
Abstract. The selection of an architectural style for a given
software system is an important factor in satisfying its quality
requirements. In battery-powered environments, such as mobile
and pervasive systems, efficiency with respect to energy
consumption has gained prominence as an important quality
requirement. In this paper, we present a framework that facilitates
early estimation of the energy consumption induced by an
architectural style in a distributed system, and enables an engineer
to use energy consumption estimates along with other quality
attributes in determining the most appropriate style for a given
distributed application. We apply the framework to three
architectural styles, and evaluate it for precision and accuracy
using a middleware platform that supports the implementation of
those styles. In a large number of application scenarios, our
framework exhibited excellent precision, in that it was consistently
able to correctly rank the styles and estimate the relative
differences in their energy costs. Moreover, the framework has
also proven to be accurate: its estimates were within 7% of each
style implementation’s actual energy cost.

1. INTRODUCTION 
A promising approach to addressing the challenges of
developing distributed, mobile, and pervasive systems is to
employ the principles of software architecture [9,12]. Software
architecture provides abstractions for representing the
structure, behavior, and key properties of a software system
[20]. These abstractions include software components
(computational elements), connectors (interaction elements),
and configurations (specific assemblies of components and
connectors). Architectural styles (e.g., publish-subscribe, peer-
to-peer, client-server) are key design idioms which further
refine the vocabulary of components and connectors and
propose constraints on how they may be integrated.

Architectural decisions made early in the design process are
critical to the successful development of a distributed system.
In particular, selecting an appropriate architectural style has a
significant impact on system quality attributes (e.g., latency,
scalability, reliability, etc.). Energy efficiency is increasingly
being defined as an important quality attribute for mobile and
pervasive applications. However, there are currently no
techniques for analyzing the impact of an architectural style on
a system’s energy consumption. In fact, unlike other quality
attributes, such as those mentioned above, a style’s energy
consumption characteristics are not understood even in an

informal and intuitive manner. In this paper, we address this
problem via a framework that estimates the impact of a
system’s architectural style on the system’s energy
consumption. The framework is intended to be used during
architectural design and enables an engineer to use energy
consumption estimates, along with other quality attributes, in
determining the most appropriate style for an application.

Figure 1 depicts the process and key artifacts employed by the
framework. The framework defines a method to derive
platform- and application-independent equations that
characterize a style’s energy consumption behavior. We refer
to the equations for a given style as that style’s energy cost
model. Comparing the models of different styles yields insights
into the essential differences between the energy costs induced
by each style. We have derived the energy cost models for five
architectural styles: client-server, peer-to-peer, C2, publish-
subscribe (pub-sub), and pipe-and-filter[18]. For brevity, this paper
shows the derivation of only the client-server and pub-sub styles.

The framework also defines a process for applying any style’s
energy cost model to a given distributed system design, prior
to system implementation. As we demonstrate, this is
accomplished by gathering basic information about the target
platform and the system design, and plugging these parameters
into the energy cost model. We refer to an energy cost model
that has been parameterized in this way as a energy prediction
model. Energy prediction models enable scenario-specific
comparisons of the energy costs of different styles, enabling
architects to weigh trade-offs and determine the circumstances
under which one style will be more efficient than another. We
have created energy prediction models for four different distributed
systems. For each system, we chose a set of candidate styles that
were appropriate for the system, derived the energy prediction
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Figure 1. High-level view of the energy consumption estimation 
framework.



model for each candidate style, and evaluated the framework’s
accuracy and precision under multiple execution scenarios.
In a recent short paper [17], we outlined the overview of our
approach. This paper provides a detailed explanation of the
framework and presents the evaluation results. In a large
number of experiments, our framework exhibited excellent
precision, in that it was correctly able to determine the
scenarios under which one style is more efficient than another,
and estimate the relative differences in their energy costs. The
framework also proved to be accurate: it consistently produced
energy consumption estimates that differed from the actual
measured energy costs by at most 7%.
This paper is organized as follows: Section 2 describes how
our framework defines energy cost models for architectural
styles and derives the energy cost models for the client-server
and pub-sub styles. Section 3 discusses how energy cost
models can be applied to a distributed system, and applies the
pub-sub energy cost model to an example application. We
present evaluation results in Section 4. Section 5 describes
related research, and Section 6 concludes the paper.

2. ENERGY COST MODELS
Fielding [2] and Mehta [13] identified more than twenty
architectural styles for distributed systems. In this section, we
first show a uniform way to derive a style’s energy cost model,
which is a symbolic expression that represents the energy cost
induced by using the style. Then, we illustrate the approach by
deriving the energy cost models for the client-server and pub-
sub styles, which embody a diverse set of distributed systems
characteristics, such as distribution, concurrency, and so on.
The derivation of other styles is given in [18].

2.1 Generic Energy Cost Model
As it is common in power modeling of operating systems [10,
23], our energy cost model consists of multiple linear
equations. We model the energy consumed by a distributed
system as the sum of the energy consumed by its constituent n
components and m connectors, as shown in Equation 1.

The energy cost of a component Compi can be expressed as
shown in Equation 2. In this equation, Elogic,i is the
computational energy cost of the component Compi due to
executing its core business logic, while EcommWithConn,i
represents the energy cost of exchanging data via connectors.

In this work, we assume that a component’s core business logic
remains the same for all styles. We acknowledge that this logic
may need to be refactored in some cases. For example, the
logic required by a component to manage its interfaces might
differ among styles. We account for these differences in
EcommWithConn,i of Equation 2. This implies that the
computational energy cost of a component (i.e., Elogic,i in
Equation 2) remains the same across all candidate styles, so
our framework does not require the actual value of Elogic,i to
compare the energy consumption of multiple styles.
Similarly, the energy consumption of a connector Connj can be
expressed as in Equation 3.

Ecomm,j represents the energy consumption of communication,
which includes the cost of exchanging data both locally or
remotely. We can calculate Ecomm,j as shown in Equation 4.
EcommWithComp,j represents the energy consumed by
exchanging data with components, while EremoteComm,j and
ElocalComm,j are the energy costs of exchanging data with
remote and local connectors, respectively. The above
formulation assumes that components and connectors run as
separate processes and the energy consumed by one component
or connector is not dependent on the energy consumed by other
components and connectors. As a consequence, our energy
cost model is most accurate for systems where computing
resources (such as processor time and memory) are abundant
and are assigned “fairly” among all processes. Equation 4 also
assumes that component-connector interactions are supported
by an Inter-Process Communication (IPC) mechanism, which
incurs energy overhead in both the component and connector
[23]. If that is not the case, then the value of either
EcommWithConn,i from Equation 2 or EcommWithComp,j from
Equation 4 would be zero.

Equation 5 shows how to determine Elogic,j, which is the
energy cost of services (other than communication) that a
connector may provide [14]: 
• Coordination – A connector may transfer execution

control among components.
• Conversion – A connector may adapt the interface and

data provided by one component to that required by
another.

• Facilitation – A connector may mediate and streamline
component interaction.

By combining the above equations, we arrive at the generic
energy cost model given in Equation 6. The parameters in
Equation 6 vary according to style. In the following
subsections, we illustrate how we can create style-specific
energy cost models for the client-server and pub-sub styles by
refining these parameters.

2.2 Client-Server Energy Cost Model
To refine the energy
cost parameters
introduced in our
generic energy cost
model shown in
Equation 6, we
characterize the
communication,
coordination,
conversion, and
facilitation required
by the client-server
style. Figure 2 shows an example of a distributed system
designed in the client-server style. Connectors in this style are
commonly implemented as middleware stubs and skeletons.
The client-server style behaves as follows:
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Component Communication: Clients send requests to and
receive responses from client connectors. Servers exchange
requests and responses with server connectors.
Connector Communication: Client connectors receive
requests from clients and forward them to the appropriate
server connector, and receive responses from server connectors
and return them to clients. Server connectors receive and
buffer requests from client connectors and forward them to
servers, and receive responses from servers and return them to
client connectors.
Connector Coordination: Connectors transfer execution
control by passing requests and responses to clients and
servers.
Connector Conversion: Connectors marshal/unmarshal
requests and responses.
Connector Facilitation: Connectors create and manage
connection objects that implement remote communication.
Equation 7 shows the energy cost EcommWithConn,i of a client
Compi due to sending requests to and receiving responses from
a connector. ai is the total number of requests made by the
client. EtoConn,k and EfromConn,k represent the energy costs due
to sending the kth request to and receiving its response from
the connector, respectively. EcommWithConn,i of a server Compi
can be calculated in the same manner using Equation 7. The
values of EtoConn and EfromConn depend on the platform-
specific communication mechanism used between the relevant
component and connector. For example, if a queue is used, the
values of EtoConn and EfromConn are constant; on the other hand,
if IPC is used, they are directly proportional to the size of
exchanged data [23]. We show how these values can be
determined for a given platform in Section 3.

The energy cost EcommWithComp,j of a client connector Connj
incurred by receiving requests from and forwarding responses
to clients can be calculated using Equation 8. bj is the total
number of requests received from clients, while EfromComp,l
and EtoComp,l represent the energy costs due to receiving the lth
request and sending the lth response. We can also calculate
EcommWithComp,j for a server connector Connj using Equation 8.
Again, the values of EfromComp and EtoComp depend on the
platform-specific communication mechanism used.

Data exchange between client and server connectors may be
either local (if they reside on the same host) or remote, and we
handle each case differently. Due to space constraints, we only
show how to model the remote communication here. The local
case is given in [18]. To model the energy consumption due to
remote exchange of data between client and server connectors,
we assume that the total energy utilization is proportional to
the size of the exchanged data. This has been shown to be a
highly accurate characterization for commonly used network
protocols, such as UDP [1]. Based on this, EremoteComm,j of a
client connector Connj due to sending cj requests and receiving
responses can be estimated as shown in Equation 9. tSizel and
rSizel are the sizes (e.g., KB) of the lth transmitted request and
its received response. tEC and rEC are the energy costs
(Joule/byte) on the connector’s host while it transmits and
receives a unit of data, respectively. tS and rS represent
constant energy overheads associated with channel acquisition

[1]. All of these values can be easily measured for a given
implementation platform, as we demonstrate in Section 3.

Similarly, we can calculate EremoteComm,j of a server connector
Connj using Equation 10. dj is the total number of requests
received over the network, and rSizel and tSizel are the sizes of
the lth received request and its transmitted responses,
respectively. Ebuffer,l is the energy cost of buffering the lth
received request.

In the client-server style, the energy cost Ecoordin,j due to
performing coordination is not modeled separately because
connectors transfer execution control by passing requests and
responses, whose energy cost is already captured by the
EcommWithComp,j.
The conversion cost Econver,j of a client connector can be
quantified as in Equation 11. cj is the number of requests sent
remotely, while Emar,l and Eunmar,l are the energy costs of
marshalling the lth request and unmarshalling its response,
respectively. The conversion cost Econv,j of a server connector
can be calculated in the same manner.

The facilitation cost Efacil,j of client and server connectors is
calculated with Equation 12. EremoteConn and ElocalConn are the
energy costs due to establishing a single remote or local
connection, respectively. NumremoteConns,j and NumlocalConns,j
are the numbers of remote and local connections established,
respectively.

By substituting Equations 7 - 12 into the generic energy cost
model in Equation 6, we arrive at the client-server energy cost
model (omitted here due to space constraints). Note that the
energy cost parameters (e.g., EtoConn, EfromComp, tEC, etc.)
introduced in this section are platform-specific, i.e., their
values depend on the hardware, OS, and middleware on which
an application is deployed. We elaborate on how these
parameters are determined for an actual platform in Section 3.

2.3 Pub-Sub Energy Cost Model
The pub-sub style reduces coupling by providing transparency
and anonymity of component identities and locations. Figure 3
shows an example of a distributed system designed using the
pub-sub style. A component in the pub-sub style may be a
publisher, a subscriber, or both. Pub-sub constructs have the
following characteristics:
Component Communication: Subscribers declare the events
they wish to receive by sending subscription requests to a pub-
sub connector. They then asynchronously receive the
published events of interest from the pub-sub connector. In
addition, subscribers can send unsubscription requests to stop
receiving certain events. On the other hand, publishers may
continuously and asynchronously publish events by
transmitting them to a pub-sub connector. 
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Connector
Communication: Pub-sub
connectors receive and
buffer subscriptions from
both subscribers as well as
other, potentially remote,
pub-sub connectors. Pub-sub
connectors also forward
subscriptions to other pub-
sub connectors, so that they
may update their
subscription tables. In
addition, pub-sub connectors
receive and buffer events
from publishers and other,
potentially remote, pub-sub
connectors. They also
forward events to subscribers
and other pub-sub
connectors.
Connector Coordination: Pub-sub connectors provide time
decoupling among subscribers and publishers by queueing
events, so that they can be delivered later.
Connector Conversion: Pub-sub connectors
marshal/unmarshal events.
Connector Facilitation: Pub-sub connectors (1) manage
subscriptions and publications, (2) find the set of subscriptions
that match each published event, and (3) create connection
objects that implement remote communication.
Based on the above characterization, we can first calculate the
energy cost EcommWithConn,i of a component Compi due to
exchanging subscriptions, unsubscriptions, and events with
pub-sub connectors as follows:

ai is the total number of events published by the component,
and bi represents the total number of events received by the
component. EtoConn,k is the energy cost of sending the kth
event to a pub-sub connector, while EfromConn,l is the energy
cost of receiving the lth event from a connector. ci and di are
the numbers of subscriptions and unsubscriptions sent by the
component. Esubs,m and Eunsubs,n are the energy costs incurred
by sending the mth subscription and nth unsubscription to the
pub-sub connector.
The energy cost EcommWithComp,j of a pub-sub connector Connj
incurred by exchanging subscriptions and events with
components can be calculated as follows:

ej is the total number of events received from components,
while fj is the total number of events sent to components.
EfromComp,k and ErecBuffer,k are the energy costs of receiving the
kth event from a components and buffering it, while EtoComp,l
is the energy consumption of forwarding the lth event to all

subscribers of that event. gj and hj are the numbers of
subscriptions and unsubscriptions received from components.
ErSubs,m and ErUnsubs,n are the energy costs incurred by
receiving the mth subscription and nth unsubscription, whereas
EsubBuffer,m and EunsubBuffer,n are the energy costs of buffering
the mth subscription and nth unsubscription, respectively.
The energy cost EremoteComm,j of a pub-sub connector caused
by sending/receiving subscriptions and events to/from remote
connectors can be estimated as follows:

pj is the total number of events received over the network, rj is
the total number of subscriptions received over the network
and tj is the total number of unsubscriptions received over the
network. qj is the total number of events sent over the network,
whereas sj is the total number of subscriptions and uj is the
total number of unsubscriptions sent over the network. rSizek,
rSubSizem and rUnsubSizeo are the sizes of the kth event, mth
subscription and oth unsubscription received over the network,
respectively. Ebuffer,k, ESubBuffer,m and EUnsubBuffer,o are the
energy costs of buffering the kth event, mth subscription and
oth unsubscription. tSizel, tSubSizen and tUnsubSizep are the
sizes of the lth event, nth subscription and pth unsubscription
sent over the network. The other parameters are the same in as
Equation 9.
We can calculate ElocalComm,j of a pub-sub connector due to
exchanging subscriptions, unsubscriptions, and events with
local pub-sub connectors as follows:

pj, rj and tj are the total numbers of events, subscriptions and
unsubscriptions received from local pub-sub connectors,
respectively. qj, sj and uj represent the total numbers of events,
subscriptions and unsubscriptions sent to local pub-sub
connectors, respectively. ElocalReceiv,k, ElocalSubReceiv,m and
ElocalUnsubReceiv,o are the energy costs of receiving the kth
event, mth subscription and oth unsubscription from local pub-
sub connectors. Ebuffer,k, EsubBuffer,m and EunsubBuffer,o are the
energy costs of buffering the kth event, lth subscription and oth
unsubscription. ElocalTrans,l, ElocalSubTrans,n and
ElocalUnsubTrans,p are the energy costs of sending the lth event,

Figure 3. A distributed 
publish-subscribe architecture.
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nth subscription and pth unsubscription to local pub-sub
connectors, respectively.
The energy cost Ecoordin,j of a pub-sub connector incurred by
performing coordination can be calculated as follows:

xj is the total number of events received by the connector, and
Equeue,k represents the energy cost due to queueing the kth event.
The conversion cost Econver,j of a pub-sub connector can be
calculated as follows:

pj, qj and rj are the total numbers of events, subscriptions and
unsubscriptions to be unmarshalled, whereas sj, tj and uj are the
total numbers of events, subscriptions and unsubscriptions to be
marshalled, respectively. Eunmar,k, EunmarSub,l and EunmarUnsub,m
are the energy costs of unmarshalling the kth event, lth subscrip-
tion and mth unsubscription, respectively. Emar,n, EmarSub,o and
EmarUnsub,p represent the energy costs of marshalling the nth event,
oth subscription, and pth unsubscription, respectively.
Finally, the facilitation cost Efacili,j of a pub-sub connector is:

xj is the total number of events received by the connector,
whereas yj and zj are the total numbers of subscriptions and
unsubscriptions received by the connector, respectively.
Eroute,k is the energy cost of retrieving the set of subscribers for
the kth event from a subscription database. EprocSubs,m and
EprocUnsubs,n represent the energy consumption of processing
the mth subscription and nth unsubscription, respectively. The
other parameters are the same as those in Equation 12. 
As in the case of the client-server style, the additional energy
cost parameters (e.g., Esubs, Eunsubs, EprocSubs, etc.) introduced
in this section are platform-specific. We discuss how they are
determined for an actual platform in Section 3.

2.4 Style-Induced Energy Trade-Offs
To compare the energy costs induced by architectural styles,
and illuminate their fundamental differences, we derive the
algebraic difference between their energy cost models. For
example, by subtracting the equation representing the total
energy cost of the pub-sub style from that of the client-server
style, a number of terms cancel out, leaving terms representing
the costs of connector communication and facilitation.
Inspection of these terms clearly reveals that the number of
messages exchanged in the two styles is different, and the pub-
sub style incurs a facilitation cost that is not present in the
client-server style. The intuition behind this result is that the
client-server style is based on a point-to-point interaction
between components, while the pub-sub style may route
messages more efficiently. Therefore, if a message is intended
to be received from a remote host by multiple components
running on one host, the client-server style in principle
requires each message to be transmitted to each recipient
component separately. On the other hand, the same could be
achieved in the pub-sub style with only one transmission of the

message. In this case, it is reasonable to expect the remote
communication energy cost of client and server connectors
(i.e., EremoteComm of Equations 9 and 10) to be larger than that
of pub-sub connectors (i.e., EremoteComm of Equation 15).
However, in general, pub-sub connectors incur a higher
facilitation energy cost (i.e., Efacil of Equation 19) than client
and server connectors (i.e., Efacil of Equation 12) because the
pub-sub style has the additional overhead of managing
subscriptions and retrieving them for each published event.
Therefore, through the systematic determination of energy cost
parameters, as outlined above, it becomes immediately clear
that the energy trade-off between the client-server and pub-sub
style is dominated by two factors: (1) the number of separate
messages exchanged remotely and (2) the facilitation overhead
of a pub-sub connector. In other words, a client-server
application consumes more energy than the same application
implemented in the pub-sub style only if the energy cost of
exchanging additional messages is larger than the facilitation
cost of the connectors in pub-sub, and vice versa.
This type of comparison can be conducted for arbitrary
architectural styles whose energy costs have been modeled
using the process described in this paper. An important
contribution of our framework is that it allows architects to
intuitively understand the energy trade-offs between different
styles based solely on the style-induced characteristics, and
irrespective of the implementation platform.

3. ENERGY PREDICTION MODELS
The energy cost models given in Section 2 provide a symbolic
representation for assessing the energy cost induced by the
architectural style of a distributed system. However, the actual
energy consumption induced by various styles is dependent on
several platform-specific and application-specific properties.
In this section, we show how to apply the energy cost model
for an architectural style to a distributed system by creating a
specific energy prediction model. To derive an energy
prediction model, the following information is necessary:
1. Platform-specific energy cost model parameters must be

determined through mapping the energy cost model
parameters to the target implementation platform and
measuring their actual costs. These parameters include the
cost of transmitting data over a network and the cost of
performing lookups in routing tables. The process for
performing this task is explained in Section 3.1.

2. Application-specific energy cost model parameters must
be determined from the system design. These parameters
include the system’s components, connectors, their
configuration, sizes of exchanged messages, etc. The process
for gathering these parameters is detailed in Section 3.2.

Note that determining the values of both of the above sets of
parameters only requires access to the target platform and
basic application design information, and does not require the
actual implementation of the application. This feature allows
our framework to be utilized by an architect early in the overall
design process.

3.1 Platform-Specific Model Parameters
To accurately determine the energy costs represented by
platform-specific parameters in an energy cost model, we
characterize these costs in terms of interfaces provided by the
underlying implementation platform. This process consists of
two high-level steps: (1) mapping each platform-specific cost
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parameter to the interface(s) of the underlying platform that
incur that cost, and (2) measuring with a digital multimeter the
actual energy consumed when those interfaces are invoked. We
have mapped energy cost models to three different platforms:
Prism-MW [12], Java RMI [6] and TAO [16]. Due to space
constraints, in this section we only describe the mapping for
the pub-sub energy cost model onto Prism-MW. The process
for other styles, as well as other platforms, is analogous, and
the details of these other mappings are given in [18].
Prism-MW, a lightweight, component-based middleware
platform, is an appropriate demonstration and evaluation
platform for our framework for two reasons: (1) it is intended
for resource-constrained and mobile systems, to which our
work is directly relevant; and (2) it supports for numerous
architectural styles [12], giving us a common platform to
evaluate the framework’s utility. Prism-MW provides
programming language-level constructs that directly
correspond to and implement software architecture-level
concepts such as components, connectors, topologies, and
ports. In general, there are many ways of implementing an
interface; in Prism-MW, the invocation of an interface
corresponds an event being passed to the handle method of one
of the Prism-MW constructs. Therefore, we map the energy
cost model parameters for the pub-sub style to the Prism-MW
platform in the following way:
• The parameters Esubs, Eunsubs, EprocSubs and EprocUnsubs

(of Equations 13 and 19) are incurred when a pub-sub
connector handles a subscribe or unsubscribe event.

• The parameters Eroute, EtoConn, EfromComp and ErecBuffer
(of Equations 13, 14, 15 and 19) are incurred when a pub-
sub connector handles a published event.

• The parameters EfromConn and EtoComp (of Equation 14)
are incurred when a component handles an event to which
it has subscribed.

• The parameters Emar and Eunmar (of Equation 18) are
incurred when a Prism-MW port handles an event that
must be transmitted over the network. A Prism-MW port
is a connection duct for a software connector [12].
Therefore, its energy cost is aggregated with that of the
associated connector.

Once the
energy cost
model
parameters
are mapped to
interfaces of
the target
implementatio
n platform, it
is necessary to measure the actual energy cost of invoking each
interface, using the measurement setup shown in Figure 4. A
benchmarking application invokes each platform interface
many times with different input parameter values and measures
the current drawn from a power supply. We then apply
multiple regression to the values recorded by the benchmark
application to estimate the relationship between the input
variables and the energy consumed. This relationship depends
on the target platform. As one target platform, we used a
Compaq iPAQ 3800 mobile device running embedded Linux
with a 206MHz Intel StrongARM processor, 64MB memory,
and 11Mbps 802.11b compatible wireless PCMCIA card. We
chose a version of Prism-MW that runs on top of the JamVM
1.4.5 [7], which is a lightweight Java Virtual Machine. The

iPAQ device was connected to an external 5V DC power
supply and HP 3458-a digital multimeter. The multimeter
sampled the current drawn by the iPAQ at a high frequency. A
data collection computer controlled the multimeter and
recorded the current samples. Table 1 summarizes the
measured energy consumption values.

Once platform-specific parameter values have been obtained,
the only remaining undefined values in the energy cost model
are application-specific parameters. The next section describes
how to incorporate this information from a system design to
create a completely parameterized energy prediction model.

3.2 Application-Specific Model Parameters
Energy cost models contain parameters related to the number
and size of messages exchanged between components. Also,
whether messages are transmitted locally or over a network has
a major impact on energy use. Determining these application-
specific parameters requires extracting the following
information from the system design:
• The system’s constituent components, connectors, and

their configuration
• The system’s deployment architecture, which is the

allocation of the system’s components and connectors to
its hardware hosts

• Sizes of messages exchanged between components
• A set of destination components for each message
To illustrate how to derive an energy prediction model for an
application, given the above information, consider the sensor
application shown in Figure 5. The application was designed
using two architectural styles: client-server and pub-sub. The
FireAlarmReceiver component on Gateway 1 translates and
aggregates alarms received from fire detection sensors
periodically, and propagates them to the FireAlarmAnalyzer
component on the Hub. Additionally, these alarms are logged
by the AlarmLogger component. The FireAlarmAnalyzer
interprets the alarm data to determine whether there is actually
a fire. If the FireAlarmAnalyzer concludes that there is a fire, it
transmits a sensor-activation message to the
FireAlarmReceiver, which in turn sends an activation signal to

Figure 4. Measurement setup.
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Table 1. Measured Platform-Specific Parameter Values

Prism-MW Interface Energy Cost Model 
Parameters

Average 
Measured 
Value (mJ)

Connector.
handle(Subcribe)

Esubs + EprocSubs 24.1

Connector.
handle(Unsubscribe)

Eunsubs + EprocUnsubs 18.1

Connector.
handle(Publication)

Eroute + EtoConn +
EfromComp + ErecBuffer

72.9

Component.
handle(Publication)

EfromConn + EtoComp 40.9

Port.
handle(LocalEvent)

Emar + EremoteComm 15.0
+2.8*eventSize

Port.
handle(RemoteEvent)

Eunmar + EremoteComm 12.0
+2.6*eventSize



all the fire sensors. An analogous processing path takes place
in the intrusion detection sensors, IntrusionAlarmReceiver, and
IntrusionAlarmAnalyzer components.

In the client-server architecture, the Receiver components act
as clients and invoke interfaces on the Analyzer and Logger via
their local connectors. The client connectors on Gateways 1
and 2 transmit requests received from local Receiver
components to the Analyzer and Logger separately, which
indicates that each alarm requires two remote transmissions.
On the other hand, in the pub-sub architecture, the Analyzer
components subscribe to fire or intrusion alarm events, and the
AlarmLogger subscribes to both event types. When the
FireAlarmReceiver publishes a fire alarm event, the pub-sub
connector retrieves the event’s subscribers (i.e.,
FireAlarmAnalyzer and AlarmLogger) and routes the event to
them, which requires only one transmission from Gateway 1.
Thus, to create an energy prediction model for the pub-sub
instance of the above application, an architect characterizes the
system in the following way:
• There are five components and three pub-sub connectors,

running on three hosts.
• The types of messages are fire alarm, intrusion alarm, fire

sensor activation, intrusion sensor activation, and
subscription request.

• The destination components for a fire alarm message are
FireAlarmAnalyzer and AlarmLogger components, while
an intrusion alarm message has the destinations of
IntrusisonAlarmAnalyzer and AlarmLogger components.
The destination of a fire sensor activation message is the
FireAlarmReceiver component, whereas an intrusion
sensor activation has the IntrusionAlarmReceiver
destination component.

3.3 Style-Induced Energy Trade-Offs
Instantiating a style’s energy cost model with platform-specific
and application-specific energy cost model parameters leads to
an energy prediction model that can be used to estimate the
relative differences between styles with respect to energy
consumption. For example, in the sensor application scenario,
the energy cost incurred on the Gateway by the occurrence of a
fire alarm event (in mJ) is given in Equations 20 (for the pub-
sub style) and 21 (for the client-server style).

Thus, given rough estimates of the sizes of the various events
in the scenario, an architect can determine which style is more

efficient. For example, if we assume the sizes of all application
events to be 9 KB, the cost of each fire alarm is 112.62 mJ for
pub-sub and 177.15 mJ for client-server. If we assume
subscription and connection setup (i.e., facilitation) to be one-
time costs, over time the pub-sub architecture would be
approximately 37% more efficient. More generally, an
architect can easily vary any of the parameters in the model —
hosts, components, messages sizes, etc. — and investigate
which style is most efficient in different situations.

4. EVALUATION
This section presents the results of our framework evaluation.
To check the accuracy of our framework’s estimates, we
measured the actual energy costs induced by the architectural
styles for our application scenarios and compared these values
to energy consumption predictions made by our framework.

We evaluated our framework using four applications: the
sensor application described in Section 3.2, a mobile sales
application, a search-and-rescue coordination application, and
an XML data streaming application. For each application, we
used our framework to estimate the energy consumed on each
host, and calculated the overall energy consumption induced
by each style by summing up the hosts’ energy costs. We then
measured the actual amount of energy consumed by the
implemented system, again using the digital multimeter setup
described in Section 3.2. We varied the frequencies and sizes
of data exchanges and component interactions stochastically.

For the sensor application, the framework suggested that
utilizing the pub-sub style would result in significant energy
savings compared to the client-server style. As shown in
Figure 6, the energy consumption estimates from our
framework fell within 7% of the measured energy costs for
both styles. Moreover, as our framework predicted, the pub-
sub style was determined to be much more energy-efficient for
this scenario because the energy cost incurred by exchanging
more data remotely in the client-server style exceeds the

Figure 5. A distributed sensor application designed in 
client-server (left) and publish-subscribe (right) styles.
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Eq. 2143.39 + 5.504 * requestSize+ 38.07 * 5.128 * replySize Figure 6. Framework’s accuracy for the 
distributed sensor application (left) and the mobile 

sales application (right). The values are in mJ.
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energy overhead due to processing the subscriptions and
publications in the pub-sub style.

As shown in Figure 6, the energy consumption predictions for
the mobile sales application made by our framework were also
within 7% of the actual measured costs for both styles. The
framework also correctly predicted that the client-server style
is more energy-efficient than the pub-sub style. The same level
of accuracy was observed on the other two applications. The
detailed data for all applications is given in [18].

5. RELATED WORK
Many approaches have focused on analyzing quality attributes
of software architectures (e.g., performance [4] and
availability [25]). Likewise, many studies of the characteristics
of architectural styles have been conducted (e.g., [13,19]).
However, none of these studies focus on energy consumption.

There are a number of tools that estimate the energy
consumption of embedded operating systems or applications.
Li et al. [10] characterized the energy consumption of the
commercial OS, SGI IRIX 5.3 and provided energy
consumption models for estimating its runtime energy
dissipation. Similarly, Tan et al. [23] investigated the energy
behavior of two widely used embedded OSs, μC/OS [8] and
Linux, and suggested quantitative macro-models that can be
used as energy estimators. Gurumurthi [5] proposed a power
estimation tool, SoftWatt, using a system simulator, the
SimOS, for estimating the energy use of both an application
and SGI IRIX 5.3 operating system. Sinha [22] suggested a
web-based tool, JouleTrack, for estimating the energy cost of
an embedded software running on StrongARM SA-1100 and
Hitachi SH-4 microprocessors. Flinn et al. [3] developed a
tool, PowerScope, which estimates the power consumption of
mobile applications running on the NetBSD operating system
[15] by combining the hardware instrumentation to measure
current levels with the kernel software support to perform the
statistical sampling of system activities. Recently, Luo et al.
[11] suggested a model to estimate the energy cost caused by
user interaction with a mobile device. All of the above
estimation tools focused on individual applications with
concrete implementations and running on specific platforms.
Therefore, these estimation tools lack generally applicable
energy consumption models.

Several studies [21,26] have characterized the energy
consumption of wireless network interfaces on handheld
devices. They have shown that the energy usage due to
exchanging data over the network is directly linear to the size
of data. We leveraged these experimental results to define a
connector’s remote communication energy cost.

6. CONCLUSION
We presented a framework that facilitates the early estimation
of the energy consumption induced by an architectural style on
a distributed software system. This capability enables an
engineer to employ energy cost predictions along with other
quality attributes in determining the most appropriate
architectural style for a given distributed application before the
implementation of the system. Our extensive evaluation of the
framework with respect to accuracy in a large number of
distributed application scenarios has shown an error bound of
at most 7% as compared to the actual energy cost.
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