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Abstract 

Most of the current software reliability analysis 
approaches are geared to traditional desktop software 
systems, which are relatively stable and static 
throughout their execution. In this paper, we present a 
framework targeted at mobile computing domain that 
addresses the uncertainties associated with the 
reliability analysis in this setting. Moreover, the 
framework’s architecture-centric reliability estimates 
are leveraged to improve the runtime reliability of the 
system through dynamic architectural reconfiguration.  

1. Introduction 

Mobile, distributed, and pervasive software 
systems are characterized by their highly dynamic 
configuration, unknown operational profile, and 
fluctuating execution conditions. Most existing 
software reliability analysis approaches (e.g., [3][4][5]) 
are geared to traditional desktop software systems, 
which are relatively stable and static throughout their 
execution. Therefore, assessing the reliability of 
mobile software systems requires new principles, 
models, and tools that incorporate the underlying 
uncertainties associated with such systems.   

At the same time, since often an accurate 
estimation of the mobile software system’s execution 
context is not available at design-time, it is infeasible 
to determine an optimally reliable architectural 
configuration for the software system prior to its 
deployment. Therefore, a run-time reconfiguration of 
the software system may be necessary to improve its 
reliability. 

In this paper, we provide an overview of a  
framework that aims to alleviate the challenges 
associated with the analysis and improvement of 
software reliability in mobile and dynamic settings. 
The framework adopts an architecture-centric 
approach that furnishes reliability predictions at the 
level of system’s architectural constructs. Unlike 
previous approaches that rely primarily on the system’s 
past history (i.e., execution log) to predict its future 
reliability, our analysis considers information from a 
variety of sources, such as the software architectural 
models, the system’s execution profile, domain 
experts’ knowledge, and other relevant contextual 
information. The reliability predictions are leveraged 
by the framework to find an optimal software 
configuration with respect to reliability, which is then 
effected at run-time.  

The remainder of the paper is organized as 
follows: Section 2 outlines the challenges of assessing 
and improving the reliability of mobile software 
systems; Section 3 provides an overview of our 
framework; and finally Section 4 describes our 
approach in realizing the framework. The paper 
concludes with an outline of our future work.  

2. Challenges 

Assessing and improving the reliability of mobile 
systems is a challenging multi-faceted problem. In 
particular, we elaborate on 5 key challenges. 

Challenge 1: Impact of Context on Reliability. In 
a mobile, distributed, and pervasive setting, failures 
may occur due to either internal software design and 
implementation defects, or external hardware and 
network problems (limitations). While the focus of our 
work is on the former, we need to account for the fact 
that the manifestation of a coding defect in the form of 
software failure also heavily depends on the run-time 
characteristics external to the software system, which 
is known as context [1]. For instance, a software defect 



may result in failure only when the network throughput 
is reduced to a certain threshold, potentially due to the 
overflow of the communication buffers. There is a 
wide spectrum of contextual properties that may 
influence the reliability of a software system: changes 
in the hardware platform (e.g., depleted battery, 
memory usage), fluctuations in the network (e.g., 
network drop outs, bandwidth variations), 
unanticipated usage, timing of operations, and so on.  

Challenge 2: Impact of Dynamism on Reliability. 
To deal with contextual changes, mobile software 
systems are often developed to be adaptive. The 
adaptations to a system’s architectural configuration 
alters its behavior, which in turn impacts its reliability. 
For instance, consider a hypothetical software system 
shown in Figure 1a, which consists of three software 
components running in the same Operating System 
(OS) process (e.g., JVM process). This configuration 
may be efficient, since the components are able to 
share resources (e.g., global variables) within the same 
process. On the other hand, if any of the software 
components fails, the whole system is vulnerable to 
failure, as failure of one component that crashes the 
process can easily propagate to other components. 
Figure 1b shows an alternative configuration of the 
system that by the same reasoning is less efficient but 
more resilient to failure. Allocation of software 
components to OS processes is an example of crucial 
configuration decisions that directly impact the 
reliability of a software system. Therefore, in the 
mobile computing domain, where architectural 
reconfiguration occurs frequently, the ability to assess 
its impact on reliability and determine the most reliable 
(i.e., optimal) configuration is critical.  

Challenge 3: Difficulty of Predicting Reliability. 
The ability to determine an optimally reliable 
configuration for a software system hinges on the 
ability to accurately estimate the reliability of the 
software system in its future operation. The majority of 
existing reliability analysis approaches (recent surveys 
[3][4][5]) primarily rely on software 
monitoring and assume that a software 
system’s past reliability to be indicative of 
its future reliability. While this assumption 
may be reasonable for the traditional desktop 
systems that are relatively stable, it does not 
apply to the domain of mobile systems. For 
instance, the fact that a mobile software 
system has not crashed over the past few 
hours does not necessarily imply that it 
won’t crash in the next few hours. This is 
particularly due to ever-changing context 
and architecture of such systems.  

Challenge 4: Fine-Grained Reliability 
Prediction. To be able to estimate the 

reliability of an architectural configuration, we need to 
be able to assess the reliability of its constituents. For 
example, in the scenarios depicted in Figure 1, it is 
possible to determine the optimal system configuration 
only if we can first assess the reliability of its software 
components: If the components are extremely reliable, 
Figure 1a is the preferable configuration, which as 
mentioned earlier is more efficient; If the components 
are highly unreliable, Figure 1b is preferred as it is 
more resilient to failure. 

Challenge 5: Scalable Online Analysis. The 
majority of reliability estimation approaches that rely 
on traditional stochastic-based approaches (e.g., 
Markov Chains, Bayesian networks) are known to be 
computationally expensive [3][4][5]. Fine-grained 
analysis at the level of the system’s components, 
instead of the system as a whole, further exacerbates 
the problem. The scalability of analysis is extremely 
important in the mobile computing domain, where 
such analysis would need to be performed online at 
runtime.  

3. Overview of the Framework 

Figure 2 depicts an overview of the framework. 
Software architectural models form the core of the 
framework. A running software system that realizes 
those architectural models resides on top of a context-
aware execution platform (context-aware middleware 
[1][7]), which is intended for use in mobile computing 
domain. The middleware provides facilities for 
monitoring the running software, as well as its external 
execution context. Moreover, the middleware provides 
facilities for enacting changes to the running software. 
As shown in Figure 2, the reliability-driven 
reconfiguration framework consists of three conceptual 
software components, which are deployed as meta-
level software components on top of the middleware. 
These components collaborate to monitor, assess, and 
improve the system’s reliability as follows.  

 
Figure 1. Two configurations for a hypothetical system: 
(a) a more efficient but less reliable configuration, and 
(b) a less efficient but more reliable configuration. 



At design time and before the system’s 
implementation is complete, an initial set 
of Architecture-Based Reliability Models 
are developed (depicted in Figure 2). These 
models are used during the design and 
development to assess a variety of design 
choices and to serve as predictors for the 
future reliability of the system. Unlike 
traditional architectural models, they 
embody contextual properties necessary for 
reliability analysis of mobile systems. As 
will be described below, these models are 
expected to be updated and refined at 
runtime. 

The Architecture-Based Reliability 
Models are then used by the Reliability 
Analyzer to estimate the reliability of the 
software system in terms of its constituent 
components and connectors. These fine-grained 
reliability estimates are utilized by the Configuration 
Selector to determine the most suitable architectural 
configuration. Once the Configuration Selector has 
selected a suitable initial configuration, the middleware 
is used to deploy the software system onto a set of 
mobile hosts. An underlying assumption is that the 
middleware provides support for deployment, 
execution, monitoring, and adaptation of a software 
system in terms of its architectural constructs (e.g., 
components, connectors, and configuration). We have 
developed such a middleware in our previous work [7].  

At run-time, the middleware monitors the software 
system for information that will be used to refine the 
initial design-time reliability predictions. This 
information is obtained from multiple sources, such as 
monitoring the internal software properties (e.g., 
frequency of failures, exceptions, and service 
requests), external properties (e.g., network 
fluctuations, battery charge), changes in the structure 
of the software (e.g., disconnection of components due 
to network drop outs, off-loading of components due 
to drained battery), and so on.  Since the monitored 
data represents the most recent operational, structural, 
and contextual profile of the system’s execution, they 
can be used to assess the system reliability more 
accurately. Note that unlike previous approaches we do 
not rely solely on monitored data. Instead, we 
incorporate monitored data with existing data obtained 
at design-time, which our preliminary experiments has 
shown to produce more accurate results; these two 
sources of information are highly complementary.  

The enriched run-time models are then used again 
by the Reliability Analyzer to provide refined 
reliability estimates for the system’s architectural 
constituents. In turn, the refined estimates are used by 
the Configuration Selector to compare and contrast 

alternative architectural configurations with respect to 
reliability. Finally, if a better configuration is found the 
Configuration Selector directs the middleware to effect 
the necessary changes.   

4. Approach 

Below we provide an outline of the approach that 
we have taken in the construction of the framework. 
We have structured the discussion in terms of the 5 key 
challenges identified in Section 2, which are presented 
slightly in a different order and in some cases together 
for the exposition purposes. 

Challenges 1 and 3: We address the uncertainties 
associated with the reliability analysis in this setting by 
incorporating various design-time and run-time 
sources of information. In fact, our previous 
experience on early design-time reliability prediction 
has corroborated that reliability estimates are more 
meaningful when different information sources are 
analyzed and interpreted in parallel [2][9]. In 
preliminary experiments we observed a similar trend 
with run-time reliability estimation of mobile systems. 
We consider the following design-time sources of 
information: system engineers’ knowledge, results 
obtained from the behavioral simulation of the 
architectural models, data available in the requirements 
documents, and the execution logs of functionally 
similar artifacts (e.g., previous versions of the system). 
Our design-time reliability estimates are continuously 
refined based on additional contextual parameters that 
become available at run-time: system’s internal 
properties (e.g., frequency of failures, exceptions, and 
service requests), and system’s external properties 
(e.g., network fluctuations, available battery charge, 
changes in location). The consideration of various 
sources of information distinguishes our work from the 

Figure 2. Reliability-Driven Reconfiguration Framework.



previous techniques that rely solely on the system’s 
execution log in estimating reliability [3][4][5].  

Challenges 4 and 5: As mentioned in the 
previous section, we have adopted an architecture-
centric approach that inherently allows for 
compositional and hierarchical analysis of a software 
system’s reliability. The overall reliability of a system 
is determined in terms of the reliability of its sub-
systems, which are in turn determined in terms of the 
underlying components and connectors. 
Compositionality enables representing the system’s 
characteristics as an aggregation of the detailed 
characteristics of its subsystems, while hierarchy 
enables abstracting away details in favor of focusing 
on the larger picture. These two properties in tandem 
make our analysis fine-grained, scalable, and efficient 
for execution at runtime. Moreover, we include the 
notion of architectural styles in our reliability models. 
Architectural styles pose constraints on the valid 
configuration and interaction of components, and can 
be used to (1) determine the component dependencies, 
and (2) reduce the space of valid configurations. In 
turn, styles help to reduce the complexity of reliability 
analysis, as well as the process of finding a good 
architecture. 

Challenge 2: In the mobile computing domain, 
changes in context force the software system to adapt a 
variety of functional and non-functional properties for 
optimality. We have leveraged dynamic learning 
algorithms, such as Hidden Markov Models (HMMs) 
and Dynamic Bayesian Networks (DBNs), to build a 
highly adaptive reliability model that can be 
dynamically updated at runtime to account for the 
changes in the architecture. Both HMMs and DBNs 
are instances of Graphical Models [6], a hybrid 
modeling approach that combines probability theory 
and graph theory. Inference techniques applicable to 
graphical models enable leveraging observations about 
a system to update (or infer) and answer probabilistic 
queries about the system. In this case, the probabilistic 
queries are aimed at obtaining the probability of 
failures (inversely related to system reliability), while 
observations correspond to a large set of information 
obtained from various source of information in the 
manner described earlier. The core reliability model 
built based on architectural knowledge leverages these 
observations to respond to stochastic queries about the 
system. In turn, this is continuously used at run-time to 
optimize the architecture of the running mobile 
software system with respect to reliability. 

5. Conclusion 

Existing software reliability assessment techniques 
are not applicable to mobile systems that are innately 

dynamic and unpredictable [3][4][5]. We have 
presented a framework that addresses the challenges of 
analyzing the reliability of mobile software systems by 
adopting an architecture-centric approach, which takes 
into consideration various sources of information, 
including the system’s contextual characteristics. 
When the execution conditions of a mobile software 
system change, the framework can be used to first 
assess and then improve its reliability through dynamic 
reconfiguration of its architecture. In our future work, 
we intend to evaluate the approach in the context of a 
real-world mobile software system that has been 
developed with an external industrial collaborator [8].  
The work described here is part of an ongoing activity, 
as part of which we are developing tool-support for 
realizing the framework on top of a mobile middleware 
platform (Prism-MW [7]). 
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