Architecture-Driven Software Mobility in Support of
QoS Requirements

Marija Mikic-Rakic
Google Inc
1333 2nd Street
Santa Monica, CA, 90401 U.S.A.
marija@google.com

ABSTRACT

Over the past decade researchers have shown that software archi-
tecture provides an appropriate level of granularity for assessing a
system’s Quality of Service (QoS) properties (e.g., latency). Simi-
larly, many previous works have adopted an architecture-centric
approach to reason about the runtime adaptation, including com-
ponent mobility, of software systems. However, the relationship be-
tween software architecture, QoS, and mobility is not clearly under-
stood. In this paper, we present a framework that takes an explicit
software architecture perspective for assessing the system’s QoS
properties, and improving it through architectural mobility. We de-
scribe the implementation of the framework, as well as some of the
remaining challenges that frame our ongoing work.

1. INTRODUCTION

Software architecture is a collection of models that capture a soft-
ware system’s principal design decisions in the form of components
(foci of system computation and data management), connectors (fo-
ci of interaction), and configurations (specific arrangements of
components and connectors) [13]. Architecture realizes a system’s
functional requirements, that is, the services the system is meant to
provide to its users. Additionally, architecture must ensure the level
of quality at which those services are to be delivered, referred to as
quality of service (QoS). Different dimensions of QoS are latency,
availability, durability, reliability, security, fault-tolerance, etc.

The QoS provided by a distributed software system depends on
many system parameters, such as network bandwidth, reliability of
links, frequencies of component interactions, etc. At the same time,
many distributed systems are challenged by the fluctuations in those
parameters due to the frequent mobility of the hardware and chang-
es in the system’s execution context. For example, host mobility
may result in different connection properties for that host, which
may impact QoS such as availability and latency.

Software architecture has been applied with some success in facili-
tating mobility [3,4]. The resulting techniques enable a system’s ev-
olution while minimizing architectural drift, as units of mobility are
explicit architectural constructs (software components and connec-
tors). More recently, software architecture has also been leveraged
to facilitate QoS satisfaction [5,10]. However, what remains unclear
is the nature of the aggregate relationship of software architecture,
mobility, and QoS. Our hypothesis is that these three areas can be
effectively combined by a uniform framework for designing, ana-
lyzing implementing, deploying, monitoring, and evolving distrib-
uted, mobile software systems, such that their desired QoS is
achieved and architectural drift avoided throughout the system’s
lifetime. In support of this hypothesis, our approach comprises:

Sam Malek
Department of Computer Science
George Mason University
Fairfax, VA 22030-4444 U.S.A.
smalek@gmu.edu

Nenad Medvidovic
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781 U.S.A.
neno@usc.edu

* Architectural modeling, both at the level of software components,
connectors and their configurations, as well as the relevant facets
of the hardware platforms on which the software elements will ex-
ecute. Additionally, we support modeling of the QoS require-
ments in terms of the relevant parameters of the architectural con-
structs (both hardware and software).

Analysis to determine the system’s optimal deployment (mapping
of the software architecture onto the hardware configuration)
based on the QoS requirements and the distributed system’s hard-
ware and software properties.

Implementation in terms of explicit architectural constructs pro-

vided at the level of source code.

* Deployment of the architecture-based software implementation
onto the hardware configuration, as determined during analysis.

* Runtime monitoring of system properties that influence QoS.

Runtime evolution mechanisms that react to the changes in a sys-
tem’s properties in an attempt to preserve or improve its QoS.
Together these techniques comprise an extensive, flexible frame-
work for architecture-driven software system mobility.

The key observation underlying our framework is that mobility at
the architectural level can be treated as a special case of a change to
the system’s deployment architecture (i.c., allocation of the sys-
tem’s software components to its hardware hosts). The deployment
architecture of a software system has a significant impact on its
QoS. For example, a service’s latency can be improved if the system
is deployed such that the most frequent and voluminous interactions
among the components involved in delivering the service occur ei-
ther locally or over reliable and capacious network links. Therefore,
a redeployment of the software system via migration of its compo-
nents may be necessary to improve its QoS. In this paper, we pro-
vide an overview of the framework, and our experiences with apply-
ing it in order to improve deployment architectures of distributed
software systems. We also discuss some of the remaining challeng-
es that frame our ongoing work.

The rest of the paper is organized as follows. Section 2 outlines our
framework for studying the relationship between architecture, mo-
bility, and QoS. Section 3 presents an overview of our experience to
date with the framework, while Section 4 relates this approach to
existing work. We conclude the paper with the discussion of chal-
lenges that are framing our ongoing work.

2. MOBILITY FRAMEWORK

Our framework for supporting system mobility takes an explicit
software architectural perspective.The framework provides facili-
ties for architectural modeling, analysis, implementation, deploy-
ment, monitoring, and runtime evolution via redeployment. In this
section, we discuss all of the framework’s principal elements.

A distributed system is modeled in terms of

a set H of hardware nodes, a set HP of host parameters, a function hParam: H x HP — ‘R

set C of components, a set CP of component parameters, a function cParam:CxCP — R

set N of network links, a set NP of network link parameters, a function nParam:N x NP — ‘R

set I of logical links (interactions), a set IP of logical link parameters, a function iParam: I xIP — R

set § of services, and a function sParam:Sx{H WCUN UIl}x{HPUCPuUNPUIP} — R of values for service-specific system parameters

set DepSpace = {dl,dz,... } of all possible deployment mappings, where |DepSpace|=|H|“

N o unhrLNR
0 0 OO

set Q of quality of services, a function gValue: S x Q x DepSpace — R that quantifies the achieved level of QoS, and

qupe:Q%{

8. aset U of users, a function gosRate:U x S x Q — [MinRate,l] representing the rate of change in a QoS, and a complementary function
qosUtil :U x S xQ — [0, MaxUtil] representing the utility for that rate of change

—1 if itisdesireableto minimize this QoS

1 if itis desireableto maximizethis QoS

10. two functions that restrict locations of software components

1 if ¢eC can be deployed onto he H
loc:CxH — .
0 if ¢eC cannot be deployed onto 1 e H

9. aset PC of parameter constraints, and a function pcSatisfied : PC x DepSpace%{

colloc:CxC—

1 if constr is satisfied

0 if constrisnot satisfied

1 if cleC has to be on the same host as c2e C
—1 if ¢l e C cannot be on the same host as ¢2 e C

0 if there are no restrictions

Figure 1. Framework Model.

2.1. Architecture Modeling and Visualization

To be able to analyse a mobile software system at runtime, one
needs to model not only the system’s software architecture, but also
the system’s context, which may include the hardware, and network
characteristics. Each of these elements may be associated with arbi-
trary parameters. The selection of a set of parameters to be modeled
depends on the criteria (i.e., QoS objectives) that a system’s deploy-
ment architecture should satisfy. For example, if minimizing laten-
cy is one of the objectives, the model should include parameters
such as physical network link delays and bandwidth. Finally, the
system users’ usage of the functionality (i.e., services) provided by
the system, and the users’ QoS preferences (i.e. utility) for those
services may change over time. Therefore, we also need to model
the system’s services, users, and users’ QoS preferences. As illus-
trated in Figure 1, we model a distributed software system as:

1. A set H of hardware nodes (hosts) with the associated parame-
ters (e.g., available memory or CPU on a host), and a function
hParam that maps each parameter to a value.

2. A set C of components with the associated parameters (e.g.,
required memory for component’s execution or JVM version),
and a function cParam that maps each parameter to a value.

3. A set N of physical network links with the associated parame-
ters (e.g., available bandwidth, reliability of links), and a func-
tion nParam that maps each parameter to a value.

4. A set [of logical interaction links between software compo-
nents in the distributed system, with the associated parameters
(e.g., frequency of component interaction, average event size),

and a function iParam that maps each parameter to a value.

5. A set S of services, and a function sParam that provides values
for service-specific system parameters. An example service-
specific system parameter is the number of component interac-
tions resulting from an invocation of a single service (e.g.,
“find the best route to the disaster area”).

6. A set DepSpace of all possible deployment mappings.

7. A set Q of QoS dimensions, and a function gValue that quanti-
fies a dimension (e.g., security) for a given service in the cur-
rent deployment. Also, a function g7ype that represents the
minimization or maximization aspect of the QoS dimension.

8. A set U of users, and two complementary functions gosRate
and qosUtil that denote a user’s preference for a QoS dimen-
sion of a service. gosRate returns the rate of change, while
qosUtil returns the utility for that rate of change. Relative
importance of different users is determined by two threshold
values: MinRate and MaxUtil.

9. A set PC of parameter constraints, and a function pcSatisfied
that, given a constraint and a deployment architecture, returns 1
if the constraint is satisfied and 0 otherwise.

10. Using the /oc function, deployment of any component can be
restricted to a subset of hosts. Using the colloc function, con-
straints on collocating components can be specified.

Note that some elements of the model are intentionally left “loosely

defined” (e.g., system parameter sets, QoS set). These elements cor-

respond to the many and varying factors that are found in different

lu]
overallUtil(d,d") =

u=l s

s

9

qValue(s,q,d) — qValue(s,q,d")
qValue(s,q,d")

qosRate(u,s,q)

q=

1. VeeC loc(c,H,) =1
2. VeleC Ve2eC if (colloc(cl,c2)=1)=(H,=H_,)
if (colloc(cl,c2)=-1)= (H,#H,)

3. Vconstr e PC pcSatisfied (constr,d) =1

one or more of the above three conditions.

Given the current deployment of the system d' e DepSpace, find an improved deployment d such that the users’ overall utility defined as the function

*qosUtil(u,s,q) * qType(q) is maximized, and the following conditions are satisfied:

In the most general case, the number of possible deployment architectures is \DepSpace\:\Hﬂ”. However, some of these deployments may not satisfy

Figure 2. Problem definition.

distributed application scenarios. We leverage a tool described be-
low to specify these loosely defined elements of the model.

Figure 2 shows the formal definition of the problem based on the
framework model. The function overallUtil represents the overall
satisfaction of the users with the QoS delivered by the services they
use. The goal of our analysis support, discussed below, is to find a
(new) deployment architecture that maximizes overallUtil and
meets all of the specified constraints.

DeSi [12] is an environment that supports specification, manipula-
tion, and visualization of deployment architectures for large-scale,
highly distributed systems. DeSi’s modeling capabilities are for-
mally described in Figure 1. Its screenshot is shown in Figure 3a.
An architect is able to enter desired system parameters into DeSi’s
model, and to manipulate those parameters and study their effects.
For example, the architect is able to specify architectural elements
(e.g., components, hosts), parameters (e.g., network bandwidth,
host memory), and parameter values. The architect may also specify
constraints (e.g., denoting a subset of components that may not be
collocated on the same host). DeSi also graphically displays the sys-
tem’s monitored data, deployment architecture, and analysis results.

2.2. Architecture Analysis

The problem of determining and maintaining a good deployment of
a software system on a set of mobile hosts is an instance of multi-
dimensional optimization problems, characterized by many QoS di-
mensions, users and user preferences, and constraints that influence
the objective. Our goal has been to devise reusable algorithms that
provide highly accurate results across application scenarios. An in-
depth study of the generally applicable strategies resulted in four al-
gorithms, where each algorithm is suitable to a particular class of
systems or mobility scenarios. This allows the architect to run the
algorithm that is most appropriate in the given context.

Of the four general approaches we have adopted and adapted, two
(Mixed-Integer Nonlinear and Mixed Integer Linear Programming,
a.k.a. MINLP and MIP [15]) are best characterized as generic tech-
niques for dealing with multi-dimensional optimization problems.
These techniques are accompanied by widely used algorithms and
solvers. We tailored these techniques to target them specifically at

Availabiny: 0.324
Latency: 1427

our problem and introduce heuristics that improve their results. The
remaining two approaches (greedy and genetic) can be character-
ized as generally applicable strategies, which we have employed in
developing specific algorithms tailored to our problem. Below we
provide a brief discussion of all four techniques, with an analysis of
their algorithmic complexity as well as their inherent trade-offs. A
more detailed description of the algorithms can be found in [8].

MINLP: The first step in representing our problem as a MINLP
problem is defining the decision variables. We define decision var-
iable x, 5, which corresponds to the decision of whether component
c is to be deployed on host % or not. Therefore, we need |C| *|H| bi-
nary decision variables, where x,. ,=1 if component c is deployed on
host 4, and x ,=0if ¢ is not deployed on /4. The next step is defining
the constraints (e.g., the combined required component memory
cannot exceed the available memory on a host). Finally, we need to
define the objective function (e.g., maximize availability, minimize
latency). Unfortunately, there is no known algorithm for solving a
MINLP problem optimally [15]. Furthermore, for problems with
non-convex functions (such as ours), MINLP solvers are not guar-
anteed to find and converge on an approximate solution [15]. For
these reasons, we needed to investigate other algorithms.

MIP: A well-known technique for transforming the MINLP prob-
lems into MIP is to add new “auxiliary” variables [15]. This trans-
formation significantly increases the complexity of the original
problem. While MIP problems can be solved optimally in principle,
doing so is computationally expensive even for small problems. By
leveraging appropriate heuristics, it is possible to cut down the
search space, but the MIP algorithm still remains computationally
very expensive. It may be used in calculating optimal deployments
for systems whose characteristics are stable for a very long time. In
such cases, it may be beneficial to invest the time required for the
MIP algorithm, in order to gain maximum possible overall QoS util-
ity. Note that even in such cases, running the algorithm may become
infeasible very quickly, unless the number of allowed deployments
is substantially reduced through locational constraints.

Greedy: Greedy algorithms are iterative algorithms that incre-
mentally find better solutions. Unlike the previous algorithms that
need to finish executing before returning a solution, a greedy algo-

lai=

b) Distributed System

Prism- MW
Adapter
DesSi
Monitor

Monitoring Efeqor
Data

Redeployment
Commands

Legend:

Platform Skeleton 4'- Pointer to
Architecture
@)

Configuration New? Architecture

Network reliability E]

monitor

Component
Event frequency ’
monitor

Figure 3. a) DeSi’s screenshot. b) a software system running on top of Prism-MW that is being monitored and redeployed.

rithm generates a valid and improved solution in each iteration. This
is a desirable characteristic for systems where the parameters
change frequently and the available time for calculating an im-
proved deployment varies significantly: whenever the algorithm is
terminated, it returns either the initial deployment or one that is bet-
ter than it. In each step of the algorithm, we take a single component
aComp and estimate a new deployment location for it (i.e., a host)
such that the objective function overallUtil is maximized. Our strat-
egy is to improve the QoS dimensions of the “most important” serv-
ices first. The most important service is the service that has the
greatest total utility gain as a result of the smallest improvement in
its QoS dimensions. The algorithm continues improving the overall
utility by finding the best host for each component of each service,
until it determines that a stable solution has been found. An impor-
tant heuristic we have introduced in this algorithm is the swapping
of components: this significantly decreases the possibility of getting
“stuck” in a bad local optimum, alleviating a common shortcoming
of greedy strategies.

Genetic: Another approximative solution to our problem is based
on a class of stochastic approaches called genetic algorithms. Ge-
netic algorithms can execute in parallel on multiple processors with
no overhead. In contrast with MINLP and greedy algorithms that
eventually stop at “good” local optima, a genetic algorithm contin-
ues to improve the solution until it is either terminated by a trigger-
ing condition or the global optimum has been found. In a genetic al-
gorithm, an individual represents a solution to the problem. Each in-
dividual is composed of a sequence of gemes that represent the
structure of that solution. A population contains a pool of individu-
als. An individual for the next generation of the population is
evolved in three steps: (1) two or more parent individuals are heu-
ristically selected from the population; (2) a new individual is cre-
ated via a cross-over between the parent individuals; and (3) the
new individual is mutated via slight random modification of its
genes. In our problem, an individual is a string of size |C| that cor-
responds to the deployment mapping of a system’s software com-
ponents to hosts. Mutating an individual corresponds to changing
the deployment of a few components in a given system. To evolve
populations of individuals, we define a fitness function that evalu-
ates the quality of each new individual. This function returns zero if
the individual does not satisfy the parameter and locational con-
straints; otherwise it returns the value of overallUtil for the deploy-
ment that corresponds to the individual. The algorithm improves the
quality of a population in each evolutionary iteration by selecting
parent individuals with a probability that is directly proportional to
their fitness values.

2.3. Architecture Implementation

We support the implementation of a software architecture via an ar-
chitectural middleware platform, called Prism-MW [9]. Prism-MW
provides classes for representing each architectural element, with
methods for creating, manipulating, and destroying the element.
These abstractions enable direct mapping between an architecture
and its implementation. Figure 4 shows the class design view of
Prism-MW. We will now briefly describe this design.

Brick is an abstract class that represents an architectural building
block. It encapsulates common features of its subclasses (Architec-
ture, Component, Connector, and Port). Architecture records the
configuration of its constituent components, connectors, and ports,
and provides facilities for their addition, removal, and reconnection.

A distributed application is implemented as a set of interacting Ar-
chitecture objects. Events are used to capture communication in an
architecture and are exchanged via Ports.

Components perform computations in an architecture and maintain
their own internal state. Each component can have an arbitrary
number of attached ports. When a component generates an event, it
places copies of that event on its appropriate ports. Components
may interact either directly (through ports) or via connectors. Con-
nectors are used to control the routing of events among their at-
tached components. Like components, each connector can have an
arbitrary number of attached ports. Components are attached to con-
nectors by creating a link between a component port and a single
connector port. Connectors may support arbitrary event delivery se-
mantics (e.g., unicast, multicast, broadcast).

In order to support the needs of dynamically changing applications,
each Prism-MW component or connector is capable of adding or re-
moving ports at runtime. This property of components and connec-
tors, coupled with event-based interaction, provides the underpin-
ning of our support for runtime system mobility.

2.4. Architecture-Based System Deployment

The outcome of the architectural analysis step is a suggested de-
ployment architecture (i.e., mapping of software components to
hardware hosts) that needs to be effected on top of the implementa-
tion platform. Prism-MW allows components to exchange Extensi-
bleEvents, which may contain computational elements (compo-
nents and connectors) as opposed to data. Additionally, Extensi-
bleEvents implement the Serializable interface (as shown in Figure
4), thus allowing their dispatching across address spaces.

In order to deploy the desired set of architectural elements onto a set
of'target hosts, we assume that a skeleton configuration is preloaded
on each host (Figure 3b). The skeleton configuration consists of an
Architecture object that contains an Admin component with a Dis-
tributionEnabledPort (i.e., an ExtensiblePort with the appropriate
implementation of AbstractDistribution installed on it) attached to
it. An Admin is an ExtensibleComponent with the Admin implemen-
tation of AbstractDeployment installed on it (see Figure 4). Since
the Admin on each device contains a pointer to its Architecture ob-
ject, it is able to effect runtime changes to its local subsystem’s ar-
chitecture: instantiation, addition, removal, connection, and discon-
nection of components and connectors. Admins are able to send and

Abstract Round Robin

Manitor EviFrequency
T Monitar
Absiract -~ - 1
affold - g
| E— ‘i\:-
e

Scheduler | —

iy

Fifo
Scheduler Scaffold

>
_~WmutualPort

ExtensiblePort

. —

- Wonnastor ~_

AbstractService

Y *
. / — 1
§_ Mrchitocture 3] Distribution

= b,

\—i t IRDistribution
A =)

‘ Deployer Admin Y

=
Figure 4. UML class diagram of Prism-MW's design.

receive from any device to which they are connected the Extensi-
bleEvents that contain application components.

2.5. Mobility

As discussed previously, the nature of modern distributed systems
mandates frequent changes in the system parameters and possibly
QoS. For these reasons, the system’s components may need to be
mobile throughout the system’s execution. Prism-MW has facilities
to support both stateless and stateful mobility of components. The
process of stateless migration can be described as follows. The
sending Admin packages the migrant element into an Extensi-
bleEvent: one parameter in the event is the compiled image of the
migrant element itself (e.g., a collection of Java class files); another
parameter denotes the intended location of the migrant element in
the destination subsystem’s configuration. The Admin then sends
this event to its DistributionEnabledPort, which forwards the event
to the attached remote DistributionEnabledPorts. Each receiving
DistributionEnabledPort delivers the event to its attached Admin,
which reconstitutes functional modules (i.e., components and con-
nectors) from the event, and invokes the I4rchitecture’s add and
weld methods to insert the modules into the local configuration.

The technique described above provides the ability to transfer code
between a set of hosts. As such, the stateless technique is useful for
performing initial deployment of a set of components and connec-
tors onto target hosts. In cases when runtime migration of architec-
tural elements is required, the migrant element’s state needs to be
transferred along with the compiled image of that element. Addi-
tionally, the migrant element may need to be disconnected and de-
leted from the source host (if the element’s replication is not desired
or allowed). We provide two complementary techniques for stateful
mobility: serialization-based and event stimulus-based.

The serialization-based technique relies on the existence of Java-
like serialization mechanisms in the underlying PL. Instead of send-
ing a set of compiled images, the local Admin possibly disconnects
and removes the (active) migrant elements from its local subsystem
(using the IArchitecture’s unweld and remove methods), serializes
each migrant element, and packages them into a set of Extensi-
bleEvents, which are then forwarded by the DistributionEnabled-
Port. Admin on each receiving host reconstitute the architectural el-
ements from these events and attach them to the appropriate loca-
tions in their local subsystems.

If the serialization-like mechanism is not available, we use the event
stimulus-based technique: the compiled image of the architectural
element(s) to be migrated is sent across a network using the stateless
technique. In addition, each event containing a migrant element is
accompanied by a set of application-level events needed to bring the
state of the migrant element to a desired point in its execution. Once
the migrant architectural element is received at its destination, it is
loaded into memory and added to the architecture, but is not at-
tached to the running subsystem. Instead, the migrant element is
stimulated by the application-level events sent with it. Any events
the migrant element issues in response are not propagated, since the
element is detached from the rest of the architecture. Only after the
migrant architectural element is brought to the desired state is it
welded and enabled to exchange events with the rest of the architec-
ture. While less efficient than the serialization-based scheme, this is
a simpler technique, it is PL-independent, and it is natively support-
ed in Prism-MW. At the same time, the memory cost of event stim-

ulus-based technique may be large if the numbers and sizes of
events needed to update the state of a component are large.

2.6. Runtime Monitoring and Adaptation

We leverage Prism-MW as well as DeSi to support the run-time
monitoring of distributed systems. DeSi provides the ability to mod-
el the system’s deployment, visualize and assess its architecture,
and improve it via one of the deployment improving algorithms.

We have already discussed Admin’s role in the deployment and ad-
aptation of TDS. To monitor the various system properties, we lev-
eraged Prism-MW’s AbstractMonitor class, which is associated
through the Scaffold with every Brick (shown in Figure 4). This al-
lows for autonomous, active monitoring of a Brick’s runtime behav-
ior. Once the monitoring data on each device becomes stable, the
corresponding Admin forwards the data to DeSi where the moni-
tored data is aggregated. Once the Admins determine that the mon-
itoring data is stable, they send the data to DeSi, which populates its
model. Afterwards, one of the algorithms provided by DeSi is exe-
cuted for improving the system’s QoS via component mobility. Fi-
nally, the result is reported back to the individual Admins, which co-
ordinate the redeployment of the system between different hosts.

3. EXPERIENCE

We have applied the described framework on two application fam-
ilies developed with external collaborators. The first application
family, TDS [9], is in the domain of mobile pervasive systems in-
tended to deal with situations such as natural disasters, search-and-
rescue efforts, and military crises. The second application family is
MIDAS [10], a security monitoring distributed application com-
posed of a large number of wirelessly connected sensors, gateways,
hubs, and PDAs. In both cases, the applications involved varying
numbers of hosts, components, system parameters, and QoS, allow-
ing our collaborators to apply our framework. We summarize the re-
sulting findings about different aspects of the framework below:

modeling — although different QoS were relevant in these two ap-
plication families, our model was able to flexibly capture the rel-
evant system parameters and desired objective functions.
analysis — for smaller TDS and MIDAS applications MIP and
MINLP performed well and gave optimal results; for larger appli-
cations, greedy and genetic algorithms were able to improve the
average system deployment quality by about 30% [9].
implementation, deployment, and runtime evolution — on average
Prism-MW introduced less than 4% overhead on dynamic mem-
ory consumption and negligible performance overhead (~ 0.5%);
note that the time required to effect a redeployment is a function
of the number of components to be redeployed and their sizes.
monitoring — our assessment of Prism-MW’s monitoring support
suggests that monitoring on each host induced as little as 0.1%
and no greater than 10% in memory and computation overheads.

4. RELATED WORK

There are three general categories of relevant research to our work:
architecture-based implementation and evolution, QoS of software
architectures, and software mobility technologies. We provide an
overview of the most relevant previous works from these areas be-
low, and outline the differences between them and our approach.

Several previous works have investigated the development and ev-
olution of a software system at the architectural level. ArchJava [1]
is an extension to Java which ensures that the implementation con-

forms to architectural constraints. However, it lacks explicit support
for mobility, beyond what is provided in the Java language. Arch-
Java also does not have any constructs to support quality assessment
of different deployments, or any tools for aiding and optimizing the
system’s deployment. Aura [14] is an architectural style and sup-
porting middleware for ubiquitous computing with a special focus
on context awareness, and context switching. Although Aura sup-
ports component mobility and recognizes the importance of QoS in
ubiquitous applications, it makes several simplifying assumptions
(e.g., that the different QoS are independent from one another,
which is clearly not the case for many QoS). Aura is thus only ap-
plicable to certain classes of applications in the embedded setting.

Out of techniques for assessing the properties of a software system
at the architectural level, most relevant are the types of analysis
dealing with the deployment and runtime aspects of a system. 15 [2]
proposes the use of binary integer programming for generating a de-
ployment of a distributed application that minimizes the overall re-
mote communication. As such, I5 is computationally expensive and
does not provide support for other QoS. IS5 also does not deal with
runtime reconfiguration, but assumes all the parameters for deter-
mining the optimal deployment are stable and known a priori.
Kichkaylo et al. [6] provide a model for describing a distributed sys-
tem in terms of the constraints on its deployment, and an Al plan-
ning algorithm for solving the model. This approach does not pro-
vide approximative solutions for large application scenarios, or any
deployment and runtime facilities for effecting the deployment.

Finally, related to our work are the mobility technologies. XMID-
DLE [11] is a data-sharing middleware for mobile computing. It al-
lows applications to share data encoded as XML with other hosts,
to have complete access to the shared data when disconnected from
the network, and to reconcile data inconsistency. Lime [7] is a mid-
dleware that provides a coordination layer that can be exploited for
designing applications which exhibit either logical or physical mo-
bility. Lime is specifically targeted at the complexities of ad-hoc
mobile environments. MobiPADS [3] is a middleware that supports
active deployment of augmented services for mobile computing. It
supports dynamic adaptation in order to support configuration of re-
sources and optimize the operations of mobile applications. While
Prism-MW may include features and exhibit characteristics that are
similar to those provided by some of the above technologies, unlike
any of them it provides native implementation facilities for software
architecture-based development and adaptation in a manner that is
suitable to mobile systems. Finally, unlike our framework, the
above mobility technologies do not explicitly support capturing rel-
evant parameters that affect a system’s QoS, nor do they provide
analysis facilities to improve system deployment.

5. CONCLUSION

While our experience with the framework has been very positive,
there are several remaining challenges to be addressed. One chal-
lenge pertains to a class of mobile systems that are pervasive and
long lived. These systems require a solution that is adjustable to
their continuously changing execution context. This means that,
while the system’s architects may choose a computationally expen-
sive redeployment strategy initially (e.g., a precise but inefficient
redeployment algorithm), during the system’s execution they may
be forced to switch to light-weight system monitoring and fast,
though less precise, redeployment calculations.

Another factor that must be taken into account is the amount of
downtime, or downgraded QoS, the system will experience in order
to migrate a component. In fact, a suboptimal deployment architec-
ture may be preferable if it can be effected more quickly.

Another challenge has to do with the elicitation of users’ QoS re-
quirements, especially in an ad hoc mobile environment, where
hosts may join or leave the group. For these systems, it is unlikely
that architects will have access to all system users. Even if they did,
it is unlikely that the users would be able to articulate their prefer-
ences in a manner that is easily captured and/or quantified. This
means that it may be necessary to develop techniques to model dif-
ferent classes of users or usage scenarios, and provide suites of de-
ployment architectures (rather than a single solution), which could
then be applied in different circumstances.

6. REFERENCES
[1] Aldrich, et al. ArchJava: Connecting Software Architecture
to Implementation. /CSE, Orlando, Florida, May 2002.

[2] M. C. Bastarrica, et. al. A Binary Integer Programming Mod-
el for Optimal Object Distribution. Int'l. Conf. on Principles
of Distributed Systems, Amiens, France, Dec. 1998.

[3] A.Chan, S. Chuang. MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing. IEEE Trans. on Sofi-
ware Engineering, Vol. 29, No.12, December 2003.

[4] P. Ciancarini, C. Mascolo. Software Architecture and Mobil-
ity. Int’l Workshop on Software Architecture, Orlando, Flor-
ida, Nov. 1998.

[5] P.Clements, et al. Evaluating Software Architectures: Meth-
ods and Case Studies, Addison Wesley, 2002.

[6] T.Kichkaylo et. al. Constrained Component Deployment in
Wide-Area Networks Using Al Planning Techniques. Int’l
Parallel and Distributed Processing Symposium, April 2003.

[71 LIME http://lime.sourceforge.net/

[8] S.Malek. A User-Centric Approach for Improving a Distrib-
uted Software System's Deployment Architecture. Ph.D.
Dissertation, USC, May 2007.

[91 S.Malek, et. al.. A Style-Aware Architectural Middleware
for Resource-Constrained, Distributed Systems. IEEE Trans.
on Software Engineering, March 2005.

[10] S. Malek, et. al. Reconceptualizing a Family of Heterogene-
ous Embedded Systems via Explicit Architectural Support.
In Proceedings of ICSE 2007, Minneapolis, MN, May 2007.

[11] C.Mascolo, et. al. XMIDDLE: A Data-Sharing Middleware
for Mobile Computing. Personal and Wireless Comm., 2002.

[12] M. Mikic-Rakic, et. al. A Tailorable Environment for As-
sessing the Quality of Deployment Architectures in Highly
Distributed Settings. Int’l. Conf. on Component Deployment,
Edinburgh, UK, May 2004.

[13] D.E.Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineer-
ing Notes, 17:4, October 1992.

[14] J.P. Sousa, and D. Garlan. Aura: an Architectural Frame-
work for User Mobility in Ubiquitous Computing Environ-
ments. WICSA, Montreal, Canada, 2002.

[15] L. A. Wolsey. Integer Programming. John Wiley & Sons,
New York, NY, 1998.

