
Abstract
The selection of an architectural style for a given soft-

ware system is an important factor in satisfying its quality
requirements. In battery-powered environments, such as
mobile and pervasive systems, efficiency with respect to
energy consumption has increasingly been recognized as an
important quality attribute. In this paper, we present a
framework that (1) facilitates early estimation of the energy
consumption induced by an architectural style in a distrib-
uted software system, and (2) consequently enables an engi-
neer to use energy consumption estimates along with other
quality attributes in determining the most appropriate style
for a given distributed application. We have applied the
framework on five distributed systems styles to date, and
have evaluated it for precision and accuracy using a partic-
ular middleware platform that supports the implementation
of those styles. In several application scenarios, our frame-
work exhibited excellent precision, in that it was consis-
tently able to correctly rank the five styles and estimate the
relative differences in their energy consumptions. Moreover,
the framework has also proven to be accurate: its estimates
were within 7% of the different style implementations’ actu-
ally measured energy consumptions.

1. Introduction
We are witnessing an unrelenting pattern of growth in the

size and complexity of software systems. This pattern is
especially evident in the emerging class of distributed,
mobile, embedded, and pervasive systems. A promising
approach to addressing the challenges of developing such
systems is to employ the principles of software architectures
[6]. Software architectures provide abstractions for repre-
senting the structure, behavior, and key properties of a soft-
ware system [12]. They are described in terms of software
components (computational elements), connectors (interac-
tion elements), and their configurations (specific composi-
tions of components and connectors) [8]. Software
architectural styles (e.g., publish-subscribe, peer-to-peer,
client-server) are key design idioms which further refine the
vocabulary of components and connectors and propose a set
of constraints on how they may be combined in a system.

Architectural decisions made early in the design process
are a critical factor in the successful development of a dis-

tributed system. In particular, the selection of an appropriate
architectural style has a significant impact on various sys-
tem quality attributes (e.g., latency, scalability, reliability,
etc.) of the target system. Different styles are recognized as
inducing different quality attributes in software systems. For
example, publish-subscribe-based systems are scalable but
may not be able to provide performance guarantees; on the
other hand, client-server-based systems may be optimized
for performance, but can suffer from scalability problems.

Efficient energy usage is increasingly being defined as an
important quality attribute for mobile and pervasive applica-
tions. However, there are currently no available techniques
for analyzing the impact of an architectural style on a sys-
tem’s energy consumption. In fact, unlike other quality
attributes, such as those discussed above, a style’s energy
consumption characteristics are not understood even in such
an informal and intuitive manner.

In this paper, we try to address this shortcoming. We
present a framework whose objective is to estimate the
impact of a distributed software system’s architectural style
on the system’s energy consumption. The framework is
intended to be used during architectural design, which
would enable an engineer to use energy consumption esti-
mates, along with other quality attributes, in determining the
most appropriate style for an application. The energy cost
models in our framework are implementation-independent,
but we demonstrate how they can be refined and applied to
specific middleware platforms that support a chosen set of
architectural styles.

We have applied the framework on five distributed sys-
tems styles [3,9] to date: client-server, publish-subscribe,
peer-to-peer, pipe-and-filter, and C2. We have evaluated the
framework for precision and accuracy using a particular
middleware platform that supports the implementation of
these styles. In a number of distributed application scenar-
ios, our framework exhibited excellent precision, in that it
was consistently able to correctly rank the five styles and
estimate the relative differences in their energy consump-
tions. Additionally, the framework has proven to be accurate
in the context of our chosen middleware platform: it consis-
tently produced energy consumption estimates that were
within 7% of each style implementation’s actually measured
energy consumption.

A Framework for Estimating the Impact of a Distributed Software System’s
Architectural Style on its Energy Consumption

Chiyoung Seo1 George Edwards1 Sam Malek2 Nenad Medvidovic1

1Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{cseo, gedwards, neno}@usc.edu

2Department of Computer Science
George Mason University

Fairfax, VA 22030-4444 U.S.A.
smalek@gmu.edu

In the remainder of this paper we first describe our esti-
mation framework and detail the energy consumption mod-
els for one of the architectural styles considered in our work
(Section 2). We then discuss related research (Section 3),
and round out the paper with a discussion of some current
and planned applications of this research (Section 4).

2. Energy Estimation Framework
Fielding [3] and Mehta [9] identified more than twenty

common architectural styles for distributed software sys-
tems. Among these styles, our work has focused on the cli-
ent-server, publish-subscribe, C2, peer-to-peer, and pipe-
and-filter styles because each of them embodies a diverse
set of recurring distributed systems concepts, such as distri-
bution, concurrency, event-based interaction, implicit invo-
cation, layering, remote procedure calls, etc.

In this section we detail the characteristics of the client-
server style, and discuss how we model the energy con-
sumption induced by the client-server style on a distributed
application. Refer to [11] for the energy consumption mod-
els of the remaining four styles that are omitted due to space
constraints. Our modeling approach is not limited to the
above styles, but can be used for modeling the energy cost
induced by an arbitrary style.

Two assumptions underlying our work are that (1) com-
ponents interact with other components via connectors and
(2) connectors can communicate with other connectors in
addition to components. These assumptions are common in
architectural literature [12], and they do not limit the types
of distributed applications to which our framework can be
applied. Based on these assumptions, the energy cost of a
component Compi can be expressed as follows:

Eq. 1
In this equation, Elogic,i is the computational energy cost of
the component Compi due to executing its application logic,
while EcommWithConn,i represents the energy cost of exchang-
ing data with connectors attached to the component.

The energy consumption of a connector Connj can be
expressed as the following equation:

Eq. 2
Ecomm,j represents the energy consumption of communica-
tion, which in a distributed style amounts to the cost of
exchanging data locally or remotely. Communication is one
of the four types of services that a connector may provide
[10]. Elogic,j represents the energy cost of the other three
types of service:
• Coordination – A connector may support transfer of exe-

cution control among components. Method invocations
within a single process and inter-process communication
(IPC) are examples of the coordination service.

• Conversion – A connector converts the interaction
required by one component to that provided by another.

Marshalling and unmarshalling data for exchange over
the network is an example of the conversion service.

• Facilitation – A connector mediates and streamlines
component interaction. Connection establishment and a
routing facility for delivering a message to its destination
are examples of the facilitation service.

Based on this classification, we can calculate Ecomm,j and
Elogic,j as follows:

Eq. 3

Eq. 4
EcommWithComp,j represents the energy consumption of
exchanging data with the components attached to the con-
nector, while EremoteComm,j and ElocalComm,j are the energy
costs of the connector caused by exchanging data with
remote and local connectors, respectively. We should note
that if a component and its attached connector run in sepa-
rate processes, their interactions would be supported by an
IPC mechanism, which incurs the energy overhead in both
the component and its attached connector.

Once the energy costs of the components and connectors
induced by a candidate style for a target distributed system
have been calculated, the overall energy consumption
resulting from the style can be estimated as follows:

Eq. 5

where n and m are, respectively, the numbers of the system’s
constituent components and connectors. In the following
section, we discuss how we can model the above energy
cost parameters for the client-server style.

In our work, we assume that a component’s core business
logic (e.g., logic for processing messages received from
other components) remains the same across all the candidate
styles for a target distributed application. We acknowledge
that this logic may need to be refactored in some cases. For
example, the logic required by the component for managing
its interfaces will change, and may incur additional energy
overhead. We distinguish this energy cost from the cost
associated with the component’s core business logic, and
account for it in EcommWithConn,i of Equation 1. Conse-
quently, this indicates that the computational energy cost of
a component (i.e., Elogic,i in Equation 1) remains the same
across all candidate styles. Therefore, our framework does
not require the actual value of Elogic,i while performing the
energy consumption comparisons of multiple styles.

2.1. Client-Server Style
The client-server style is composed of service-providing

(i.e., server) and service-invoking (i.e., client) components.
A client is a triggering process; a server is a reactive pro-
cess. Clients make requests that trigger reactions from serv-
ers. Thus, a client initiates activity at times of its choosing,
and may block until its request has been serviced. On the

, ,()i logic i com m W ithC onn iEC C om p E E= +

,()j com m j logic,jEC C onn E E= +

, , , , comm j commWithComp j remoteComm j localComm jE E E E= + +

, , , ,logic j coordin j conver j facili jE E E E= + +

1 1
() ()

n m

i j
i j

overallEC EC Comp EC Conn
= =

 = +

∑ ∑

other hand, a server waits for requests to be made and then
reacts to them. Figure 1 shows an example of a distributed
software system designed according to the client-server
style. Connectors in this scenario are implemented as mid-
dleware stubs and skeletons. A connector provides each cli-
ent and server component with an interface for registering
and finding remote objects, and sending requests/responses.

Based on this char-
acterization, we can
model the energy cost
parameters introduced
Equations 1-5. First,
the energy cost Ecom-

mWithConn,i on a client
Compi due to sending
requests to and receiv-
ing responses from its
attached connector can
be calculated as follows:

Eq. 6

pi is the total number of requests made by the client. Eto-

Conn,k and EfromConn,k represent the energy costs due to
sending the kth request to and receiving the kth response
from the connector, respectively. EcommWithConn,i on a server
Compi can be also calculated in the same manner. EtoConn
and EfromConn depend on the communication mechanism
used between a component and its attached connector.

The energy cost EcommWithComp,j on a connector Connj
caused by receiving requests from and sending responses to
its attached client component can be calculated as follows:

Eq. 7

qj is the total number of requests received from the client
component, while EfromComp,l and EtoComp,l represent the
energy costs due to receiving the lth request from and send-
ing the lth response to the client. We can also calculate
EcommWithComp,j on a connector Connj attached to a server
component by using the above equation.

To model the energy consumption due to transmission of
data over a network, we assume that the total energy used is
proportional to the size of the data exchanged. This has been
shown to be an accurate characterization for commonly
used network protocols, including TCP and UDP [2]. Based
on this, EremoteComm,j of a connector Connj attached to a cli-
ent due to sending qj requests and receiving their responses
over the network can be estimated as follows:

Eq. 8

tSizel and rSizel are the sizes (e.g., KB) of the lth transmitted
request and its received response. tEC and rEC are the

energy costs (Joule/byte) on the connector’s host while it
transmits and receives a unit of data, respectively. tS and rS
represent constant energy overheads associated with chan-
nel acquisition [2]. Similarly, we can calculate EremoteComm,j
on a connector Connj attached to a server using the above
equation, where rSizel and tSizel are the sizes of the lth
received request and its transmitted responses.

In the client-server style, local communication has an
energy cost that is different from the remote case. The
energy cost on a connector Connj attached to a client caused
by locally sending qj requests and receiving their responses
can be calculated as follows:

Eq. 9

where ElocalTrans,l and ElocalReceiv,l represent the energy
costs of sending the lth request and receiving its response,
respectively. We can also calculate ElocalComm,j on a connec-
tor Connj attached to a server using the above equation. Elo-

calTrans and ElocalReceiv depend on the communication
mechanism (e.g., IPC, socket, shared memory, queue, etc.)
used for implementing the connector.

The coordination cost Ecoordin,j of a connector Connj is
captured by EcommWithComp,j in the client-server style
because when a connector passes a request or response to its
attached component, it effectively transfers execution con-
trol from client to server (or vice versa).

The conversion cost Econver,j of a connector is incurred
by marshalling and unmarshalling requests and responses.
Therefore, we can quantify Econver,j as follows:

Eq. 10

Emar,l and Eunmar,l are the energy costs of marshalling the lth
request and unmarshalling its response, respectively. Econ-

ver,j of a server connector Connj can be calculated in an anal-
ogous manner.

The facilitation energy cost Efacili,j of a connector Connj
is incurred by establishing connections with local and
remote connectors, and can be calculated as follows:

Eq. 11
EremoteConn and ElocalConn are the constant energy costs due
to establishing a single remote or local connection, respec-
tively.

Note that after a server processes a request, it does not
always send the response for that request to its client. In this
case, the energy costs due to exchanging a response between
components and connectors in Equations 6 to 10 will not be
incurred. Also note that the energy cost parameters (e.g.,
EtoConn, EfromConn, EtoComp, EfromComp, tEC, rEC, etc.) are
platform-specific, i.e., their values depend on the hardware,
OS, and middleware on which a distributed application is
deployed. All of these parameters can be readily obtained

Figure 1. A distributed Client-
Server architecture.

Host 2Host 1

Point-to-Point
Connector

Point-to-Point
Connector

Skeleton

Client

Stub

Server

(), , ,
1

pi

com m W ithC onn i toC onn k from C onn k
k

E E E
=

= +∑

(), , ,
1

q j

co m m W ith C o m p j fro m C o m p l to C o m p l
l

E E E
=

= +∑

() ()(),
1

q j

rem o teC om m j l l
l

E tS ize tE C tS rS ize rE C rS
=

= × + + × +∑

(), , ,
1

q j

loca lC om m j loca lT rans l loca lR eceiv l
l

E E E
=

= +∑

(), , ,
1

q j

conver j mar l unmar l
l

E E E
=

= +∑

() (), , ,facili j remoteConn remoteConns j localConn localConns jE E Num E Num= × + ×

on a target platform [11].

2.2. Evaluations
For evaluating our framework, we selected a lightweight,

component-based middleware platform called Prism-MW
[7] as our implementation platform. Prism-MW provides
implementation-level support for realizing architectural ele-
ments and various architectural styles, giving us a common
platform to evaluate the framework’s accuracy in identify-
ing the energy trade-offs between different styles. We chose
a version of Prism-MW that runs on top of the JamVM 1.4.5
[5], which is a lightweight JVM. As our target hardware
platform, we used a Compaq iPAQ 3800 device running
embedded Linux. On the above chosen platform, we mea-
sured platform-specific energy cost parameters introduced
in Section 2.1 for each of the five styles considered in our
work. Interested readers should refer to [11] for details of
the measurement steps taken for platform-specific parame-
ters.

We have evaluated our estimation framework for a large
number of distributed application scenarios (e.g., sensor,
rescue, mobile employee applications, etc.). Our framework
was consistently able to correctly rank the five styles and
estimate the relative differences in their energy costs. More-
over, the energy cost estimates from our framework were
always within 7% of the actual energy costs for all five
styles considered in our work. Refer to [11] for more
detailed explanations of our evaluation results.

3. Related Work
There has been a lot of research on analyzing various

quality attributes of software systems at the architectural
level. We discuss a couple of representative examples.
Wang et al. [13] have evaluated the performance and avail-
ability of two software architectural styles. They modeled
three real applications (Unix sort, scientific, and statistics
programs) into pipe-filter and batch-sequential styles, and
compared the two styles with respect to the above two qual-
ity attributes. Grahn et al. [4] characterized the performance
of three architectural styles by using an event-driven simu-
lation approach. They compared pipe-filter, layered, and
blackboard styles with respect to various performance met-
rics (e.g., throughput, response time, queue time for events,
etc.). Neither of the above approaches considered a software
system’s energy consumption as one of its key quality
attributes.

We previously developed the eXtensible Toolchain for
Evaluation of Architectural Models (XTEAM), a modeling
and analysis framework targeted at distributed, embedded
and pervasive software systems [1]. XTEAM leverages the
model-driven engineering (MDE) paradigm to provide a
reusable infrastructure for facilitating domain-specific
architectural analyses and weighing trade-offs among multi-
ple design goals, such as performance, reliability, and
resource consumption in terms of memory and energy.

However, XTEAM does not support energy cost analysis of
a distributed software system with respect to its candidate
styles.

4. Conclusion
In this paper, we proposed and provided early evaluation

of a framework that facilitates the early estimation of the
energy consumption induced by an architectural style on a
distributed software system. This capability enables an
engineer to employ energy cost predictions along with other
quality attributes in determining the most appropriate archi-
tectural style for a given distributed application. We consid-
ered five architectural styles that are commonly used in the
design of distributed applications, and evaluated the frame-
work with respect to precision and accuracy for a large
number of distributed application scenarios.

We envision several ways to extend, apply, and supple-
ment the work described in this paper. First, we intend to
model and evaluate the energy consumption of push-based,
pull-based, and hybrid data distribution strategies. Such an
evaluation would provide an interesting extension to our
style-based energy consumption estimation framework,
because several styles (such as peer-to-peer) may be real-
ized using either push- or pull-based strategies. Another
important extension to this work is to consider how an intel-
ligent deployment of publish-subscribe connectors, when
used alongside sophisticated event filtering mechanisms,
can reduce the energy consumption of a distributed system.
We believe that the work reported in this paper presents a
good starting point for further work in this area.

5. References
[1] G. Edwards, et al. Scenario-Driven Dynamic Analysis of Dis-

tributed Architectures. In Proceedings of FASE, 2007.
[2] L. M. Feeney, et al. Investigating the Energy Consumption of

a Wireless Network Interface in an Ad Hoc Networking Envi-
ronment. In Proceedings of IEEE INFOCOM, 2001.

[3] R. Fielding. Architectural Styles and the Design of Network-
Based Software Architecture. Ph.D Thesis, UCI, June 2000.

[4] H. Grahn, et al. Some Initial Performance Characteristics of
Three Architectural Styles. In Proceedings of WOSP, 1998.

[5] JamVM 1.4.5. http://jamvm.sourceforge.net/, March, 2007.
[6] E. A. Lee. Embedded Software. Advances in Computers

(Marvin V. Zelkowitz, ed.), Academic Press, London, 2002.
[7] S. Malek, et al. A Style-Aware Architectural Middleware for

Resource Constrained, Distributed Systems. IEEE Transac-
tions on Software Engineering, Vol. 31, No. 3, 2005.

[8] N. Medvidovic, et al. A Classification and Comparison
Framework for Software Architecture Description Languages.
IEEE Transactions on Software Engineering, January 2000.

[9] N. Mehta. Composing Style-Based Software Architectures
From Architectural Primitives. Ph.D Thesis, USC, 2004.

[10] N. Mehta, et al. Towards a Taxonomy of Software Connec-
tors. In Proceedings of ICSE, 2000.

[11] C. Seo, et al. A Framework for Estimating the Impact of a
Distributed Software System’s Architectural Style on its
Energy Consumption. Tech. Report, USC-CSE-2007-xxx,
2007.

[12] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[13] TW. Wang, et al. Software Architectural Analysis - A Case
Study. In Proceedings of COMPSAC, 1999.

