
Abstract
Architecture-based software development is the implementa-
tion of a software system in terms of its architectural con-
structs (e.g., components, connectors, ports). It has been
shown as an effective approach to realizing and managing
the architecture of large scale software systems. Several
techniques and tools have been developed that are intended
to aid with the architecture-based development of software
systems. While these approaches provide adequate imple-
mentation support for some aspects of software architec-
tures, they often lack sufficient support for implementing
and enforcing the system’s software architectural style. In
this paper, we argue that the lack of sufficient support for
architectural styles is a by-product of its crosscutting struc-
ture. In turn, making it impossible to realize styles using the
object-oriented programming methodology. We propose a
new approach to implementing architectural styles that is
based on the aspect-oriented programming paradigm.

1. Introduction
Software engineering researchers and practitioners have

successfully dealt with the increasing complexity of soft-
ware systems by employing the principles of software archi-
tecture. Software architectures provide design-level models
and guidelines for composing software systems in terms of
components (computational elements), connectors (interac-
tion elements), and their configurations (also referred to as
topologies) [7]. Software architectural styles (e.g., publish-
subscribe, client-server, pipe-and-filter) further codify struc-
tural, behavioral, interaction, and composition guidelines
that are likely to result in software systems with desired
properties [7]. 

For the software architectural models and guidelines to
be truly useful in a development setting, they must be
accompanied by support for their implementation[6]. How-
ever, there is a gap between the high-level architectural con-
cepts and the low-level programming language constructs
that are used for implementing the architectural models.
This gap requires engineers to maintain a (potentially com-
plex) mental map between components, connectors, com-
munication ports, events, etc. on the one hand, and classes,
objects, shared variables, pointers, etc. on the other hand. A
more effective approach for architecture-based software
development is to leverage architectural middleware solu-

tions [2,5,6], which provide native implementation-level
support for the architectural concepts.

While the state-of-the-art architectural middlewares pro-
vide support for some of the architectural concepts (e.g.,
components, ports, events), they do not provide adequate
support for others, most importantly architectural styles. In
fact, most commercial and architectural middleware solu-
tions either ignore, mimic, or at best assume a particular
architectural style. Therefore, forcing the software architect
to choose a style that is best supported by a given middle-
ware platform, as opposed to a style that suits the require-
ments of a particular software system.

We argue that the lack of sufficient support for imple-
menting architectural styles is due to the crosscutting struc-
ture of styles. Architectural styles often prescribe rules and
guidelines that impact the behavior and structure of all the
other architectural concepts and constructs. Therefore,
unlike any other architectural concept, architectural styles
can not be effectively abstracted and implemented using the
traditional object-oriented programming language con-
structs. In fact, if a middleware provides support for the sty-
listic concerns, they are often implemented as dispersed
code snippets, and thus lost in the final product. 

In this paper, we propose a new approach for implement-
ing architecture styles that is based on the aspect-oriented
programming (AOP) paradigm [3]. We provide an overview
of our approach on top of an architectural middleware plat-
form, called Prism-MW [5]. Our approach allows for modu-
larized representation of stylistic concerns, which are
weaved into the middleware’s implementation at compile
time. In turn, aiding system understanding, and the flexibil-
ity of changing a system’s architectural style without
impacting the rest of the system. Our approach shifts the
responsibility of making stylistic decisions from the middle-
ware designer to the software engineer. It allows the engi-
neer to implement support for a new, potentially domain
specific, style in a given middleware platform. 

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of Prism-MW, an architectural
middleware platform that we have leveraged in describing
our approach. Section 3 demonstrates the crosscutting struc-
ture of styles using Prism-MW. Section 4 discusses our
approach to realizing styles with aspects. Section 5 high-
lights the related work. Finally, the paper concludes with a
summary of our contributions, and future work.

Effective Realization of Software Architectural Styles with Aspects

Sam Malek

Department of Computer Science
George Mason University

Fairfax, VA 22030-4444 U.S.A.
smalek@gmu.edu



2. Prism-MW
In this section, we provide an overview of Prism-MW, a

middleware platform that we have leveraged in describing
our approach. Prism-MW [5] is an architectural middleware
platform that provides implementation-level support for
architectural constructs in an extensible, efficient, and scal-
able manner. Prism-MW is a suitable platform for describ-
ing and applying our approach: 1) Prism-MW provides
support for straightforward one-to-one mapping of architec-
tural constructs to their implementations, which is ideal for
demonstrating the crosscutting impact of styles; and 2)
Prism-MW is open source, which allows us to weave the
style-specific code with the middleware’s implementation.

Prism-MW supports architectural abstractions by provid-
ing classes for representing each architectural element, with
methods for creating, manipulating, and destroying the ele-
ment. These abstractions enable direct mapping between an
architecture and its implementation. Figure 1 shows a par-
tial class design view of Prism-MW. The shaded classes
constitute the middleware core, which represents a minimal
subset of Prism-MW that enables implementation and exe-
cution of architectures in a single address space. 

Brick is an abstract class that represents an architectural
building block. It encapsulates common features of its sub-
classes (Architecture, Component, Connector, and Port).
Architecture records the configuration of its constituent
components, connectors, and ports, and provides facilities
for their addition, removal, and reconnection, possibly at
system runtime.

Events are used to capture communication in an architec-
ture. An event consists of a name and payload. An event’s
payload includes a set of typed parameters for carrying data
and meta-level information (e.g., sender, type, and so on).
An event type is either a request for a recipient component
to perform an operation or a reply that a sender component
has performed an operation. 

Ports are the loci of interaction in an architecture. A link
between two ports is made by welding them together. A port
can be welded to at most one other port. Each Port has a
type, which is either request or reply. An event placed on
one port is forwarded to the port linked to it in the following
manner: request events are forwarded from request ports to
reply ports, while reply events are forwarded in the opposite
direction. 

Components perform computations in an architecture
and may maintain their own internal state. A component is
dynamically associated with its application-specific func-
tionality via a reference to the AbstractImplementation
class. Each component can have an arbitrary number of
attached ports. Components interact via their ports. 

Connectors are used to control the routing of events
among the attached components. Like components, each
connector can have an arbitrary number of attached ports.
Components attach to connectors by creating a link between
a component port and a single connector port. In order to
support the needs of dynamically changing applications,
each Prism-MW component or connector is capable of add-
ing or removing ports at runtime [5]. 

Finally, Prism-MW provides support for event dispatch-
ing and queuing, monitoring, and reflection facilities that
the developer can associate with the system’s architecture.
The developer provides the application-specific logic by
implementing the AbstractImplementation class. 

3. Crosscutting structure of architectural style
We believe effective support for architectural style in a

middleware platform requires at least:
1. the ability to distinguish among different architectural

elements of a given style (e.g, distinguishing Clients
from Servers in the client-server style); 

2. the ability to specify the architectural elements’ stylistic
behaviors (e.g., Clients block after sending a request
in the client-server style, while C2Components send
requests asynchronously in the C2 style [9]);

3. the ability to specify the rules and constraints that
govern the architectural elements’ valid configurations
(e.g., disallowing Clients from connecting to each
other in the client-server style, or allowing a Filter to
connect only to a Pipe in the pipe-and-filter style).
The above discussion suggests that architectural styles

could have a significant impact on the behavior and struc-
ture of all the architectural constructs. Below we further
demonstrate the extent of this using Prism-MW. We could
have selected any other middleware solution for this pur-
pose. However, as mentioned earlier, Prism-MW’s exten-
sive separation of concern and modularized implementation
of architectural constructs, allow us to demonstrate the
crosscutting impact of styles most effectively. We believe
the lessons learned here are more generally applicable. 

By default Prism-MW’s core is style agnostic, and to
provide support for an architectural style, one would have toFigure 1. Abridged UML class design view of Prism-MW. 

Middleware core classes are highlighted. 

IConnector

Abstract 
Monitor

Scaffold

Abstract 
Dispatcher

Round Robin 
Dispatcher

Abstract 
Scheduler

Fifo 
Scheduler

Abstract 
Scaffold

Brick
Architecture

Extensible
Component Component

Connector

Extensible
Port

Extensible
Event

Event

PortIComponent

IPort

Extensible
Connector

Extensible
Architecture

java.io.Serializable

IArchitecture

#mutualPort

AbstractImple
mentation



modify Prism-MW. There are two ways of doing this: 1)
leverage Prism-MW’s extensible classes to override the core
behavior (shown in Figure 1 and discussed in [5]), or 2)
modify the implementation of the core classes directly. Note
that neither approaches allow us to represent and implement
a style in a modularized and decoupled manner. For the clar-
ity of exposition, we describe the changes to the middleware
using the second approach:
1. As mentioned in our first requirement above, before we

can enforce the stylistic rules and constraints, we need to
be able to distinguish the style of each architectural
construct. One (and probably the most trivial) approach
is to define a new variable in Brick that identifies the
style of an architectural object. The value of this variable
corresponds to a given architectural style element, e.g.,
Client, Server, Pipe, Filter, and so on.

2. As mentioned in our second requirement above, we may
need to modify the behavior of architectural constructs.
We may need to: 
• Modify the behavior of core Prism-MW Connector to

support style-specific event routing policies. For
example, Pipe forwards data unidirectionally, while a
C2Connector uses bidirectional event broadcast
[9]. For this we would need to modify the core con-
nector’s handle method, which is responsible for rout-
ing events.

• Modify the behavior of core Prism-MW Component to
provide synchronous component interaction. The
default, asynchronous interaction is provided by the
core component’s send method. For example, a Cli-
ent blocks after it sends a request to a Server and
unblocks when it receives a response.

• Modify the behavior of core Prism-MW Port to sup-
port different types of inter-process communication
(e.g., socket-based, infrared). Prism-MW’s core ports
only provide support for a single address space. 

• Modify core Prism-MW Event to support new event
types. For example, a C2Component in the c2 style
exchanges Notifications and Requests, while
Publisher and Subscriber components in the
publish-subscribe style exchange Advertise-
ments, Subscriptions, and Notifications.

3. As mentioned in our third requirement above, we may
need to specify and enforce constraints on the allowable
configurations. For this, we would need to modify the
Architecture’s weld method to ensure that the topological
constraints of a given style are satisfied. The weld method
is used to connect components and connectors by
associating their ports with one another. For example, in
the client-server style, Clients can connect to
Servers, but two Clients cannot be connected to
one another. 
From the above discussion it is evident that supporting a

new architecture style in Prism-MW impacts most of the

middleware’s core facilities (dark gray classes in Figure 1).
It also shows that changes are dispersed among the various
parts of the middleware’s implementation. The situation is
exacerbated with middlewares that do not provide the same
level of support for implementing software architectures as
Prism-MW. In fact, finding the classes that need to be modi-
fied for a particular characteristic of a style is fairly straight-
forward in Prism-MW. This is not necessarily the case with
the more traditional middlewares that do not provide
explicit support for some of the architectural concepts (e.g.,
connector, port, configuration). 

4. Architectural style aspect
In this section, we present a new approach for imple-

menting architectural styles that is based on AOP paradigm.
The steps for providing implementation support for a new
architectural style are as follows: 1) define a new aspect for
each architectural style; 2) define the new style-specific
facilities and properties using the aspect’s inter-type decla-
ration; and 3) override or refine the middleware’s default
behavior using the aspect’s pointcut and advice constructs.
Below we detail the approach for providing implementation
support for the C2 [9] architectural style in Prism-MW, and
using AspectJ [1].

Figure 2 shows portion of an aspect that we have devel-
oped for supporting the C2 style in Prism-MW. Line 5 of the
code snippet shows the ability to augment the architectural
elements with new properties. In this case, we are using
aspect’s inter-type declaration capability to add a new mem-
ber variable to each Brick object of Prism-MW, which
allows us to determine its architectural style. Recall from
Section 2 that all architectural elements (e.g., components,
connectors, ports) in Prism-MW extend Brick. Thus, with
the newly added variable we are able to determine the style
of each architectural construct, which is required for enforc-
ing the stylistic rules and constraints. 

C2 style does not allow two components to be connected
directly (i.e., without being mediated by explicit connectors)
[9]. Therefore, the default behavior of the Architecture’s
weld method, which does not enforce any constraints, needs
to be modified. Recall from Section 3 that the Architecture’s
weld method is used to connect components and connectors
by associating their corresponding ports with one another.
Lines 7-21 in Figure 2 show a pointcut for picking out join
points that are calls to the weld method of the Architecture
object, and the corresponding advice that gets executed.
Basically, the before advice is executed before the architec-
ture’s weld method is executed. In this advice, we have
implemented the necessary checks to enforce that two C2
components are not connected directly to one another (lines
13-15 show the condition statement). 

C2 connectors broadcast Request events on their Request
(top) ports, and Notification events on their Notification
(bottom) ports [9]. Recall from Section 3 that Prism-MW
connector’s handle method implements the default routing,
which in our version of Prism-MW just broadcasts events on



its ports. We override the connector’s routing via the point-
cut and advice shown in Lines 23-33 of Figure 2. The point-
cut (lines 24-25) picks out join points that are calls to the
connector’s handle method. The corresponding around
advice gets executed in place of the connector’s handle
method, and provide support for routing events according to
the C2 guidelines. 

Due to space constraint, we cannot provide the full detail
of implementation support for the C2 style. However, the
above example demonstrates that aspects can be effectively
leveraged in providing support for the stylistic concerns in
middlewares. Furthermore, the resulting style-specific code
is both localized and modularized, which in turn improves
the system’s ability to evolve, and aids with system under-
standing. 

5. Related work
Several previous works have developed technologies for

architecture-based software development. One of these is
Prism-MW that was discussed earlier. Below we provide an
overview of two other prominent technologies. 

ArchJava [2] is an extension to Java that unifies software
architecture with implementation, ensuring that the imple-
mentation conforms to architectural constraints. ArchJava
does not provide support for enforcing topological con-
straints, and therefore lacks the support for implementing
and enforcing a software system’s architectural style.

Aura [8] is an architectural style and supporting middle-
ware for ubiquitous computing applications with a special
focus on user mobility, context awareness, and context

switching. Similar to Prism-MW, Aura has explicit, first-
class connectors. However, Aura does not provide support
for specifying a new architectural style that could be sup-
ported by the middleware.

Another area of related work has been the usage of
aspects in realizing the design decisions. Most prominently,
in [4] a technique is presented for aspect-oriented develop-
ment of design patterns. Our work is different from this
work in several ways. Firstly, our work is geared towards
the implementation of software architectural styles, as
opposed to design patterns. Secondly, our approach deals
with realizing support for styles in middleware solutions, as
opposed to traditional programming languages. 

6. Conclusion
Architectural middlewares have been shown as an effec-

tive approach to implementing a system’s software architec-
ture. However, due to the crosscutting structure of styles,
there has been a lack of adequate support for implementing
architectural styles in most middleware solutions. In this
paper, we demonstrated the crosscutting impact of styles on
an architectural middleware platform. We also provided an
overview of a new approach to implementing architectural
styles that is based on the aspect-oriented programming par-
adigm. Aspects allow for modularized and localized imple-
mentation of stylistic support in middlewares. Furthermore,
they allow an informed engineer to modify the default
behavior of a middleware by implementing support for an
arbitrary, possibly domain specific, architectural style. As
part of our future work, we plan to extend our work to other
architectural styles, and middleware solutions. An interest-
ing avenue for future study is to determine the feasibility of
providing support for hybrid styles (e.g., Layered-Client-
Server) via composition (e.g., abstract-aspect, sub-aspect) of
several basic style (e.g., Layered, Client-Server) aspects. 

7. References
[1] AspectJ web site. http://www.eclipse.org/aspectj/
[2] J.Aldrich, et. al. ArchJava: Connecting Software Architecture

to Implementation. ICSE, Orlando, Florida, May 2002. 
[3] G. Kiczales, et. al. Aspect-Oriented Programming. ECOOP,

Jyvaskyla, Finland, July 1997.
[4] J. Hannemann, and G. Kiczales. Design pattern implementa-

tion in Java and aspectJ. OOPSLA, Seattle, Washington, 2002.
[5] S. Malek et al. A Style-Aware Architectural Middleware for

Resource-Constrained, Distributed Systems. IEEE Transac-
tions on Software Engineering, March 2005.

[6] M. Shaw, et. al. Abstractions for Software Architecture and
Tools to Support Them. IEEE Transactions on Software Engi-
neering, April 1995.

[7] M. Shaw, et. al. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[8] J. P. Sousa, and D. Garlan. Aura: an Architectural Framework
for User Mobility in Ubiquitous Computing Environments.
WICSA, Montreal, Canada, 2002.

[9] Richard N. Taylor, et. al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE TSE, June 1996 

Figure 2. Code snippet of an aspect that implements rules 
and constraints of the C2 architectural style.


