the purpose of increasing
MG1 and reducing MG3. While due to the inaccuracy of the induced
model FUSION fails to predict accurately the magnitude of
impact on these metrics, it gets the general direction of impact
(i.e., positive vs. negative) correctly. This result is reasonable
since a given feature typically has a similar general impact on
metrics. For instance, one would expect an authentication feature
to improve the system’s security, while degrading its
performance. Hence, even in the presence of inaccurate
knowledge, FUSION does not make decisions that worsen the
situation. Instead it makes decisions that are good, but not
necessarily optimal, until the knowledge base is refined.

8.3 Overhead of Learning
FUSION enables adjustment of the system to changing conditions
by continuously incorporating observation records in the learning
process. An important concern is the execution overhead of the
online learning. One of the principle factors affecting learning
overhead is the number of observations required to make accurate
inductions. Table 3 lists the execution time for a given number of
observations. Simple linear regression takes insignificant amount
of time with large number of observations, which makes it an
appealing choice when there is a large number of observation
(e.g., initial training at design-time, when large number of
observations can be obtained). In our experiments FUSION
performed online learning on a maximum of 10 observations,
which from Table 3 could be verified to have presented an
insignificant overhead of less than 20 milliseconds. This

Figure 6. Accuracy of learned functions for “Quote Response

Time” metric: (a) Normal Traffic, (b) Varying Traffic, (c)

Database Indexing Failure, (d) Randomized DoS Traffic.

Figure 7. Impact of Feature “Per-Request Authentication” on

Metrics “Quote Response Time” and “Quote Quality”.

efficiency is due to the pruning of the feature space and

significance test described in Section 5.

8.4 Quality of Feature Selection
We evaluate the quality of solution (feature selection) found by
FUSION against two competing technqiues. The first technique is
Traditional Optimization (TO), which maximizes the global utility
of the system, and includes all of the feature variables and goals in
the optimization problem. The second technique is Constraint
Satisfaction (CS), which finds a feature combination that satisfies
all of the goals, regardless of the quality of the solution. As you

may recall from Section 6, FUSION adopts a middle ground with

two objectives: (1) find solutions with comparable quality to those
provided by TO, but at a fraction of time it takes to executing TO,
and (2) find solutions that are significantly better in quality than
CS (i.e., stable fix), but with a comparable execution time.

Figure 8 plots the global utility obtained from running the
optimization at 3 different points in time for each of the 4
evaluation scenarios discussed earlier. Each data point represents
the global utility value (recall the objective function in Section

 6.2) obtained for each experiment. FUSION produces solutions

that are only slightly less in quality than TO in all of the
experiments. Note that TO finds the optimal solution. This
demostrates that our feature space pruning heuristics do not
significnatly impact the quality of found solutions. Table 4 shows
the average number of features that are considered for solving
each of the experiments, which is only a small fraction of the
entire feature space. Figure 8 also shows that FUSION find
solutions that are significantly better than CS. In turn, this

corroborates our assertion in Section 6.2 that FUSION produces a

stable fix to goal violations by placing the system in a near-
optimal configuration. On the other hand, since CS may find
borderline solutions that barely satisfy the goals, due to slight
fluctuations in the system, goals may be violated and thus
frequent adaptations of the system ensue.

Finally, we should point out that the quality of solutions found in
all of the methods, including FUSION’s approach, depends on the
accuracy of induced model. In particular, FUSION’s feature space
pruning heuristics depend on this. In fact, the spike in the number
of DoS features that are considered in Table 4 demonstrates that
feature space pruning heuristics were not as successful as other
scenarios where a more accurate knowledge base was available.

8.5 Efficiency of Optimization
In Section 6.2 we described how FUSION achieves efficient

anaysis by using the knowledge base to dynamically tailor an
optimization problem to the violated goals in the system. In
comparison, TO conducts a full optimization problem where the
complexity of the problem is O(2F). Figure 9 shows the execution
time for solving the optimization problem in FUSION, TO, and
CS for the same instances of TRS as those shown in Figure 8 and
Table 4. Note that the execution time of FUSION is comparable to
CS and is significanly faster than TO. This in turn along with the
results shown in the previous section demonstrates that FUSION
is not only able to find solutions that are comparable in quality to
those found by TO, but also achieves this at a speed that is
comparable to CS. Note that since TO runs exponentially in the
number of features, for systems with slighlty larger number of
features, TO could take several hours for completion, which
would make it inapplicable for use at run-time.

9. RELATED WORK
Over the past decade, researchers and practitioners have
developed a variety of methodologies, frameworks, and
technologies intended to support the construction of self-adaptive
systems [2]. We provide an overview of the most notable research
in this area and examine them in light of FUSION.

Architecture-based adaptation. IBM’s Autonomic Computing
initiative advocates a reference model known as MAPE [10],
which is structured as hierarchical levels of feedback-control loop
consisting of the following activities: Monitor, Analyze, Plan, and
Execute. Oreizy et al. pioneered the architecture-based approach
to run-time adaptation and evolution management in their seminal
work [16]. Garlan et al. present Rainbow framework [5], a style-
based approach for developing reusable self-adaptive systems.
Rainbow monitors a running system for violation of the invariant
imposed by the architectural model, and applies the appropriate
adaptation strategy to resolve such violations. All of the above
approaches, including many others (e.g., see [2,15]), share three
traits: (1) use analytical models for making adaptation decisions,
and (2) rely on architectural models for the analysis, and (3) effect
a new solution through architecture-based adaptation. These
works have clearly formed the foundation of our work and have
guided our research as manifested by the key role of architecture
in FUSION. However, unlike these approaches, FUSION adopts a

Figure 8. Global utility for different scenarios.

Figure 9. Optimization execution time for different scenarios.

Table 3. Induction execution time in milliseconds

of Observations 50 500 528 822 903 1227 1809

 M5 Model Tree 60 110 130 130 130 160 230

 Linear Regression 20 30 30 50 60 70 80

Table 4. Effect of feature reduction heuristics.

of Features

Considered

NT

1

NT

2

NT

3

VT

1

VT

2

VT

3

IF

1

IF

2

IF

3

DoS

1

DoS

2

DoS

3

 FUSION 3 1 2 3 4 5 3 4 5 6 13 11

 CS / TO 78

feature-based approach to analysis and adaptation, which not only
makes learning feasible, but also makes the analysis efficient and
reduces the effort required in applying FUSION to existing
systems. Moreover, unlike them, FUSION is capable of coping
with unanticipated changes through learning.

Policy-based adaptation. Related to our research are adaptation
frameworks that employ logic and policy based methods of
induction. Sykes et al. [18] present an online planning approach to
architecture-based self-managed systems. Based on a three-layer
model for self-management [13], their work describes plan (i.e., a
set of condition-action rules) generation with respect to a change
in the environment or a system failure. Georgas and Taylor [6]
present a knowledge-based approach, such that the adaptation
polices are specified as logic rules, which are in turn leveraged to
induce new policies. These approaches bear resemblance to our
work in their use of induction. While policy-based approaches
have been shown useful in some settings (e.g., ensuring certain
properties hold in the system), they cannot be used for making
quantitative analysis of QoS trade-offs. These approaches may
also suffer from conflicting rules in the knowledge base.

Reinforcement learning adaptation. Finally, related to our work
are autonomic approaches that have employed reinforcement
learning. Kim and Park [11] propose a reinforcement learning-
based approach to online planning for robots. Their work focuses
on improving the robot’s behavior by learning from prior
experience and by dynamically discovering adaptation plans in
response to environmental changes. Tesauro et al. [19] have
proposed a hybrid approach that combines queueing network with
reinforced learning to make resource allocation decisions in data
centers. FUSION provides a general-purpose framework for self-
adaption of any feature-oriented application software, which is
fundamentally different from these domain-specific solutions.

10. CONCLUSION
We presented FUSION, a new method of engineering self-
adaptive systems that combines feature-orientation, learning, and
dynamic optimization to alleviate some of the crucial challenges
in this setting. Instead of relying on analytical models that are
unwieldy for use and subject to wrong assumptions, FUSION uses
online learning to analyze and self-tune the adaptive behavior of
the system to unanticipated changes. Learning is enabled by a
dynamic feature-oriented representation of the system that
incorporates the engineer’s knowledge of the application and its
domain. Learning in turn enables FUSION to dynamically tailor
the optimization problem to the violated goals, and hence achieve
efficiency of analysis without trading accuracy. Using a prototype
implementation of the system and a travel reservation system we
have extensively validated the approach and its properties.

In our future work, we intend to investigate opportunistic self-
training as a way to detect emerging behaviors before adaptation
decisions are made. We are exploring a self-training method that
takes place using a shadow clone of the running system during
periods of low utilization. In addition, we intend to empirically
compare FUSION against other self-adaptation frameworks.

11. ACKNOWLEDGMENTS
This work is partially supported by grant CCF-0820060 from the
National Science Foundation.

12. REFERENCES
[1] Carroll, D.J. 2002. Statistics Made Simple for School

Leaders: Data-Driven Decision Making.
ScarecrowEducation.

[2] Cheng, B., et al. 2009. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. Software

Engineering for Self-Adaptive Systems, LNCS. 1-26.
[3] Edwards, G., Malek, S., Medvidovic, N. 2007. Scenario-

Driven Dynamic Analysis of Distributed Architectures.
Int'l Conf. on Fundamental Approaches to Software

Engineering (Braga, Portugal, March 2007), 125.
[4] Friedman, J.H. and Roosen, C.B. 1995. An introduction to

multivariate adaptive regression splines. Statistical

Methods in Medical Research. 4, 3 (Sep. 1995), 197-217.
[5] Garlan, D., Cheng, S.W. et al. 2004. Rainbow:

Architecture-Based Self-Adaptation with Reusable
Infrastructure. IEEE Computer. 37, 10 (Oct. 2004), 46-54.

[6] Georgas, J.C. and Taylor, R.N. 2004. Towards a
knowledge-based approach to architectural adaptation
management. Workshop on Self-healing Systems (Newport
Beach, California, October 2004), 59-63.

[7] Gomaa, H. 2004. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software

Architectures. Addison-Wesley Professional.
[8] Gross, D. and Harris, C.M. 1985. Fundamentals of

queueing theory (2nd ed.). John Wiley & Sons, Inc.
[9] Jordan, M.I. and Jacobs, R.A. 1994. Hierarchical mixtures

of experts and the EM algorithm. Neural Comput. 6, 2
(1994), 181-214.

[10] Kephart, J.O. and Chess, D.M. 2003. The Vision of
Autonomic Computing. IEEE Computer. 36(1), 41-50.

[11] Kim, D. and Park, S. 2009. Reinforcement learning-based
dynamic adaptation planning method for architecture-based
self-managed software. Workshop on Softw. Eng. For

Adaptive and Self-Managing Systems (Vancouver, Canada,
May 2009), 76-85.

[12] Kleppe, A., Warmer, J. et al. 2003. MDA Explained: The

Model Driven Architecture: Practice and Promise.
Addison-Wesley Professional.

[13] Kramer, J. and Magee, J. 2007. Self-Managed Systems: an
Architectural Challenge. Int'l Conf. on Software

Engineering (Minneapolis, MN, May 2007), 259-268.
[14] Malek, S., et al. 2005. A Style-Aware Architectural

Middleware for Resource-Constrained, Distributed
Systems. IEEE Trans. Softw. Eng. 31, 3 (2005), 256-272.

[15] Menascé, D.A., Ewing, J.M. et al. 2010. A framework for
utility-based service oriented design in SASSY. Joint
WOSP/SIPEW Int'l Conf. on Performance engineering
(San Jose, CA, January 2010), 27-36.

[16] Oreizy, P., Medvidovic, N., Taylor, R. 1998. Architecture-
based runtime software evolution. Int'l Conf. on Software
Engineering (Kyoto, Japan, April 1998), 177-186.

[17] Poladian, V., et al. 2004. Dynamic Configuration of
Resource-Aware Services. Int'l Conf. on Software

Engineering (Scotland, UK, May 2004), 604-613.
[18] Sykes, D., et al. 2008. From goals to components: a

combined approach to self-management. Int'l Workshop on

Software Engineering for Adaptive and Self-Managing

Systems (Leipzig, Germany, May 2008), 1-8.
[19] Tesauro, G., et al. 2006. A Hybrid Reinforcement Learning

Approach to Autonomic Resource Allocation. Int'l Conf.
on Autonomic Computing (Dublin, Ireland, June 2006), 65-
73.

[20] WEKA. http://www.cs.waikato.ac.nz/ml/weka/.

