
ABSTRACT
We define and evaluate a framework for estimating the 

energy consumption of pervasive Java-based software sys-
tems. The framework’s primary objective is to enable an 
engineer to make informed decisions when adapting a sys-
tem’s architecture, such that the energy consumption on 
hardware devices with a finite battery life is reduced, and 
the lifetime of the system’s key software services increases. 
Our framework explicitly takes a component-based perspec-
tive, which renders it well suited for a large class of today’s 
distributed, embedded, and pervasive applications. The 
framework provides a novel approach that facilitates the 
accurate estimation of a system’s energy consumption both 
during system construction-time and during runtime. In a 
large number of distributed application scenarios, the frame-
work showed very good precision on the whole, giving 
results that were within 5% of the actually measured power 
losses incurred by executing the software.

1. INTRODUCTION
Modern software systems are predominantly distributed, 

embedded, and pervasive. They increasingly execute on het-
erogeneous platforms, many of which are characterized by 
limited resources. One of the key resources, especially in 
long-lived systems, is battery power. Unlike the traditional 
desktop platforms, which have uninterrupted power sources, 
many new computing platforms have finite battery lives. 
Consider for illustration the distributed sensor application 
shown in Figure 1, which consists of eight software compo-
nents deployed and running on three battery-powered hosts. 
Each line between two components represents an interaction 
path between them, while each dotted line between two 
hosts is a physical network link. This distributed application 
provides various user-level services. For instance, a fire-
alarm sensor interacts with its environment and periodically 
transmits an alarm signal to the FAR (Fire Alarm Receiver) 
component on Host 1, which then forwards the alarm to the 
FAA (Fire Alarm Analyzer) component on Host 2. The FAA
component then analyzes the alarm message and determines 
whether there is actually a fire.

The main motivation for our research is that if we could 
estimate the energy costs of a given software system (e.g., 
sensor application in Figure 1) in terms of its constituent 
software components ahead of its actual deployment, or dur-
ing runtime, we would be able to take appropriate compo-
nent-level actions to extend the system’s life span: 
unloading unnecessary or expendable software components, 
redeploying highly energy-intensive components to more 

capacious hosts, collocating frequently communicating 
components, and so on. 

In this paper we present a framework that estimates the 
energy consumption of a pervasive Java-based software sys-
tem at the level of its software components. Our estimation 
framework provides a novel approach that facilitates the 
estimation of a system’s energy consumption during con-
struction-time and the refinement of construction-time esti-
mates during runtime efficiently and automatically, based on 
monitoring the changes in a small number of easily tracked 
system parameters (e.g., size of data exchanged over the net-
work, inputs to a component’s interfaces, invocation fre-
quency of each interface, etc.). In a recent paper [11], we 
outlined the overall architecture of our estimation frame-
work. This paper provides a more detailed explanation of 
how the framework is used both prior to and during runtime, 
and presents the evaluation results of the framework.

We have chosen to focus on Java because it is increas-
ingly used in constructing pervasive applications [5]. 
Clearly, certain types of software applications (e.g., highly 
computationally intensive programs such as those recently 
considered by Mantovani et al. [10]) will still call for solu-
tions in languages such as C and C++ because of their better 
performance and lower energy consumption. However, Java 
is becoming attractive for pervasive systems because it sup-
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ports platform-independence, language-level dynamism, 
and relative ease of system deployment and maintenance, all 
the while continuously improving in performance and appli-
cation footprint size.

We have evaluated our framework for precision on a 
large number of distributed Java applications, by comparing 
its estimates against actual electrical current measurements. 
Our results suggest that the framework is able to estimate 
the power consumed by a distributed Java system to within 
5% of the actual consumption.

In the remainder of this paper we first present the related 
research in the energy estimation areas (Section 2). We then 
introduce our energy estimation framework (Section 3) and 
detail how it is applied to component-based Java systems 
(Section 4). This is followed by our evaluation results (Sec-
tion 5). We then conclude the paper (Section 6).

2. RELATED WORK
Several studies have profiled the energy consumption of 

Java Virtual Machine (JVM) implementations. Farkas et al. 
[3] have measured the energy consumption of the Itsy 
Pocket Computer and the JVM running on it. They have dis-
cussed different JVMs’ design trade-offs and measured their 
impact on the JVM’s energy consumption. Lafond et al. [9] 
have showed that the energy required for memory accesses 
usually accounts for 70% of the total energy consumed by 
the JVM. However, none of these studies suggest a model 
that can be used for estimating the energy consumption of a 
distributed Java-based system.

A number of measurement- and simulation-based tools 
have been presented for estimating the energy consumption 
of embedded operating systems (OSs) or applications. One 
of the representative tools is a web-based tool, JouleTrack, 
for estimating the energy cost of an embedded software run-
ning on StrongARM SA-1100 and Hitachi SH-4 micropro-
cessors [12]. While they certainly informed our work, we 
were unable to use these tools directly in our targeted dis-
tributed Java domain because none of them provide generic 
energy consumption models, but instead have focused on 
individual applications running on specific platforms, which 
indicates that they cannot be used for Java-based software 
systems running on platforms different from theirs.

Previous research has also proposed solutions for the 
energy accounting problem by computing the overall energy 
consumption of a system in terms of individual processes 
within an operating system [16]. Although these approaches 
have some similarities with ours, we cannot adapt their 
results directly because they model the system’s energy con-
sumption at the level of processes while in Java multiple 
software components usually run in a single JVM process.

Several studies [4,15] have measured the energy con-
sumption of wireless network interfaces on handheld 
devices that use UDP for communication. They have shown 
that the energy usage by a device due to exchanging data 
over the network is directly linear to the size of data. We 
leverage these experimental results in defining a compo-
nent’s communication energy cost.

3. ENERGY COST FRAMEWORK
We model a pervasive Java-based system’s energy con-

sumption at the level of its components. A component is a 

unit of computation and state. In a Java-based application, a 
component may comprise a single class or a cluster of 
related classes. The energy cost of a software component 
consists of its computational and communication energy 
costs. The computational cost is mainly due to CPU pro-
cessing, memory access, I/O operations, and so forth, while 
the communication cost is mainly due to the data exchanged 
over the network. In addition to these two, there is an addi-
tional energy cost incurred by an OS and an application’s 
runtime platform (e.g., JVM) in the process of managing the 
execution of user-level applications. We refer to this cost as 
infrastructure energy overhead. In this section, we briefly 
discuss our approach to modeling each of these three energy 
cost factors. Refer to [11] for a more detailed explanation of 
our energy consumption models
3.1. Computational Cost

In order to preserve a software component’s abstraction 
boundaries, we determine its computational cost at the level 
of its public interfaces. A component’s interface corre-
sponds to a service it provides to other components.1 While 
there are many ways of implementing an interface and bind-
ing it to its caller (e.g., RMI, event exchange), in the most 
prevalent case an interface corresponds to a method.

In Java, the effect of invoking an interface can be 
expressed in terms of the execution of JVM’s 256 Java byte-
code types, and its native methods. Bytecodes are platform-
independent codes interpreted by JVM’s interpreter, while 
native methods are library functions (e.g., 
java.io.FileInputStream’s read() method) pro-
vided by JVM. Native methods are usually implemented in 
C and compiled into dynamic link libraries, which are auto-
matically installed with JVM. JVM also provides a facility 
for synchronizing threads via a monitor mechanism. Conse-
quently, we can model the computational energy cost of 
invoking an interface on a given JVM in terms of the energy 
costs of bytecodes, native methods, and monitor operations 
executed during the invocation. The computational energy 
cost of a component can be then calculated by aggregating 
the energy costs of the component’s constituent interfaces.

Unless two platforms have the same hardware configura-
tions, JVMs, and OSs, the energy costs of each bytecode 
type, each native method, and a monitor operation will 
likely be different.
3.2. Communication Cost

Two components may reside in the same address space 
and thus communicate locally, or in different address spaces 
and communicate remotely. When components are part of 
the same JVM process but running in independent threads, 
the communication among the threads is generally achieved 
via native method calls (e.g., java.lang.Object’s 
notify() method). A component’s reliance on native 
methods has already been accounted for in calculating its 
computational cost. When components run as separate JVM 
processes on the same host, Java sockets are usually used 
for their communication. Given that JVMs generally use 
native methods (e.g., java.net.SocketInput-

1. We use the them “interface” in a broader sense than the lan-
guage-level construct supported by Java. Our usage is consistent 
with component-based software engineering literature.



Stream’s read()) for socket communication, this is also 
captured by a component’s computational cost. 

For remote communication between components, we 
focus on modeling the energy consumption due to UDP-
based interactions. Since UDP is a much more light-weight 
protocol than TCP (e.g., UDP provides no congestion con-
trol or error recovery), it is becoming increasingly prevalent 
in resource-constrained pervasive domains [2,14]. For 
example, UPnP [14] supports web service invocations on 
top of HTTP-UDP. Previous research [4,15] has shown that 
the energy consumption of wireless communication is 
directly proportional to the size of transmitted and received 
data. Based on these results, we model the communication 
energy cost due to invoking a component’s interface in 
terms of the size of transmitted and received data and the 
platform-specific energy consumption of transmitting/
receiving a unit of data. The communication energy cost of a 
component can be then modeled by aggregating the commu-
nication energy costs of the component’s interfaces.
3.3. Infrastructure Energy Overhead

In addition to the computational and communication 
energy costs, there are additional energy costs for executing 
a Java component incurred by JVM’s garbage collection and 
implicit OS routines. During garbage collection, all threads 
except the Garbage Collection (GC) thread within the JVM 
process are suspended temporarily, and the GC thread takes 
over the execution control. We estimate the energy con-
sumption resulting from garbage collection by determining 
the average energy consumption rate of the GC thread 
(Joule/second) and monitoring the total time the thread is 
active (second).

As a JVM runs as a separate process in an OS, it is neces-
sary to consider the energy overhead caused by implicit OS 
routine calls for facilitating and managing the execution of 
JVM processes. Previous research has shown that process 
scheduling, context switching, and paging are the main con-
sumers of energy due to implicit OS routine calls [13]. 
Therefore, we can estimate the overall infrastructure energy 
overhead of each JVM process in terms of the energy costs 
of the GC thread, process scheduling, context switching, and 
paging. Unless two platforms have the same hardware con-
figurations, JVMs, and OSs, the GC thread’s energy con-
sumption rate and the energy costs of process scheduling, 
context switching, and paging on one platform may not be 
the same as those on the other platform.

Finally, we can estimate the system’s overall energy con-
sumption by aggregating the energy costs of all the compo-
nents and the infrastructure energy overhead of all JVMs.

4. ENERGY CONSUMPTION ESTIMATION
We have implemented our framework within Kaffe 1.1.5 

JVM [6] by instrumenting its source code for obtaining 
automatically (1) the numbers of bytecodes, native methods, 
and monitor operations executed due to an interface’s invo-
cation; (2) the size of data exchanged over the network; and 
(3) the GC thread execution time and the numbers of 
implicit OS routines executed on the JVM. Below we high-
light the steps that a system engineer must take in using our 
framework: 
1. For each unique platform, profile platform-specific 

energy cost parameter (e.g., energy cost of each type of 

bytecode and native method, energy cost of sending a 
unit of data) required by our framework. The engineer 
can use our approach described in [11] to do this 
automatically for a given platform. This is a one-time 
effort for each type of platform in a distributed system.

2. Use the framework for estimating the energy costs of a 
component’s interfaces and the infrastructure energy 
overhead by generating a set of inputs for each interface 
during system construction-time.

3. The framework can then refine the above construction-
time estimates automatically during runtime by 
monitoring various system’s properties.

In the remainder of this section, we detail how our frame-
work can be used both during system construction-time and 
during runtime.
4.1. Construction-Time Estimation

In order to estimate a distributed system’s energy cost at 
construction-time, we first need to characterize the compu-
tational energy cost of each component on its candidate 
hosts. To this end, we have identified three different types of 
component interfaces:
I. An interface (e.g., a date component’s setCurrent-
Time) that requires the same amount of computation 
regardless of its input parameters.

II. An interface (e.g., a data compression component’s 
compress) whose input size is proportional to the 
amount of computation required.

III.An interface (e.g., DBMS engine’s query) whose input 
parameters have no direct relationship to the amount of 
computation required.
For a type I interface, we need to profile the number of 

bytecodes, native methods, and monitor operations only 
once for an arbitrary input. We can then calculate its energy 
consumption from our computational model. 

For interfaces of type II, we first generate a set of random 
inputs, profile the number of bytecodes, native methods, and 
monitor operations for each input, and then calculate its 
energy consumption from our computational model. How-
ever, the set of generated inputs does not show the complete 
energy behavior of a type II interface. To characterize the 
energy behavior of a type II interface for any arbitrary input, 
we employ multiple regression [1], a method of estimating 
the expected value of an output variable given the values of 
a set of related input variables. By running multiple regres-
sion on a sample set of input variables’ values (in our case, 
each generated input for a type II interface) and the corre-
sponding output value (energy consumption calculated from 
our computational model), it is possible to construct an 
equation that estimates the relationship between the input 
variables and the output value.

Interfaces of type III present a challenge because there is 
no direct relationship between an interface’s input parame-
ters and the amount of computation required, yet a lot of 
interface implementations fall in this category (e.g., meth-
ods containing loops and branches). To characterize the 
energy behavior of type III interfaces with a set of finite exe-
cution paths, we use symbolic execution [8], a program 
analysis technique that allows using symbolic values for 
input parameters to explore program execution paths. We 
leverage previous research [7], which has suggested a gener-
alized symbolic execution approach for generating test 



inputs covering all execution paths, and use these inputs for 
invoking a type III interface. We then profile the number of 
bytecodes, native methods, and monitor operations for each 
input, estimate its energy consumption from our computa-
tional model, and finally calculate the interface’s average 
energy consumption by dividing the total energy consump-
tion by the number of generated inputs.

The above approach works only for interfaces with finite 
execution paths, and is infeasible for interfaces whose 
implementations have infinite execution paths, such as a 
DBMS engine. We use an approximation for such inter-
faces: we automatically invoke the interface with a large set 
of random inputs, calculate the energy consumption of the 
interface for each input via our computational model, and 
finally calculate the average energy consumption of the 
interface by dividing the total consumption by the number 
of random inputs. This approach will clearly not always 
give a representative estimate of the interface’s actual 
energy consumption: if the random inputs result in execu-
tion paths that are shorter (or longer) than the actual paths 
executed at runtime, the interface’s energy consumption will 
be underestimated (or overestimated). Closer approxima-
tions can be obtained if an interface’s expected runtime con-
text is known (e.g., expected inputs, possible system states, 
values of certain variables, and so on).

The above classification of a component’s interfaces is 
based on their normal execution paths. If an interface’s 
implementation has any exception handling routines, they 
must be treated separately in calculating the interface’s 
energy cost. For estimating the energy cost due to process-
ing an exception, we target the exception by generating 
inputs that raise it. We then profile the number of bytecodes, 
native methods, and monitor operations executed as a result 
of those inputs, and again estimate the energy consumption 
from our computational model. Our estimates of the fre-
quency with which the exception code will be executed can 
be adjusted at runtime as detailed in Section 4.2.

To estimate the communication energy consumption of 
each interface, based on domain knowledge and types of 
input parameters and return values, we predict the average 
size of messages exchanged due to an interface’s invocation. 
Using this data we can approximate the communication 
energy cost of interface invocation via our communication 
model. Finally, based on these analyses for computational 
and communication energy costs of each interface, we can 
estimate the overall energy consumption of a component on 
its candidate host(s). 

Before estimating the entire distributed system’s energy 
cost, we also need to determine the infrastructure’s energy 
overhead, which depends on the deployment of the software 
(e.g., the number of components executing simultaneously 
on each host). Unless the deployment of the system’s com-
ponents on its hosts is fixed a priori, the component-level 
energy estimates can help us determine an initial deploy-
ment that satisfies the system’s energy requirements (e.g., to 
avoid overloading an energy-constrained device). Once an 
initial deployment is determined, from our energy cost 
model we can estimate the infrastructure’s energy cost. We 
do so by executing all components on their target hosts 
simultaneously, with the same sets of inputs that were used 
in characterizing the energy consumption of each individual 
component.

4.2. Runtime Estimation
Many systems for which energy consumption is a signifi-

cant concern are long-lived, dynamically adaptable, and 
mobile. An energy cost framework for such systems should 
account for variations in energy consumption due to 
changes in the runtime environment, or due to the system’s 
adaptations. In this section, we discuss our approach to 
refining our construction-time energy estimates after a sys-
tem’s initial deployment. 

The amount of computation associated with a type I 
interface is constant regardless of its input parameters. If the 
sizes of the inputs to a type II interface significantly differ 
from construction-time estimates, new estimates can be cal-
culated efficiently and accurately from its energy equation 
generated by multiple regression. Recall from Section 4.1
that for type III interfaces our construction-time estimates 
may be inaccurate as we may not be able to predict the fre-
quency of invocation or the frequency of the execution paths 
taken (e.g., the exception handling code). Therefore, to 
refine a type III interface’s construction-time estimates, the 
actual amount of computation (i.e., number of bytecodes, 
native methods, and monitor operations) is monitored by 
our framework during runtime.

For the communication cost of each component, by mon-
itoring the sizes of messages exchanged over network links, 
their effects on each interface’s communication cost can be 
determined, and a component’s overall energy cost can be 
updated automatically.

Finally, the fact that the frequency at which interfaces are 
invoked may vary significantly from what was predicted at 
construction-time, and the fact that the system may be 
adapted at runtime, may result in inaccurate construction-
time infrastructure energy estimates. Therefore, the GC 
thread execution time and the number of implicit OS rou-
tines invoked at runtime must also be monitored. Based on 
the refined estimates of each interface’s computational and 
communication costs, and of the infrastructure’s energy 
overhead, we will be able to improve (possibly automati-
cally) our construction-time energy estimates of distributed 
systems at runtime.

5. EVALUATION
In this section, we describes our evaluation environment 

and present the results of evaluating our framework. Specif-
ically, we assess its accuracy in estimating the energy cost of 
distributed Java-based systems.
5.1. Evaluation Setup

In order 
to evaluate 
the accuracy 
of our 
frame-
work’s esti-
mates, we 
need to 
know the actual energy consumption of a software compo-
nent or system. To this end, we used a digital multimeter, 
which measures the factors influencing the energy con-
sumption of a device: voltage and current. Since the input 
voltage is fixed in our experiments, the energy consumption 

Figure 2. Experimental setup. 
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can be measured based on the current variations going from 
the energy source to the device.

Figure 2 shows our experimental environment setup that 
included a Compaq iPAQ 3800 handheld device running 
Linux and Kaffe 1.1.5 JVM [6], with an external 5V DC 
power supply, a 206MHz Intel StrongARM processor, 
64MB memory, and 11Mbps 802.11b compatible wireless 
PCMCIA card. We also used an HP 3458-a digital multime-
ter. For measuring the current drawn by the iPAQ, we con-
nected it to the multimeter, which was configured to take 
current samples at a high frequency. A data collection com-
puter controlled the multimeter and read the current samples 
from it.
5.2. Evaluation Results

We have eval-
uated our frame-
work over a 
large number of 
distributed Java-
based applica-
tions. Figure 3
shows one 
example such 
application 
deployed across 
three iPAQ 
hosts. These
iPAQ devices communicate with each other via a wireless 
router. Each software component interacts with the other 
components via a UDP socket. A line between two compo-
nents (e.g., IDEA and FTP Client on host A) represents 
an interaction path between them. The FTP Client and 
Server components used in our evaluation are UDP-based 
implementations of a general purpose FTP. We have used 
several execution scenarios in this particular system. For 
example, DB Client component on host A may invoke 
the query interface of the remote DB Server on host B; 
in response, DB Server calculates the results of the query, 
and then invokes IDEA’s encrypt interface and returns 
the encrypted results to DB Client; finally, DB Client
invokes the decrypt interface of its collocated IDEA
component to get the results.

We have executed the above distributed software system 
for both cases, varying the frequencies and sizes of mes-
sages exchanged among the components. We have measured 
the system’s overall energy consumption and compared it 
with our framework’s estimates. As shown in Figure 4, our 
estimates always fall within 5% of the actual energy costs 
regardless of interaction frequencies and the average size of 
a single message. These results have been corroborated by a 
large number of additional distributed applications.

6. CONCLUSION
In this paper we have proposed and evaluated a frame-

work for estimating the energy consumption of pervasive 
Java-based software systems. Our framework explicitly 
takes a component-based perspective, which renders it well 
suited for a large class of today’s distributed pervasive 
applications. The framework is applicable both during sys-
tem construction-time and runtime. In our experiments the 

framework has shown very good precision, giving results 
that have been within 5% (and often less) of the actual 
energy consumption incurred by executing the software. We 
consider the development and evaluation of the framework 
to be a critical first step in pursuing several avenues of fur-
ther work, which has been identified as important in the 
areas of distributed, embedded, and pervasive systems. We 
have recently begun exploring, and successfully applying in 
an industrial setting, one such avenue for the framework.
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Figure 3. A distributed Java-based 
system comprising three hosts.
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Error Rate = (estim ated cost – actual cost) *100 / actual cost
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