
Improving the Reliability of Mobile Software Systems through Continuous
Analysis and Proactive Reconfiguration

Sam Malek 1 Roshanak Roshandel 2 David Kilgore 1 Ibrahim Elhag 1

1 Dept. of Computer Science
George Mason University

{smalek, ckilgor1, ielhag}@gmu.edu

2 Dept. of Comp. Sci. & Software Engr.
Seattle University

roshanak@seattleu.edu

Abstract

Most of the current software reliability analysis
approaches are geared to traditional desktop software
systems, which are relatively stable and static
throughout their execution. In this paper, we present a
framework targeted at mobile computing domain that
addresses the uncertainties associated with the
reliability analysis in this setting. Moreover, the
framework’s architecture-centric reliability estimates
are leveraged to improve the runtime reliability of the
system through dynamic architectural reconfiguration.

1. Introduction

Mobile, distributed, and pervasive software
systems are characterized by their highly dynamic
configuration, unknown operational profile, and
fluctuating execution conditions. Most existing
software reliability analysis approaches (e.g., [3][4][5])
are geared to traditional desktop software systems,
which are relatively stable and static throughout their
execution. Therefore, assessing the reliability of
mobile software systems requires new principles,
models, and tools that incorporate the underlying
uncertainties associated with such systems.

At the same time, since often an accurate
estimation of the mobile software system’s execution
context is not available at design-time, it is infeasible
to determine an optimally reliable architectural
configuration for the software system prior to its
deployment. Therefore, a run-time reconfiguration of
the software system may be necessary to improve its
reliability.

In this paper, we provide an overview of a
framework that aims to alleviate the challenges
associated with the analysis and improvement of
software reliability in mobile and dynamic settings.
The framework adopts an architecture-centric
approach that furnishes reliability predictions at the
level of system’s architectural constructs. Unlike
previous approaches that rely primarily on the system’s
past history (i.e., execution log) to predict its future
reliability, our analysis considers information from a
variety of sources, such as the software architectural
models, the system’s execution profile, domain
experts’ knowledge, and other relevant contextual
information. The reliability predictions are leveraged
by the framework to find an optimal software
configuration with respect to reliability, which is then
effected at run-time.

The remainder of the paper is organized as
follows: Section 2 outlines the challenges of assessing
and improving the reliability of mobile software
systems; Section 3 provides an overview of our
framework; and finally Section 4 describes our
approach in realizing the framework. The paper
concludes with an outline of our future work.

2. Challenges

Assessing and improving the reliability of mobile
systems is a challenging multi-faceted problem. In
particular, we elaborate on 5 key challenges.

Challenge 1: Impact of Context on Reliability. In
a mobile, distributed, and pervasive setting, failures
may occur due to either internal software design and
implementation defects, or external hardware and
network problems (limitations). While the focus of our
work is on the former, we need to account for the fact
that the manifestation of a coding defect in the form of
software failure also heavily depends on the run-time
characteristics external to the software system, which
is known as context [1]. For instance, a software defect

may result in failure only when the network throughput
is reduced to a certain threshold, potentially due to the
overflow of the communication buffers. There is a
wide spectrum of contextual properties that may
influence the reliability of a software system: changes
in the hardware platform (e.g., depleted battery,
memory usage), fluctuations in the network (e.g.,
network drop outs, bandwidth variations),
unanticipated usage, timing of operations, and so on.

Challenge 2: Impact of Dynamism on Reliability.
To deal with contextual changes, mobile software
systems are often developed to be adaptive. The
adaptations to a system’s architectural configuration
alters its behavior, which in turn impacts its reliability.
For instance, consider a hypothetical software system
shown in Figure 1a, which consists of three software
components running in the same Operating System
(OS) process (e.g., JVM process). This configuration
may be efficient, since the components are able to
share resources (e.g., global variables) within the same
process. On the other hand, if any of the software
components fails, the whole system is vulnerable to
failure, as failure of one component that crashes the
process can easily propagate to other components.
Figure 1b shows an alternative configuration of the
system that by the same reasoning is less efficient but
more resilient to failure. Allocation of software
components to OS processes is an example of crucial
configuration decisions that directly impact the
reliability of a software system. Therefore, in the
mobile computing domain, where architectural
reconfiguration occurs frequently, the ability to assess
its impact on reliability and determine the most reliable
(i.e., optimal) configuration is critical.

Challenge 3: Difficulty of Predicting Reliability.
The ability to determine an optimally reliable
configuration for a software system hinges on the
ability to accurately estimate the reliability of the
software system in its future operation. The majority of
existing reliability analysis approaches (recent surveys
[3][4][5]) primarily rely on software
monitoring and assume that a software
system’s past reliability to be indicative of
its future reliability. While this assumption
may be reasonable for the traditional desktop
systems that are relatively stable, it does not
apply to the domain of mobile systems. For
instance, the fact that a mobile software
system has not crashed over the past few
hours does not necessarily imply that it
won’t crash in the next few hours. This is
particularly due to ever-changing context
and architecture of such systems.

Challenge 4: Fine-Grained Reliability
Prediction. To be able to estimate the

reliability of an architectural configuration, we need to
be able to assess the reliability of its constituents. For
example, in the scenarios depicted in Figure 1, it is
possible to determine the optimal system configuration
only if we can first assess the reliability of its software
components: If the components are extremely reliable,
Figure 1a is the preferable configuration, which as
mentioned earlier is more efficient; If the components
are highly unreliable, Figure 1b is preferred as it is
more resilient to failure.

Challenge 5: Scalable Online Analysis. The
majority of reliability estimation approaches that rely
on traditional stochastic-based approaches (e.g.,
Markov Chains, Bayesian networks) are known to be
computationally expensive [3][4][5]. Fine-grained
analysis at the level of the system’s components,
instead of the system as a whole, further exacerbates
the problem. The scalability of analysis is extremely
important in the mobile computing domain, where
such analysis would need to be performed online at
runtime.

3. Overview of the Framework

Figure 2 depicts an overview of the framework.
Software architectural models form the core of the
framework. A running software system that realizes
those architectural models resides on top of a context-
aware execution platform (context-aware middleware
[1][7]), which is intended for use in mobile computing
domain. The middleware provides facilities for
monitoring the running software, as well as its external
execution context. Moreover, the middleware provides
facilities for enacting changes to the running software.
As shown in Figure 2, the reliability-driven
reconfiguration framework consists of three conceptual
software components, which are deployed as meta-
level software components on top of the middleware.
These components collaborate to monitor, assess, and
improve the system’s reliability as follows.

Figure 1. Two configurations for a hypothetical system:
(a) a more efficient but less reliable configuration, and
(b) a less efficient but more reliable configuration.

At design time and before the system’s
implementation is complete, an initial set
of Architecture-Based Reliability Models
are developed (depicted in Figure 2). These
models are used during the design and
development to assess a variety of design
choices and to serve as predictors for the
future reliability of the system. Unlike
traditional architectural models, they
embody contextual properties necessary for
reliability analysis of mobile systems. As
will be described below, these models are
expected to be updated and refined at
runtime.

The Architecture-Based Reliability
Models are then used by the Reliability
Analyzer to estimate the reliability of the
software system in terms of its constituent
components and connectors. These fine-grained
reliability estimates are utilized by the Configuration
Selector to determine the most suitable architectural
configuration. Once the Configuration Selector has
selected a suitable initial configuration, the middleware
is used to deploy the software system onto a set of
mobile hosts. An underlying assumption is that the
middleware provides support for deployment,
execution, monitoring, and adaptation of a software
system in terms of its architectural constructs (e.g.,
components, connectors, and configuration). We have
developed such a middleware in our previous work [7].

At run-time, the middleware monitors the software
system for information that will be used to refine the
initial design-time reliability predictions. This
information is obtained from multiple sources, such as
monitoring the internal software properties (e.g.,
frequency of failures, exceptions, and service
requests), external properties (e.g., network
fluctuations, battery charge), changes in the structure
of the software (e.g., disconnection of components due
to network drop outs, off-loading of components due
to drained battery), and so on. Since the monitored
data represents the most recent operational, structural,
and contextual profile of the system’s execution, they
can be used to assess the system reliability more
accurately. Note that unlike previous approaches we do
not rely solely on monitored data. Instead, we
incorporate monitored data with existing data obtained
at design-time, which our preliminary experiments has
shown to produce more accurate results; these two
sources of information are highly complementary.

The enriched run-time models are then used again
by the Reliability Analyzer to provide refined
reliability estimates for the system’s architectural
constituents. In turn, the refined estimates are used by
the Configuration Selector to compare and contrast

alternative architectural configurations with respect to
reliability. Finally, if a better configuration is found the
Configuration Selector directs the middleware to effect
the necessary changes.

4. Approach

Below we provide an outline of the approach that
we have taken in the construction of the framework.
We have structured the discussion in terms of the 5 key
challenges identified in Section 2, which are presented
slightly in a different order and in some cases together
for the exposition purposes.

Challenges 1 and 3: We address the uncertainties
associated with the reliability analysis in this setting by
incorporating various design-time and run-time
sources of information. In fact, our previous
experience on early design-time reliability prediction
has corroborated that reliability estimates are more
meaningful when different information sources are
analyzed and interpreted in parallel [2][9]. In
preliminary experiments we observed a similar trend
with run-time reliability estimation of mobile systems.
We consider the following design-time sources of
information: system engineers’ knowledge, results
obtained from the behavioral simulation of the
architectural models, data available in the requirements
documents, and the execution logs of functionally
similar artifacts (e.g., previous versions of the system).
Our design-time reliability estimates are continuously
refined based on additional contextual parameters that
become available at run-time: system’s internal
properties (e.g., frequency of failures, exceptions, and
service requests), and system’s external properties
(e.g., network fluctuations, available battery charge,
changes in location). The consideration of various
sources of information distinguishes our work from the

Figure 2. Reliability-Driven Reconfiguration Framework.

previous techniques that rely solely on the system’s
execution log in estimating reliability [3][4][5].

Challenges 4 and 5: As mentioned in the
previous section, we have adopted an architecture-
centric approach that inherently allows for
compositional and hierarchical analysis of a software
system’s reliability. The overall reliability of a system
is determined in terms of the reliability of its sub-
systems, which are in turn determined in terms of the
underlying components and connectors.
Compositionality enables representing the system’s
characteristics as an aggregation of the detailed
characteristics of its subsystems, while hierarchy
enables abstracting away details in favor of focusing
on the larger picture. These two properties in tandem
make our analysis fine-grained, scalable, and efficient
for execution at runtime. Moreover, we include the
notion of architectural styles in our reliability models.
Architectural styles pose constraints on the valid
configuration and interaction of components, and can
be used to (1) determine the component dependencies,
and (2) reduce the space of valid configurations. In
turn, styles help to reduce the complexity of reliability
analysis, as well as the process of finding a good
architecture.

Challenge 2: In the mobile computing domain,
changes in context force the software system to adapt a
variety of functional and non-functional properties for
optimality. We have leveraged dynamic learning
algorithms, such as Hidden Markov Models (HMMs)
and Dynamic Bayesian Networks (DBNs), to build a
highly adaptive reliability model that can be
dynamically updated at runtime to account for the
changes in the architecture. Both HMMs and DBNs
are instances of Graphical Models [6], a hybrid
modeling approach that combines probability theory
and graph theory. Inference techniques applicable to
graphical models enable leveraging observations about
a system to update (or infer) and answer probabilistic
queries about the system. In this case, the probabilistic
queries are aimed at obtaining the probability of
failures (inversely related to system reliability), while
observations correspond to a large set of information
obtained from various source of information in the
manner described earlier. The core reliability model
built based on architectural knowledge leverages these
observations to respond to stochastic queries about the
system. In turn, this is continuously used at run-time to
optimize the architecture of the running mobile
software system with respect to reliability.

5. Conclusion

Existing software reliability assessment techniques
are not applicable to mobile systems that are innately

dynamic and unpredictable [3][4][5]. We have
presented a framework that addresses the challenges of
analyzing the reliability of mobile software systems by
adopting an architecture-centric approach, which takes
into consideration various sources of information,
including the system’s contextual characteristics.
When the execution conditions of a mobile software
system change, the framework can be used to first
assess and then improve its reliability through dynamic
reconfiguration of its architecture. In our future work,
we intend to evaluate the approach in the context of a
real-world mobile software system that has been
developed with an external industrial collaborator [8].
The work described here is part of an ongoing activity,
as part of which we are developing tool-support for
realizing the framework on top of a mobile middleware
platform (Prism-MW [7]).

6. Acknowledgments

This work is partially supported by grant CCF-
0820060 from the National Science Foundation.

7. References

[1] L. Capra, et al. CARISMA: Context-Aware Reflective
Middleware System for Mobile Applications. IEEE
Transactions on Software Engineering, Vol 29, 2003.

[2] L. Cheung, R. Roshandel, et al. Early Prediction of
Software Component Reliability. Int’l Conf. on
Software Engineering, Leipzig, Germany, May 2008.

[3] S. Gokhale. Architecture-Based Software Reliability
Analysis: Overview and Limitations. IEEE Trans. on
Dependable and Secure Computing, Vol 4, Jan 007.

[4] K. Goseva-Popstojanova, et al. Architecture-Based
Approaches to Software Reliability Prediction, Int’l
Journal of Computer & Mathematics with Applications,
46(7), October 2003.

[5] A. Immonen, et al. Survey of reliability and availability
prediction methods from the viewpoint of software
architecture. Software and Systems Modeling, Jan 2007.

[6] M. I. Jordan. Learning in Graphical Models, MIT Press,
Nov. 1998.

[7] S. Malek, M. Mikic-Rakic, and N. Medvidovic. A
Style-Aware Architectural Middleware for Resource
Constrained, Distributed Systems. IEEE Transactions
on Software Engineering, March 2005.

[8] S. Malek, et al. Reconceptualizing a Family of
Heterogeneous Embedded Systems via Explicit
Architectural Support. Int’l Conf. on Software
Engineering, Minneapolis, Minnesota, May 2007.

[9] R. Roshandel, et al. Estimating Software Component
Reliability by Leveraging Architectural Models. Int'l
Conf. on Software Engineering, Shanghai, China, May
2006.

