
ABSTRACT
We define and evaluate a framework for estimating the

energy consumption of pervasive Java-based software sys-
tems. The framework’s primary objective is to enable an
engineer to make informed decisions when adapting a sys-
tem’s architecture, such that the energy consumption on
hardware devices with a finite battery life is reduced, and
the lifetime of the system’s key software services increases.
Our framework explicitly takes a component-based perspec-
tive, which renders it well suited for a large class of today’s
distributed, embedded, and pervasive applications. The
framework provides a novel approach that facilitates the
accurate estimation of a system’s energy consumption both
during system construction-time and during runtime. In a
large number of distributed application scenarios, the frame-
work showed very good precision on the whole, giving
results that were within 5% of the actually measured power
losses incurred by executing the software.

1. INTRODUCTION
Modern software systems are predominantly distributed,

embedded, and pervasive. They increasingly execute on het-
erogeneous platforms, many of which are characterized by
limited resources. One of the key resources, especially in
long-lived systems, is battery power. Unlike the traditional
desktop platforms, which have uninterrupted power sources,
many new computing platforms have finite battery lives.
Consider for illustration the distributed sensor application
shown in Figure 1, which consists of eight software compo-
nents deployed and running on three battery-powered hosts.
Each line between two components represents an interaction
path between them, while each dotted line between two
hosts is a physical network link. This distributed application
provides various user-level services. For instance, a fire-
alarm sensor interacts with its environment and periodically
transmits an alarm signal to the FAR (Fire Alarm Receiver)
component on Host 1, which then forwards the alarm to the
FAA (Fire Alarm Analyzer) component on Host 2. The FAA
component then analyzes the alarm message and determines
whether there is actually a fire.

The main motivation for our research is that if we could
estimate the energy costs of a given software system (e.g.,
sensor application in Figure 1) in terms of its constituent
software components ahead of its actual deployment, or dur-
ing runtime, we would be able to take appropriate compo-
nent-level actions to extend the system’s life span:
unloading unnecessary or expendable software components,
redeploying highly energy-intensive components to more

capacious hosts, collocating frequently communicating
components, and so on.

In this paper we present a framework that estimates the
energy consumption of a pervasive Java-based software sys-
tem at the level of its software components. Our estimation
framework provides a novel approach that facilitates the
estimation of a system’s energy consumption during con-
struction-time and the refinement of construction-time esti-
mates during runtime efficiently and automatically, based on
monitoring the changes in a small number of easily tracked
system parameters (e.g., size of data exchanged over the net-
work, inputs to a component’s interfaces, invocation fre-
quency of each interface, etc.). In a recent paper [11], we
outlined the overall architecture of our estimation frame-
work. This paper provides a more detailed explanation of
how the framework is used both prior to and during runtime,
and presents the evaluation results of the framework.

We have chosen to focus on Java because it is increas-
ingly used in constructing pervasive applications [5].
Clearly, certain types of software applications (e.g., highly
computationally intensive programs such as those recently
considered by Mantovani et al. [10]) will still call for solu-
tions in languages such as C and C++ because of their better
performance and lower energy consumption. However, Java
is becoming attractive for pervasive systems because it sup-

Estimating the Energy Consumption in Pervasive Java-Based Systems

Chiyoung Seo1 Sam Malek2 Nenad Medvidovic1

1Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{cseo,neno}@usc.edu

2 Department of Computer Science
George Mason University

Fairfax, VA 22030-4444 U.S.A.
smalek@gmu.edu

Host 1 (battery capacity: 21700 J)
 - AL (Alarm Logger)
 - LSIM (Local Sensor Information Management)
 - FAR (Fire Alarm Receiver)

Host 3 (battery capacity: 37500 J)
 - GSIM (Global Sensor Information Management)
 - IAR (Intrusion Alarm Receiver)
 - LSIM (Local Sensor Information Management)

Host 2 (battery capacity: 48500 J)
 - FAA (Fire Alarm Analyzer)
 - IAA (Intrusion Alarm Analyzer)

Sensors

...LSIM

FAR AL

FAA IAA

IAR

LSIM

GSIM

Figure 1. A distributed
sensor application

consisting of 8
components and 3 hosts.

ports platform-independence, language-level dynamism,
and relative ease of system deployment and maintenance, all
the while continuously improving in performance and appli-
cation footprint size.

We have evaluated our framework for precision on a
large number of distributed Java applications, by comparing
its estimates against actual electrical current measurements.
Our results suggest that the framework is able to estimate
the power consumed by a distributed Java system to within
5% of the actual consumption.

In the remainder of this paper we first present the related
research in the energy estimation areas (Section 2). We then
introduce our energy estimation framework (Section 3) and
detail how it is applied to component-based Java systems
(Section 4). This is followed by our evaluation results (Sec-
tion 5). We then conclude the paper (Section 6).

2. RELATED WORK
Several studies have profiled the energy consumption of

Java Virtual Machine (JVM) implementations. Farkas et al.
[3] have measured the energy consumption of the Itsy
Pocket Computer and the JVM running on it. They have dis-
cussed different JVMs’ design trade-offs and measured their
impact on the JVM’s energy consumption. Lafond et al. [9]
have showed that the energy required for memory accesses
usually accounts for 70% of the total energy consumed by
the JVM. However, none of these studies suggest a model
that can be used for estimating the energy consumption of a
distributed Java-based system.

A number of measurement- and simulation-based tools
have been presented for estimating the energy consumption
of embedded operating systems (OSs) or applications. One
of the representative tools is a web-based tool, JouleTrack,
for estimating the energy cost of an embedded software run-
ning on StrongARM SA-1100 and Hitachi SH-4 micropro-
cessors [12]. While they certainly informed our work, we
were unable to use these tools directly in our targeted dis-
tributed Java domain because none of them provide generic
energy consumption models, but instead have focused on
individual applications running on specific platforms, which
indicates that they cannot be used for Java-based software
systems running on platforms different from theirs.

Previous research has also proposed solutions for the
energy accounting problem by computing the overall energy
consumption of a system in terms of individual processes
within an operating system [16]. Although these approaches
have some similarities with ours, we cannot adapt their
results directly because they model the system’s energy con-
sumption at the level of processes while in Java multiple
software components usually run in a single JVM process.

Several studies [4,15] have measured the energy con-
sumption of wireless network interfaces on handheld
devices that use UDP for communication. They have shown
that the energy usage by a device due to exchanging data
over the network is directly linear to the size of data. We
leverage these experimental results in defining a compo-
nent’s communication energy cost.

3. ENERGY COST FRAMEWORK
We model a pervasive Java-based system’s energy con-

sumption at the level of its components. A component is a

unit of computation and state. In a Java-based application, a
component may comprise a single class or a cluster of
related classes. The energy cost of a software component
consists of its computational and communication energy
costs. The computational cost is mainly due to CPU pro-
cessing, memory access, I/O operations, and so forth, while
the communication cost is mainly due to the data exchanged
over the network. In addition to these two, there is an addi-
tional energy cost incurred by an OS and an application’s
runtime platform (e.g., JVM) in the process of managing the
execution of user-level applications. We refer to this cost as
infrastructure energy overhead. In this section, we briefly
discuss our approach to modeling each of these three energy
cost factors. Refer to [11] for a more detailed explanation of
our energy consumption models
3.1. Computational Cost

In order to preserve a software component’s abstraction
boundaries, we determine its computational cost at the level
of its public interfaces. A component’s interface corre-
sponds to a service it provides to other components.1 While
there are many ways of implementing an interface and bind-
ing it to its caller (e.g., RMI, event exchange), in the most
prevalent case an interface corresponds to a method.

In Java, the effect of invoking an interface can be
expressed in terms of the execution of JVM’s 256 Java byte-
code types, and its native methods. Bytecodes are platform-
independent codes interpreted by JVM’s interpreter, while
native methods are library functions (e.g.,
java.io.FileInputStream’s read() method) pro-
vided by JVM. Native methods are usually implemented in
C and compiled into dynamic link libraries, which are auto-
matically installed with JVM. JVM also provides a facility
for synchronizing threads via a monitor mechanism. Conse-
quently, we can model the computational energy cost of
invoking an interface on a given JVM in terms of the energy
costs of bytecodes, native methods, and monitor operations
executed during the invocation. The computational energy
cost of a component can be then calculated by aggregating
the energy costs of the component’s constituent interfaces.

Unless two platforms have the same hardware configura-
tions, JVMs, and OSs, the energy costs of each bytecode
type, each native method, and a monitor operation will
likely be different.
3.2. Communication Cost

Two components may reside in the same address space
and thus communicate locally, or in different address spaces
and communicate remotely. When components are part of
the same JVM process but running in independent threads,
the communication among the threads is generally achieved
via native method calls (e.g., java.lang.Object’s
notify() method). A component’s reliance on native
methods has already been accounted for in calculating its
computational cost. When components run as separate JVM
processes on the same host, Java sockets are usually used
for their communication. Given that JVMs generally use
native methods (e.g., java.net.SocketInput-

1. We use the them “interface” in a broader sense than the lan-
guage-level construct supported by Java. Our usage is consistent
with component-based software engineering literature.

Stream’s read()) for socket communication, this is also
captured by a component’s computational cost.

For remote communication between components, we
focus on modeling the energy consumption due to UDP-
based interactions. Since UDP is a much more light-weight
protocol than TCP (e.g., UDP provides no congestion con-
trol or error recovery), it is becoming increasingly prevalent
in resource-constrained pervasive domains [2,14]. For
example, UPnP [14] supports web service invocations on
top of HTTP-UDP. Previous research [4,15] has shown that
the energy consumption of wireless communication is
directly proportional to the size of transmitted and received
data. Based on these results, we model the communication
energy cost due to invoking a component’s interface in
terms of the size of transmitted and received data and the
platform-specific energy consumption of transmitting/
receiving a unit of data. The communication energy cost of a
component can be then modeled by aggregating the commu-
nication energy costs of the component’s interfaces.
3.3. Infrastructure Energy Overhead

In addition to the computational and communication
energy costs, there are additional energy costs for executing
a Java component incurred by JVM’s garbage collection and
implicit OS routines. During garbage collection, all threads
except the Garbage Collection (GC) thread within the JVM
process are suspended temporarily, and the GC thread takes
over the execution control. We estimate the energy con-
sumption resulting from garbage collection by determining
the average energy consumption rate of the GC thread
(Joule/second) and monitoring the total time the thread is
active (second).

As a JVM runs as a separate process in an OS, it is neces-
sary to consider the energy overhead caused by implicit OS
routine calls for facilitating and managing the execution of
JVM processes. Previous research has shown that process
scheduling, context switching, and paging are the main con-
sumers of energy due to implicit OS routine calls [13].
Therefore, we can estimate the overall infrastructure energy
overhead of each JVM process in terms of the energy costs
of the GC thread, process scheduling, context switching, and
paging. Unless two platforms have the same hardware con-
figurations, JVMs, and OSs, the GC thread’s energy con-
sumption rate and the energy costs of process scheduling,
context switching, and paging on one platform may not be
the same as those on the other platform.

Finally, we can estimate the system’s overall energy con-
sumption by aggregating the energy costs of all the compo-
nents and the infrastructure energy overhead of all JVMs.

4. ENERGY CONSUMPTION ESTIMATION
We have implemented our framework within Kaffe 1.1.5

JVM [6] by instrumenting its source code for obtaining
automatically (1) the numbers of bytecodes, native methods,
and monitor operations executed due to an interface’s invo-
cation; (2) the size of data exchanged over the network; and
(3) the GC thread execution time and the numbers of
implicit OS routines executed on the JVM. Below we high-
light the steps that a system engineer must take in using our
framework:
1. For each unique platform, profile platform-specific

energy cost parameter (e.g., energy cost of each type of

bytecode and native method, energy cost of sending a
unit of data) required by our framework. The engineer
can use our approach described in [11] to do this
automatically for a given platform. This is a one-time
effort for each type of platform in a distributed system.

2. Use the framework for estimating the energy costs of a
component’s interfaces and the infrastructure energy
overhead by generating a set of inputs for each interface
during system construction-time.

3. The framework can then refine the above construction-
time estimates automatically during runtime by
monitoring various system’s properties.

In the remainder of this section, we detail how our frame-
work can be used both during system construction-time and
during runtime.
4.1. Construction-Time Estimation

In order to estimate a distributed system’s energy cost at
construction-time, we first need to characterize the compu-
tational energy cost of each component on its candidate
hosts. To this end, we have identified three different types of
component interfaces:
I. An interface (e.g., a date component’s setCurrent-
Time) that requires the same amount of computation
regardless of its input parameters.

II. An interface (e.g., a data compression component’s
compress) whose input size is proportional to the
amount of computation required.

III.An interface (e.g., DBMS engine’s query) whose input
parameters have no direct relationship to the amount of
computation required.
For a type I interface, we need to profile the number of

bytecodes, native methods, and monitor operations only
once for an arbitrary input. We can then calculate its energy
consumption from our computational model.

For interfaces of type II, we first generate a set of random
inputs, profile the number of bytecodes, native methods, and
monitor operations for each input, and then calculate its
energy consumption from our computational model. How-
ever, the set of generated inputs does not show the complete
energy behavior of a type II interface. To characterize the
energy behavior of a type II interface for any arbitrary input,
we employ multiple regression [1], a method of estimating
the expected value of an output variable given the values of
a set of related input variables. By running multiple regres-
sion on a sample set of input variables’ values (in our case,
each generated input for a type II interface) and the corre-
sponding output value (energy consumption calculated from
our computational model), it is possible to construct an
equation that estimates the relationship between the input
variables and the output value.

Interfaces of type III present a challenge because there is
no direct relationship between an interface’s input parame-
ters and the amount of computation required, yet a lot of
interface implementations fall in this category (e.g., meth-
ods containing loops and branches). To characterize the
energy behavior of type III interfaces with a set of finite exe-
cution paths, we use symbolic execution [8], a program
analysis technique that allows using symbolic values for
input parameters to explore program execution paths. We
leverage previous research [7], which has suggested a gener-
alized symbolic execution approach for generating test

inputs covering all execution paths, and use these inputs for
invoking a type III interface. We then profile the number of
bytecodes, native methods, and monitor operations for each
input, estimate its energy consumption from our computa-
tional model, and finally calculate the interface’s average
energy consumption by dividing the total energy consump-
tion by the number of generated inputs.

The above approach works only for interfaces with finite
execution paths, and is infeasible for interfaces whose
implementations have infinite execution paths, such as a
DBMS engine. We use an approximation for such inter-
faces: we automatically invoke the interface with a large set
of random inputs, calculate the energy consumption of the
interface for each input via our computational model, and
finally calculate the average energy consumption of the
interface by dividing the total consumption by the number
of random inputs. This approach will clearly not always
give a representative estimate of the interface’s actual
energy consumption: if the random inputs result in execu-
tion paths that are shorter (or longer) than the actual paths
executed at runtime, the interface’s energy consumption will
be underestimated (or overestimated). Closer approxima-
tions can be obtained if an interface’s expected runtime con-
text is known (e.g., expected inputs, possible system states,
values of certain variables, and so on).

The above classification of a component’s interfaces is
based on their normal execution paths. If an interface’s
implementation has any exception handling routines, they
must be treated separately in calculating the interface’s
energy cost. For estimating the energy cost due to process-
ing an exception, we target the exception by generating
inputs that raise it. We then profile the number of bytecodes,
native methods, and monitor operations executed as a result
of those inputs, and again estimate the energy consumption
from our computational model. Our estimates of the fre-
quency with which the exception code will be executed can
be adjusted at runtime as detailed in Section 4.2.

To estimate the communication energy consumption of
each interface, based on domain knowledge and types of
input parameters and return values, we predict the average
size of messages exchanged due to an interface’s invocation.
Using this data we can approximate the communication
energy cost of interface invocation via our communication
model. Finally, based on these analyses for computational
and communication energy costs of each interface, we can
estimate the overall energy consumption of a component on
its candidate host(s).

Before estimating the entire distributed system’s energy
cost, we also need to determine the infrastructure’s energy
overhead, which depends on the deployment of the software
(e.g., the number of components executing simultaneously
on each host). Unless the deployment of the system’s com-
ponents on its hosts is fixed a priori, the component-level
energy estimates can help us determine an initial deploy-
ment that satisfies the system’s energy requirements (e.g., to
avoid overloading an energy-constrained device). Once an
initial deployment is determined, from our energy cost
model we can estimate the infrastructure’s energy cost. We
do so by executing all components on their target hosts
simultaneously, with the same sets of inputs that were used
in characterizing the energy consumption of each individual
component.

4.2. Runtime Estimation
Many systems for which energy consumption is a signifi-

cant concern are long-lived, dynamically adaptable, and
mobile. An energy cost framework for such systems should
account for variations in energy consumption due to
changes in the runtime environment, or due to the system’s
adaptations. In this section, we discuss our approach to
refining our construction-time energy estimates after a sys-
tem’s initial deployment.

The amount of computation associated with a type I
interface is constant regardless of its input parameters. If the
sizes of the inputs to a type II interface significantly differ
from construction-time estimates, new estimates can be cal-
culated efficiently and accurately from its energy equation
generated by multiple regression. Recall from Section 4.1
that for type III interfaces our construction-time estimates
may be inaccurate as we may not be able to predict the fre-
quency of invocation or the frequency of the execution paths
taken (e.g., the exception handling code). Therefore, to
refine a type III interface’s construction-time estimates, the
actual amount of computation (i.e., number of bytecodes,
native methods, and monitor operations) is monitored by
our framework during runtime.

For the communication cost of each component, by mon-
itoring the sizes of messages exchanged over network links,
their effects on each interface’s communication cost can be
determined, and a component’s overall energy cost can be
updated automatically.

Finally, the fact that the frequency at which interfaces are
invoked may vary significantly from what was predicted at
construction-time, and the fact that the system may be
adapted at runtime, may result in inaccurate construction-
time infrastructure energy estimates. Therefore, the GC
thread execution time and the number of implicit OS rou-
tines invoked at runtime must also be monitored. Based on
the refined estimates of each interface’s computational and
communication costs, and of the infrastructure’s energy
overhead, we will be able to improve (possibly automati-
cally) our construction-time energy estimates of distributed
systems at runtime.

5. EVALUATION
In this section, we describes our evaluation environment

and present the results of evaluating our framework. Specif-
ically, we assess its accuracy in estimating the energy cost of
distributed Java-based systems.
5.1. Evaluation Setup

In order
to evaluate
the accuracy
of our
frame-
work’s esti-
mates, we
need to
know the actual energy consumption of a software compo-
nent or system. To this end, we used a digital multimeter,
which measures the factors influencing the energy con-
sumption of a device: voltage and current. Since the input
voltage is fixed in our experiments, the energy consumption

Figure 2. Experimental setup.

Java
Com ponents

PD A

Pow er Supply

D ig ital
M ultim eter

D ata Collection
Com puterJava

Com ponents

PD A

Pow er Supply

D ig ital
M ultim eter

D ata Collection
Com puter

can be measured based on the current variations going from
the energy source to the device.

Figure 2 shows our experimental environment setup that
included a Compaq iPAQ 3800 handheld device running
Linux and Kaffe 1.1.5 JVM [6], with an external 5V DC
power supply, a 206MHz Intel StrongARM processor,
64MB memory, and 11Mbps 802.11b compatible wireless
PCMCIA card. We also used an HP 3458-a digital multime-
ter. For measuring the current drawn by the iPAQ, we con-
nected it to the multimeter, which was configured to take
current samples at a high frequency. A data collection com-
puter controlled the multimeter and read the current samples
from it.
5.2. Evaluation Results

We have eval-
uated our frame-
work over a
large number of
distributed Java-
based applica-
tions. Figure 3
shows one
example such
application
deployed across
three iPAQ
hosts. These
iPAQ devices communicate with each other via a wireless
router. Each software component interacts with the other
components via a UDP socket. A line between two compo-
nents (e.g., IDEA and FTP Client on host A) represents
an interaction path between them. The FTP Client and
Server components used in our evaluation are UDP-based
implementations of a general purpose FTP. We have used
several execution scenarios in this particular system. For
example, DB Client component on host A may invoke
the query interface of the remote DB Server on host B;
in response, DB Server calculates the results of the query,
and then invokes IDEA’s encrypt interface and returns
the encrypted results to DB Client; finally, DB Client
invokes the decrypt interface of its collocated IDEA
component to get the results.

We have executed the above distributed software system
for both cases, varying the frequencies and sizes of mes-
sages exchanged among the components. We have measured
the system’s overall energy consumption and compared it
with our framework’s estimates. As shown in Figure 4, our
estimates always fall within 5% of the actual energy costs
regardless of interaction frequencies and the average size of
a single message. These results have been corroborated by a
large number of additional distributed applications.

6. CONCLUSION
In this paper we have proposed and evaluated a frame-

work for estimating the energy consumption of pervasive
Java-based software systems. Our framework explicitly
takes a component-based perspective, which renders it well
suited for a large class of today’s distributed pervasive
applications. The framework is applicable both during sys-
tem construction-time and runtime. In our experiments the

framework has shown very good precision, giving results
that have been within 5% (and often less) of the actual
energy consumption incurred by executing the software. We
consider the development and evaluation of the framework
to be a critical first step in pursuing several avenues of fur-
ther work, which has been identified as important in the
areas of distributed, embedded, and pervasive systems. We
have recently begun exploring, and successfully applying in
an industrial setting, one such avenue for the framework.

7. REFERENCES
[1] P. D. Allison. Multiple regression. Pine Forge, 1999.
[2] W. Drytkiewicz, et al. pREST: a REST-based protocol for per-

vasive systems. IEEE International Conference on Mobile Ad-
hoc and Sensor Systems, 2004.

[3] K. I. Farkas, et al. Quantifying the Energy Consumption of a
Pocket Computer and a Java Virtual Machine. ACM SIGMET-
RICS, 2000.

[4] L. M. Feeney, et al. Investigating the Energy Consumption of
a Wireless Network Interface in an Ad Hoc Networking Envi-
ronment. IEEE INFOCOM, 2001.

[5] S. Helal. Pervasive Java. IEEE Pervasive Computing, Vol. 1,
No. 1, Jan-Mar, 2002.

[6] Kaffe 1.1.5. http://www.kaffe.org/, 2005.
[7] S. Khurshid, et al. Generalized Symbolic Execution for Model

Checking and Testing. TACAS, 2003
[8] J. C. King. Symbolic execution and program testing. Commu-

nications of the ACM, vo.19, no. 7, 1976.
[9] S. Lafond, et al. An Energy Consumption Model for An

Embedded Java Virtual Machine. ARCS, 2006.
[10] M. Mantovani, et al. A Lightweight Parallel Java Execution

Environment for Embedded Multiprocessor Systems-on-Chip.
GLSVLSI 2007, Italy, March 2007.

[11] C. Seo, et al. An Energy Consumption Framework for Distrib-
uted Java-Based Systems. In Proc. of IEEE/ACM Int’l Confer-
ence on Automated Software Engineering, November, 2007

[12] A. Sinha, et al. JouleTrack - A Web Based Tool for Software
Energy Profiling. In Proceedings of DAC, 2001.

[13] T. K. Tan, et al. Energy macromodeling of embedded operat-
ing systems. ACM Trans. on Embedded Comp. Systems, 2005.

[14] UPnP Device Architecture, http://www.upnp.org/, 2007.
[15] R. Xu, et al. Impact of Data Compression on Energy Con-

sumption of Wireless-Networked Handheld Devices, ICDCS,
2003.

[16] H. Zeng, et al. ECOSystem: Managing Energy as a First Class
Operating System Resource. ACM ASPLOS, 2002.

Figure 3. A distributed Java-based
system comprising three hosts.

DB
Client

iPAQ (host A)

Wireless
router

FTP
Client

IDEA

LZW

DB
Server IDEA

FTP
Server

IDEA

LZW

iPAQ (host B)

iPAQ (host C)

DB
Client

iPAQ (host A)

Wireless
router

FTP
Client

IDEA

LZW

DB
Server IDEA

FTP
Server

IDEA

LZW

iPAQ (host B)

iPAQ (host C)

Figure 4. The
framework’s
error rates

with respect
to the

interaction
frequency

(top) and the
average size
of a message

(bottom).

Error Rate = (estim ated cost – actual cost) *100 / actual cost

-6

-4

-2

0

2

4

6

1.1 2.1 3.4 4.2 5.1

Fre quency (tim es/se c)

Er
ro

r r
at

e
(%

)

-3

-2

-1

0

1

2

3

3.3 6.2 12.2 18.3 24.4

Av g. size of a m e ssage (KB)

Er
ro

r r
at

e
(%

)

