

A Modeling Language for Activity-Oriented Composition

of Service-Oriented Software Systems

Naeem Esfahani, Sam Malek, João P. Sousa, Hassan Gomaa, and Daniel A. Menascé

Department of Computer Science

George Mason University

{nesfaha2, smalek, jpsousa, hgomaa, menasce}@gmu.edu

Abstract. The proliferation of smart spaces and emergence of new standards,

such as Web Services, have paved the way for a new breed of software systems.

Often the complete functional and QoS requirements of such software systems

are not known a priori at design-time, and even if they are, they may change at

run-time. Unfortunately, the majority of existing software engineering techniques

rely heavily on human reasoning and manual intervention, making them

inapplicable for automatic composition of such software systems at run-time.

Moreover, these approaches are primarily intended to be used by technically

knowledgeable software engineers, as opposed to domain users. In this paper, we

present Service Activity Schemas (SAS), an activity-oriented language for

modeling software system’s functional and QoS requirements. SAS targets

service-oriented software systems, and relies on an ontology to provide domain

experts with modeling constructs that are intuitively understood. SAS forms the

centerpiece of a framework intended for user-driven composition and adaptation

of service-oriented software systems in a pervasive setting. We provide a

detailed description of SAS in the context of a case study and formally specify its

structural and dynamic properties.

Keywords: Requirements Modeling, Domain Specific Modeling Languages,

Model Driven Development, Autonomic Computing, Pervasive Systems

1 Introduction

Software systems are increasingly permeating a variety of domains, including

medical, industrial automation, defense, and emergency response. The growth of

service-oriented software systems and the emergence of new standards have made it

possible to develop pervasive systems that were not even conceivable a few years ago.

In particular, the decoupling of service providers from consumers and the flexibility

of dynamically discovering and binding to services have facilitated the development of

software systems intended for execution in smart spaces. The proliferation of portable

and embedded computing devices and the recent advances in wireless network

connectivity have further made the service-oriented architecture (SOA) paradigm a

viable option in such settings. Web Services [1] have also played a crucial role in

enabling interoperability and alleviating integration challenges in pervasive settings.

Domain experts and end-users increasingly rely on such systems for their day to day

activities. The software deployed in such settings needs to deal with the inherently

dynamic and unpredictable nature of pervasive environments. Finally, the functional

requirements of such software systems are often not completely known at design-time,

and even if they were, they may change at run-time.

These characteristics have forced the designers of such systems to deal with two

emerging and increasingly important classes of daunting challenges: (1) rapid

composition of software systems at run-time based on the users’ changing needs, and

(2) autonomous adaptation of the software system at run-time to satisfy the system’s

functional and non-functional requirements. However, the majority of existing

software engineering techniques for representing, analyzing, and composing software

systems rely heavily on human reasoning and manual intervention, making them

unwieldy for use in this setting. Moreover, these approaches are primarily intended to

be used by technically knowledgeable software engineers, as opposed to domain

experts that use such systems on a daily basis.

Motivated by the aforementioned challenges, we have developed a framework

entitled Self-Architecting Software Systems (SASSY) [2]. SASSY enables autonomic

composition and adaptation of service-oriented software system based on the domain

users’ requirements. To that end, domain users express their functional and Quality of

Service (QoS) requirements in an intuitively understood visual modeling language.

SASSY in turn automatically generates an architectural model that satisfies the

system’s requirements, and deploys it through discovery and coordination of available

services. Moreover, SASSY continuously monitors the running system and, if

necessary, adapts the architecture and running system to ensure the user’s requirements

are satisfied throughout the system’s execution.

In this paper, we present Service Activity Schemas (SAS), an activity-oriented

language for modeling the user requirements in the SASSY framework. SAS allows for

the representation of both functional and QoS requirements in terms of modeling

constructs that are intuitively understood by domain experts. The SAS modeling

notation relies on a domain ontology that clearly specifies the semantics of the domain

entities and their interrelationships.

Unlike existing low-level service coordination languages (e.g., BPEL [3] semantic

BPEL[4], JOpera [5]) and software modeling languages (e.g., UML [6], ADL [7]), the

language is intended to be usable by domain experts. While SAS is motivated by

business process modeling languages (e.g., BPMN [8]), it represents a departure from

them as it codifies the system requirements in a manner that enables the automatic

generation of executable pervasive SOA software systems.

We have developed an implementation of SAS as a Domain Specific Modeling

Language (DSML) on top of the Generic Modeling Environment (GME) [9]. The static

and dynamic characteristics of the language are formally specified using the GME

meta-models and Z notation [10], respectively. Our experiences with applying the

language and environment to pervasive SOA software systems have been very positive.

In all cases, the language proved to be both usable and rich enough to accurately

represent the domain expert’s requirements. A subset of one of these systems for a fire

emergency application is described throughout this paper.

The remainder of the paper is organized as follows. Section 2 introduces the SASSY

framework and describes the role of SAS in the overall scheme. Section 3 presents the

related work. Section 4 describes a case study, which is used to introduce the language

in Section 5. Section 6 details the process of using the language for the composition of

service-oriented software system. Sections 7 and 8 present the structural and dynamic

semantics of SAS, respectively. Finally, the paper concludes with an outline of our

future work.

2 The SASSY Framework

SASSY [2] is a model-driven framework for composing SOA software systems (see

Fig. 1 for an overview). The domain expert specifies the functional and QoS

requirements using the SAS language, which is the focus of this paper. With the help

of a domain ontology, these requirements are translated into the system’s base software

architecture. The domain ontology provides the means for unambiguously

distinguishing different concepts and elements, which as outlined further below

facilitate discovery of services and resources in support of activities. We assume the

domain ontology is created and maintained by a consortium of domain experts, who

specify the various domain activities and concepts, including the properties of

respective services that realize them. Examples of such ontology and directories

provided by the US government for various domains, including emergency response,

can be found at [11].

After generating the base architecture, SASSY instantiates the architecture by

discovering the required services and selecting the ones that maximize a global utility

function that depends on the system’s QoS requirements. SASSY generates alternative

architectures by exploring and applying architectural patterns that increase the utility.

For instance, in a situation where a service provider’s availability causes the utility to

be reduced, SASSY

may employ a

replication pattern to

compose two services

in a way that one can

be used as a hot

standby for the other.

At run-time,

SASSY monitors the

services and computes

the value of the global

utility function. When

it is reduced by a given

threshold, SASSY re-

architects the system

and adapts it

accordingly. Similarly,

Service Activity Schema

Base Software Architecture Generator

Base Software Architecture

Service Discovery

Optimal Service Selection

Domain Ontology

UR (r)

rUtility functions

Domain Expert

QoS met?

Executable Software System

SASSY Run-time Support System

Architectural

Patterns

Critical SSS Determination

Alternative Architecture Generator

NoYes

 Fig. 1. An overview of SASSY framework.

SASSY re-architects the system when the domain experts change the system

requirements, and thus evolves the system.

3 Related Work

There are fundamentally two schools of thought concerning the modeling of

activities: one focuses on the modeling of human activities, the other focuses on the

modeling of workflow of computational and/or business processes.

The first has its roots in psychology, going back to Leont’ev’s modeling of

craftsmen activities [12], which inspired design approaches in human-computer

interaction based on the modeling of user activities (e.g., [13]). This approach

recognizes that users carry out actions to achieve their goals, but that the specific

actions and their ordering is adapted to the material conditions of execution, that is, it

cannot be prescribed a priori: a concept called situated action.

In contrast, workflow modeling prescribes a concrete flow of actions to be followed.

Recently, there has been considerable work on Business Process Execution Language

(BPEL [3]), and Business Process Modeling Notation (BPMN [8]). BPEL is an

executable business process language, serialized in XML, to support programming in

the large (e.g., see [14] for an overview and formal semantics and [4] for application of

ontology to make BPEL accessible in semantic level). BPMN [8] is a business process

modeling language, intended to be used by domain experts in a variety of domains.

BPMN has three major drawbacks: (1) it is a general purpose language and

semantically loosely defined, making it difficult to automatically generate executable

models from it; (2) it does not support specification of QoS requirements; and (3) it is

not suitable for pervasive settings as it lacks support for long living activities.

Our modeling approach in SASSY combines the adaptability of situated action, for

dealing with uncertainty and emergent behaviors in domains such as emergency

response, and the efficacy of workflow, for coordinating the behaviors of complex

software systems.

In general, the development of visual modeling languages and tools for supporting

the design of complex service-oriented systems is lagging behind the development of

the underlying technology. Among the existing works, JOpera [5] is most closely

related to our language. JOpera provides a workflow modeling language for

representing the transformation of data among services. However, unlike SAS, the

language provided by JOpera is very low-level and not intended for use by domain

experts. Moreover, JOpera does not provide support for modeling QoS requirements,

long living activities, and distinguishing local activities from services.

Finally, UML [6,15] is a commonly used notation for the visual modeling of today’s

software systems. UML’s diagrams provide a standard notation for representing the

various structural and behavioral aspects of a system’s software. Several approaches

extend UML’s notation via stereotypes [16,17]. However, using UML to visualize the

requirements of a software system has several drawbacks: UML’s diagrams are

relatively static; they do not consider services as first-class modeling entities; do not

provide native support for representing and visualizing the parameters that affect the

system’s QoS properties; and are not semantically constrained to enable automatic

composition of SOA software. Moreover, UML is not aligned with SASSY objectives,

as it is geared to software engineers, instead of domain experts.

4 Case Study

We use a software system, called Fire Emergency Response System (FERS), for

describing the language and demonstrating its properties throughout this paper. FERS

is developed internally and motivated by existing standards [11]. It targets SOA-

enabled smart spaces and is intended for use by emergency response organizations to

automatically detect, respond, and manage fire emergencies.

An FERS school is equipped with two types of sensors: smoke detectors and fire

sprinklers. There may be many smoke detectors and fire sprinklers throughout a

school. A sensor exposes a web service that provides operations for accessing its status

and controlling it. For instance, a fire sprinkler service provides operations that allow

other entities in the system to turn the sprinkler on/off. A school also exposes a service

that provides profile information, such as the name of the school, location, number of

students, and hours of operation.

An FERS fire station has a fire monitoring service (FMS) that keeps track of all the

sensors in the schools. A fire station also has several fire engines. Once smoke is

detected by the FMS, it uses the fire station’s fire dispatch service to dispatch the

closest smart fire engines to the scene. In order to determine the number of required

fire engines that need to be dispatched, the dispatch service uses a heuristic based on

the information (e.g., number of students, size of the school, and hours of operation)

made available by the school's profile service and the number of smoke sensors that

have detected smoke.

A fire engine constantly communicates its status and progress to the station's

dispatch service. As soon as the fire has been extinguished, the system resets the smoke

detectors, turns off the fire sprinklers, and orders the fire engines to return to base.

5 Language Overview

This section introduces the SAS language through a small subset of the FERS

system. In Sections 7 and 8, we revisit the language constructs and precisely define

their semantics.

Fig. 2 shows some of the modeling constructs available in the SAS language. Events

are messages exchanged between two separate entities. Gateways manage the flow of

control within an entity. Some of the supported gateways include InclusiveGateway

(Conditional-Or), ExclusiveGateway (Switch), and ParallelGateway (Fork and And-

Join).

The language distinguishes local Activities from ServiceUsages, i.e., activities

performed by external entities (another organization). An underlying assumption in our

work is that activities and service types are defined in a domain ontology, and

commonly understood by domain experts. SAS also supports hierarchical composition

through the notion of Sub-SAS. Activities, Sub-SASs, and ServiceUsages are

represented by rectangles with round corners. A Sub-SAS is delineated with a plus sign,

for bringing up the internal composition, and a ServiceUsage with a server icon.

Communication with a service is via Input and Output events, while communication

with a Sub-SAS is via StartLink and EndLinks.

An SAS model is a graph where nodes correspond to activities and services that are

coordinated to realize some functionality. In fact, as detailed in Section 6, an SAS may

realize the functionality of a service type defined in the ontology.

Fig. 2b shows an SAS model that realizes the dispatching service of FERS. When a

dispatch message arrives, dispatching service calculates which fire engines should be

assigned to the incident. The SAS is divided into two parallel sequences through a

ParallelGateway, which behaves as a fork/join. The first path queries the School

service where the smoke detector is located to get an estimate of the number of people

in the school. The second path uses the createInc interface of the MissionManager

Sub-SAS to create a record for the incident.

When both the incident and occupancy messages have arrived, they are joined by a

ParallelGateway into a single sequence. assignFE is a looping activity that uses this

information to determine which fire engines (FE), if any, should be dispatched.

When the dispatching service receives a normalcy message, it uses the cancelMis

interface of MissionManager to send a callBack message to command the fire engines

to return to base. Throughout the mission each fire engine periodically reports its status

to the dispatch service by sending a report message.

Fig. 2c shows the association of a QoS requirement with a path through the

dispatching service SAS. A QoS requirement is specified via a Service Sequence

Fig. 2. SAS for dispatch service: a) language constructs, b) basic flow, and c) response

SSS is selected.

Scenario (SSS). In this case, the response SSS indicates that the School service should

respond to a request made by the coordinator within a pre-specified time. Section 7

describes how such QoS requirements are specified as attributes of an SSS.

An SAS may be made available for reuse as a service, a Sub-SAS, or both. An SAS

exposed as a service may be used by external organizations for constructing their own

SASs. Similarly, a Sub-SAS allows for hierarchical composition of SASs, and enables

reuse within the same organization. The details of SAS reuse are further discussed in

Section 6.

Note that since one of our objectives has been to make the SAS language usable by

domain experts, the coordinator is implicitly defined. In other words, an SAS model

represents the coordination between internal activities and external services. This

differs from a software design perspective, where a coordinator component is explicitly

delineated and separated from the rest of the system. Our approach is compatible with

existing business process modeling languages (e.g., BPMN [8]) that are also intended

for use by domain experts.

6 Building Service-Oriented Systems with SAS

In our work we assume each domain has either a standard body or an organization in

charge of defining the domain ontology. For example, in the emergency response

domain a government authority typically defines the corresponding ontology (e.g.,

[11]). SAS enables an organization to realize a service type defined in the ontology,

and make it available for external use by registering it in a service directory (e.g.,

UDDI [18,19]). In this way each organization retains its autonomy. At the same time,

the ontology enables interoperability and integration among the various organizations,

and forms them into a coherent task force. We further elaborate on the details of this

process below.

Defining a service type in the ontology consists of specifying (1) the service’s

interfaces, and (2) the service’s interaction protocol. A service type’s interfaces

correspond to its input and output messages, similar to the information provided in a

WSDL [18]. A service type’s interaction protocol describes the relationship between

the service’s interfaces. It indicates the output messages and the order they are

generated when the service receives a particular input.

For defining the interaction protocol a subset of the SAS constructs (i.e., Input,

Output, Gateway, and Flow) is used. Fig. 3a shows the interaction protocol for the FE

service (recall example of Fig. 2b). This interaction protocol specifies that a service of

FE type receives return and missionSend messages and as result of that generates one

or more report messages. The flow from the gateway to itself in Fig. 3a specifies that

in response to one request message several report messages can be generated.

Organizations query the ontology for a service type’s definition to determine how an

instance of it can be used in their own SAS. An organization that intends to provide an

instance of a service type creates a corresponding SAS as follows: replaces the Inputs

and Outputs messages with StartLink and EndLinks, respectively; and provides an

implementation for each of the service’s interfaces that comply with its interaction

protocol. The constructed SAS is then made available to other organizations by

registering it in a service directory.

Fig. 3b illustrates the corresponding SAS for the interaction protocol of the FE

service shown in Fig. 3a. As a result of the FE service receiving a return order, the fire

engine goes back to its base station. The location of base station is a parameter in the

return message that is delivered to goToLocation activity. While on its way back, the

goToLocation activity periodically sends a report message, which as you may recall

from recall Fig. 2b updates the fire station of the vehicle’s current status.

When the FE service receives the missionSend message, the vehicle is directed to go

to the fire scene, and as before continuously sends updates of its current status. When

the fire engine arrives, it checks whether there is a real fire or not. If it is a false alarm,

the smoke sensors are turned off. Otherwise, the sprinklers are turned on, and the FE is

directed to extinguish the fire. Meanwhile, the FE continuously sends report messages

to update the fire station of its progress.

Note that activities such as goToLocation, fightFire, and checkFire may either be

automatically enabled, or rely on a firefighter to manually check the existence of a fire

and inform the system through a user interface. In other words, we model the humans

through the user-interface (itself a service) they use for the interaction with the system.

The domain experts are advised to be careful with the specification of QoS goals (SSS)

involving such activities, since the ability to satisfy such QoS properties relies on the

humans, whose behavior cannot be controlled by SASSY.

The SAS depicted in Fig. 3b is only one implementation of the FE service. Other

organizations may provide their own implementation of FE using different SASs. The

only restriction is that the SAS needs to adhere to the interface definition and the

interaction protocol (i.e., Fig. 3a) described in the ontology. Note that our approach

does not prevent organizations from providing an implementation of a service type

using other more traditional techniques (e.g., programming languages, BPEL).

7 Structure of SAS

The linguistic structure of SAS is defined using the meta-model provided by the

Generic Modeling Environment toolkit (GME) [9]. GME is a general purpose model-

Fig. 3. Fire engine (FE) service: a) interaction protocol specification, and b) an SAS

implementing the service specification.

driven engineering environment that enables the development of domain-specific

modeling languages. Just as formal grammars define the structure of valid sentences

for textual languages, meta-models play a similar role for graphical languages. GME

has the ability to interpret a given meta-model and automatically build a modeling

environment that enforces the structural rules.

The meta-modeling language supported by GME is a stereotyped variant of UML,

which we explain below, as needed.

Fig. 4 shows the meta-model for SAS divided into three parts, for readability: graph,

service, and QoS. Starting with graph, an SAS model contains Nodes, ServiceUsages,

and Flows between those. Nodes may be either ActivityUsages or Gateways, which in

turn may be Parallel, Inclusive, or Exclusive. We elaborate on each of these below.

Furthermore, hierarchical decomposition is supported by allowing an SAS to contain

other SASs (i.e., a Sub-SAS). A parent SAS interacts through StartLink and EndLink

nodes, which act respectively as input and output interfaces to a child SAS. Ultimately,

a number of SASs may be included in a hierarchical structure of folders containing the

Requirements for a system.

With respect to the stereotypes that annotate this meta-model, GME defines Model

which corresponds to a diagram, Set for defining subsets of objects within a diagram,

Atom which has a graphical representation, and Connection, represented as a line

between two atoms. Additionally, Reference provides a mechanism to describe several

usages of a single definition. First class object, FCO, is a super type of the above used

for organizing the meta-model, and has no associated graphical representation of its

own. For example, SAS is a Model, an Exclusive gateway is an Atom, and Gateway is

an FCO.

A Flow represents a line between two GenericNodes: the source and destination of

the flow. A Flow carries data from between two nodes. The Condition field of a Flow

determines whether a particular data can traverse that Flow. The Mapping field of a

GenericNode specifies the transformation of data as it enters and exits a node. This

transformation describes which data is passed into the node, and which data is returned

from the node. Since the transformation of data is a common feature of several SAS

constructs (e.g., Gateways, ActivityUsages, Links), it is modeled as an attribute of

GenericNode.

Gateways play a key role in coordinating the behavior of an SAS, and are best

explained in behavioral terms: see Section 8.

7.1 Services and Activities

ServiceUsage and ActivityUsage constitute the basic functional elements of an SAS.

While an activity is carried out internally by the component, e.g., a call to a system

library, a service is requested to another component, possibly across the network. A

LoopingActivityU may repeat a number of times determined by the Condition field,

before completion. An Activity may have a return value which can be specified using

Result. The Results are added to the outgoing data.

Both ActivityUsage and ServiceUsage are stereotyped with Reference, which allows

for referring to existing Activity and Service definitions. Such definitions exist in

ActivityDirectory and ServiceDirectory, respectively, which are populated based on the

information available in a domain ontology, and may be consulted by the domain

experts while designing an SAS.

Fig. 4b shows the meta-model for services. A ServiceDirectory is a Folder

containing multiple Service definitions. A Service is a Model, that is, it has an

associated diagram containing Input and Output interface nodes. The role of the latter

is similar to the role of the StartLink and EndLink interface nodes: to facilitate the

interaction between other constructs in the SAS and the internals of the particular box

(a service or sub-SAS, respectively). Outputs are responsible for returning the Result

from the Service. The Proxies that annotate the meta-model are simply a mechanism

provided by GME for referring to objects defined in other parts of the meta-model.

7.2 Service Sequence Scenarios and QoS

Service Sequence Scenarios (SSS) are used to represent the user’s QoS preferences.

For that, each SSS defines a path through the SAS (recall Fig. 2c). In the meta-model,

we represent an SSS path as a set of GenericNode and Flow constructs. Naturally, an

SAS may contain several SSS sets, each modeling a separate QoS concern. Fig. 4c

shows the internal structure of an SSS, which consists of QoSMetric and SSSUtility for

defining the QoS and the user’s preferences, respectively.

Fig. 4. Meta-model for SAS in three parts: a) graph, b) service, and c) QoS.

QoSMetric may be typed as Plain or Aggregatable. Values of Plain QoS cannot be

aggregated into more complex measures, e.g., a measure of Security in a qualitative

scale could be: Low, Medium, High. In contrast, the values of Aggregatable ones may

be combined using aggregation operators, such as summation or mean, in the case of

numbers. For example, a measure of throughput may be derived from measures of

response time and parallel capacity. Fig. 4c shows ResponseTime as an Aggregatable

measure, but the approach is not limited to a predetermined set of metrics.

An SSSUtility contains one or more QoSMetrics and provides a Function, which

returns the utility associated with a given level of QoSMetric(s) for a user.

Finally, an SAS contains a global utility function, called SASUtility. It includes a set

of SSS and is used to specify the users’ preferences in resolving the trade-offs among

multiple SSS constructs. Its Function field specifies the relationship between the

contained SSS constructs, i.e., quantifies the impact of achieving QoS specified in the

SSSUtilities on the value of the global utility (SASUtility).

8 Behavior of SAS

The model presented in this section complements the meta-model in section 7 by

clarifying the behavior of the different kinds of Nodes (Fig. 4). Similar to BPMN and

Petri Nets [20], this model is based on the notion of execution token. Specifically, the

purpose of the behavior model herein is to answer the question: if a token is presented

as an input to a node, how does that node process the token?

By specifying the behavioral semantics of the nodes in SAS, this model offers a

precise guideline for the automatic generation of implementation code (i.e.,

coordination logic) from SASs.

We selected Z [10] as a convenient notation to express the behavior of SAS

constructs. Z builds on set theory and offers the following constructs: base sets,

functions, schemas, and operations. These constructs are explained by example, below.

Tokens and nodes are modeled as elements of base sets Token and Node,

respectively. At the implementation level, tokens correspond to messages circulating

in the system, possibly with a data payload, and nodes correspond to the functional

elements that process those messages and decide what to do next. By modeling tokens

as elements of a base set, they are individually distinguishable, but their internal

structure is abstracted out. The same holds for nodes.

The left side of the model excerpt below shows the definitions for these base sets, an

enumeration, Type, and a schema, SAS. The Type enumeration captures the type of

node as defined in section 7: activities, start and end links of Sub-SASs, etc.

The set of tokens currently in circulation characterizes the execution state of an

SAS. The schema SAS above holds the Tokens set as a state attribute. This set is

modified by operations that capture the behavior of the different kinds of nodes.

Consumed tokens are removed from Tokens, while the produced ones are added to it.

To help specify the behavior of nodes, a number of functions are defined on the

right side of the model excerpt above. These functions can be grouped into three

categories: query, generate, and replication functions.

Input, Loop, and Merge query the availability of tokens at the input of nodes. These

three functions take two arguments: a node of interest and the set of tokens currently in

circulation in the SAS.

Specifically, Input returns (a set containing) a token that is present at an input flow

of the node, if such a token is available among the ones currently in circulation in the

SAS (passed as the second argument). If not, Input returns the empty set. Loop returns

(a set containing) a token, if the node is a LoopingActivity that currently holds a token,

and if its associated looping condition remains true. Merge returns a set of tokens, one

token taken from each of the inputs leading up to the node, provided each of the inputs

has at least one token available.

The Generate function abstracts out the transformations of the data payload of

tokens that may occur within nodes. Specifically, given a node and a set of tokens at

the node’s input, Generate returns the token produced by the node.

All, Possible, and OnePoss are replication functions. They take a newly generated

token and a node, and place copies of the token on the node’s output flows.

Replication functions take into account the constraints on the flow of tokens, as

represented by the Condition in the Flow object in Fig. 4a. Specifically, Possible

places a token on each of the output flows where the associated condition holds, while

OnePossible does the same for only one of the output flows, selected non-

deterministically. For nodes that do not impose constraints on the output flows, such

as the ParallelGateway, the All function places a new token on each output flow.

8.1 Services and sub-SAS

The SAS initialization function and the specifications of Input, Out, and Link are:

SASInit specifies that initially there are no Tokens inside the SAS. A Link could be

considered an interface of an SAS that connects its constructs to those outside of it. A

Link passes a subset of the data on an arriving Token to the output Token. A StartLink

does this on Tokens received from the outside of an SAS, while the EndLink does this

on the Tokens leaving an SAS.

Note that a sub-SAS shares the same set of Tokens with the parent SASs. As you

may recall from Section 6, an SAS may expose its interfaces as services, in which case

the run-time environment (i.e., the coordination engine) provides the inputs to its

StartLinks and collects the outputs at its EndLinks.

 The In and Out are the interfaces of a ServiceUsage (see Fig. 4b), and hence they

serve as destination and source of tokens, respectively. The run-time environment

transfers the Tokens between the SAS and external services.

8.2 Gateways

Gateways synchronize activities by forking and joining several threads of activities.

The ParallelGateway requires all the inputs to arrive (And-join) and activates all the

output flows (fork) at the same time. When an input flow is activated, the

InclusiveGateway (Conditional-Or) activates a subset of the output flow. For an

outgoing flow to be activated, the condition specified on the flow must be satisfied. On

the other hand, the ExclusiveGateway activates the first outgoing flow that has its

condition satisfied. The outgoing sequence that is activated is selected non-

deterministically. The join semantic for both the InclusiveGateway and

ExclusiveGateway are the same.

The behavior of ExclusiveGateway and InclusiveGateway, which are the main

constructs for enforcing conditions in forking and joining, are specified as follows:

The ExclusiveGateway consumes the available input and generates a token for one

of the possible output flows. The InclusiveGateway does the same thing except it

generates a token for all the output flows where the associated condition holds.

Finally, the behavior of the ParallelGateway is:

The ParallelGateway merges all of the input flows and produces tokens for all of

the outgoing ones, regardless of the conditions specified on the outgoing flows. If one

of the input tokens is not available, ParallelGateway does nothing (i.e., it does not

consume or generate tokens).

8.3 Activities

The Activity operation captures the behavior of ActivityUsage nodes, and is very

similar to the Link operation. The only difference is that the Generate function for

Activity may add new data (i.e., result of the activity) to Tokens.

A Looping activity is an extension of a regular activity. It queries for an available

token as follows: it first uses the Loop function to find any available tokens inside the

Looping activity to consume, when there are no more tokens available in the activity, it

uses the Input function to consume tokens from the inputs.

9 Conclusion

The emergence of SOA-enabled systems in pervasive settings calls for major

advances in the software engineering methods currently employed. In this paper, we

presented SAS, a novel visual modeling language intended to alleviate the existing

shortcomings by automating the composition of such systems. SAS relies on a domain

ontology to allow an expert specify the system’s functional and QoS requirements

using commonly understood terminology. The formal specifications of the structural

and behavioral semantics of SAS provide a precise guideline for the automatic

generation of a system’s architectural model and executable code (i.e., coordination

logic), respectively.

Unlike the existing software design languages (e.g., UML [6], ADLs [7]), SAS is

intended for use by domain experts, as opposed to software engineers. To that end, the

language is motivated by existing business process modeling languages (e.g., BPMN

[8]), which are commonly used by domain experts. However, in contrast, SAS codifies

the software requirements in a manner that enables the automatic composition of

service-oriented systems.

 SAS is part of an ongoing research effort on Self-Architecting Software Systems

(SASSY) framework [2]. SAS models have been used in SASSY to successfully

compose service-oriented system. Some of the ongoing research include, automatically

finding the optimal architecture with respect to QoS objectives specified in SAS

models, adaptation of a running system in response to environmental changes, and

evolution of a system due to changes in the SAS models.

Acknowledgments. This work is partially supported by grant CCF-0820060 from the

National Science Foundation.

References

1. W3C, Web Services, http://www.w3.org/2002/ws/

2. S. Malek, N. Esfahani, D.A. Menascé, J.P. Sousa, and H. Gomaa, Self-Architecting Software

Systems (SASSY) from QoS-Annotated Activity Models, ICSE 2009 workshop on

Principles of Engineering Service Oriented Systems (PESOS 2009), Vancouver (2009)

3. OASIS, WS-BPEL ver 2.0, (2006)

4. J. Nitzsche, D. Wutke, and T. van Lessen, An ontology for executable business processes,

Proceedings of the Workshop on Semantic Business Process and Product Lifecycle

Management (SBPM), Innsbruck, Austria (2007)

5. C. Pautasso et al., JOpera: Autonomic Service Orchestration, IEEE Data Eng. Bull., vol. 29,

pp. 32-39 (2006)

6. Object Management Group, UML ver 2.0, (2005)

7. N. Medvidovic and R.N. Taylor, A Classification and Comparison Framework for Software

Architecture Description Languages, IEEE Trans. Softw. Eng., vol. 26, pp. 70-93 (2000)

8. Object Management Group, BPMN Spec. ver 1.1 (2008)

9. ISIS, Vanderbilt University, Generic Modeling Environment,

http://www.isis.vanderbilt.edu/Projects/gme/

10. J.M. Spivey, The Z notation: a reference manual, Prentice-Hall, Inc., Upper Saddle River,

NJ, USA (1989)

11. US Government Web Services and XML Data Sources, http://www.usgovxml.com/

12. A.N. Leont'ev and M.J. Hall, Activity, consciousness, and personality, Prentice-Hall

Englewood Cliffs, NJ, USA (1978)

13. S. Bdker, Through the interface: A human activity approach to user interface design, L.

Erlbaum Associates Inc. Hillsdale, NJ, USA (1991)

14. C. Ouyang et al., Formal Semantics and Analysis of Control Flow in WS-BPEL, Science of

Computer Programming, vol. 67, pp. 162-198, Amsterdam, The Netherlands (2007)

15. M. Fowler and K. Scott, UML distilled: a brief guide to the standard object modeling

language, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (2000)

16. N. Medvidovic et al., Modeling software architectures in the Unified Modeling Language,

ACM Transactions on Software Engineering and Methodology, vol. 11, pp. 2-57 (2002)

17. J. Greenfield, UML Profile for EJB. Public Review Draft JSR-000026 (2001)

18. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.F. Ferguson, Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-

Reliable Messaging and More, Prentice Hall PTR (2005)

19. M. Papazoglou, Web Services: Principles and Technology, Pearson - Prentice Hall PTR

(2007)

20. C.A. Petri, Kommunikation mit automaten, Auch im Handel als: Schriften d. Rheinisch-

Westfälischen Instituts f. instrumentelle Mathematik an d. Universität Bonn. Nr 2., Germany

(1962)

