
Dealing with the Crosscutting Structure of Software Architectural Styles

Sam Malek
Department of Computer Science

George Mason University
Fairfax, VA 22030-4444 U.S.A.

smalek@gmu.edu

Abstract

Architecture-based software development is the
implementation of a software system in terms of its
architectural constructs (e.g., components, connectors,
ports). It has been shown as an effective approach to
realizing and managing the architecture of large-scale
software systems. Several techniques and tools have
been developed that are intended to aid with the
architecture-based development of software systems.
While these approaches provide adequate
implementation support for some aspects of software
architectures, they often lack sufficient support for
implementing and enforcing the system’s software
architectural style. In this paper, we argue that the
lack of sufficient support for architectural styles is a
by-product of its crosscutting structure. In turn, this
makes it impossible to realize styles using the object-
oriented programming methodology. We present a new
approach to implementing architectural styles that is
based on the aspect-oriented programming paradigm.

1. Introduction

Software engineering researchers and practitioners
have successfully dealt with the increasing complexity
of software systems by employing the principles of
software architecture. Software architectures provide
design-level models and guidelines for composing
software systems in terms of components
(computational elements), connectors (interaction
elements), and their configurations (also referred to as
topologies) [15]. Software architectural styles (e.g.,
publish-subscribe, client-server, pipe-and-filter) further
codify structural, behavioral, interaction, and
composition guidelines that are likely to result in
software systems with desired properties [15].

For the software architectural models and
guidelines to be truly useful in a development setting,
they must be accompanied by support for their
implementation [14]. However, there is a gap between

the high-level architectural concepts and the low-level
programming language constructs that are used for the
implementation. This gap requires engineers to
maintain a (potentially complex) mental map between
components, connectors, communication ports, events,
etc. on the one hand, and classes, objects, shared
variables, pointers, etc. on the other hand. A more
effective approach for architecture-based software
development is to leverage architectural middleware
solutions [2][8][14], which provide native
implementation-level support for the architectural
concepts.

The state-of-the-art architectural middlewares
provide implementation support for some architectural
concepts (e.g., components, ports, events), but they do
not provide adequate support for the others, most
importantly architectural styles. In fact, most
commercial and architectural middleware solutions
ignore, mimic, or at best assume a particular
architectural style. Therefore, forcing the software
architect to choose a style that is best supported by a
given middleware platform, as opposed to a style that
suits the requirements of a particular software system.

We argue that the lack of sufficient support for
implementing architectural styles is due to the
crosscutting structure of styles. Architectural styles
often prescribe rules and guidelines that impact the
behavior and structure of all the other architectural
concepts and constructs. Therefore, unlike any other
architectural concept, architectural styles cannot be
effectively abstracted and implemented using the
traditional object-oriented programming language con-
structs. In fact, if a middleware provides support for
the stylistic concerns, they are often implemented as
dispersed code snippets, and thus lost in the final
product [8].

In this paper, we propose a new approach for
implementing architectural styles that is based on the
aspect-oriented programming (AOP) paradigm [6]. We
provide an overview of our approach on top of an
architectural middleware platform, called Prism-MW
[8]. Our approach allows for modularized

representation of stylistic concerns, which are weaved
into the middleware’s implementation at compile time.
In turn, this aids system understanding, and the
flexibility of changing a system’s architectural style
without impacting the rest of the system. Our approach
shifts the responsibility of making stylistic decisions
from the middleware designer to the software engineer.
It allows the engineer to implement support for a new,
potentially domain specific, style in a given
middleware platform.

The remainder of the paper is organized as
follows. Section 2 motivates our research in response
to the shortcomings of the current technologies.
Section 3 describes our overall approach. Section 4
provides an overview of Prism-MW, an architectural
middleware platform that we have leveraged to
implement our approach. Section 5 demonstrates the
crosscutting structure of styles using Prism-MW.
Section 6 presents an example style that we have
implemented using our approach. Section 7 describes
our experience with the validation of this research.
Section 8 highlights the related work. Finally, the
paper concludes with a summary of our contributions,
and future work.

2. Motivation

Software engineers have often relied on the
facilities and abstractions provided by a middleware
platform to aid with the implementation of complex
large-scale software system. Ideally, to deal with the
complexity of building large-scale software systems,
the engineers should be able to construct a software
architecture that best satisfies the system’s
requirements, irrespective of the candidate
middlewares that could be used for the
implementation. This is consistent with the Object
Management Group’s two stage modeling approach:
Platform Independent Model (PIM) and Platform
Specific Model (PSM) [12]. However, in practice, the
engineers are constrained significantly by a subset of
architectural choices, including architectural styles,
that can effectively be realized in a given middleware
platform. In fact, previous researchers have realized
that deriving PSM from PIM is often very challenging
and sometimes not even feasible [3]. This is largely
due to the rigidity of the target implementation
platforms that are often developed with certain
intrinsic assumptions about the structural and
behavioral characteristics of the applications that will
be deployed on top of them. One objective of our
research has been to make the mapping from PIM to
PSM a more straightforward process. To this end we
have previously developed an extensible architectural

middleware that provides one-to-one mapping between
constructs in the architectural diagrams and their
implementation counterparts. In this paper, we focus
on the next logical problem: mapping the stylistic
decisions to their implementation counterparts.

An important shortcoming of the most commonly
used state-of-the-art middlewares (e.g., Java RMI,
CORBA, DCOM, and Microsoft .net) is the lack of
sufficient support for architectural styles. They often
provide support for some aspects of architectural
styles, such as the communication style (e.g.,
synchronous vs. asynchronous), but do not support
others. For example, the necessary implementation-
level facilities for some key elements of software
architectures are often missing─explicit architecture-
level connectors are usually distributed (and thus
“lost”) across different implementation-level modules
as combinations of method calls, shared memory,
network sockets, and other facilities in the middleware
[11]. Moreover, stylistic rules and constraints on the
valid configurations of a software system are rarely
ensured and enforced by the middleware. Thereby, it is
extremely difficult to verify the fidelity of the
constructed software system with respect to the
system’s intended architecture. An important goal in
our research has been to provide complete support for
arbitrary complex styles in a given middleware. This is
in contrast to previous well-known architectural
middlewares that either do not provide stylistic support
at all (e.g., ArchJava [2]) or are targeted specifically to
a predetermined style (e.g., C2 Framework [9]).

Finally, one approach to providing support for
several styles in a middleware is to parameterize it,
such that it can be configured to behave according to
the rules of a style at run-time. This is in fact the
approach that was taken in an earlier work [8].
However, we argue that this is not a viable solution for
any general purpose middleware for the following
reasons. Firstly, there are many well-known
architectural styles and infinitely more domain-specific
patterns and hybrid styles that an architect may opt to
use. Predicting those a priori (i.e., during the
construction of the middleware) is infeasible.
Secondly, providing implementation support for any
substantive set of styles inevitably makes the
middleware bulky and has a significant impact on its
performance. One of our key objectives in this research
has been to develop a technique for efficiently
configuring a middleware to support arbitrary,
potentially domain specific, architectural styles.

3. Approach

Figure 1 shows an overview of our approach. A
typical structure of the middleware stack is shown on
the left side of the figure. We have distinguished
between two types of facilities that a middleware may
provide on top of the Operating System: at the bottom
is a virtual machine layer that allows the middleware
to be deployed on heterogeneous platforms; the
abstraction facilities provided by the virtual machine
are leveraged by the middleware’s architectural
constructs, and application logic that lay on top of it.
In this research, we are more interested in the top
layer, i.e., architectural support layer. As mentioned
earlier, the level of architectural support provided by
middlewares vary. In this figure, we are depicting the
typical facilities an architectural middleware, which
provides extensive support for architecture-based
software development, may provide. We provide a
detailed overview of an architectural middleware in the
next section.

In our approach we assume the architectural
facilities provided by the middleware are generic, i.e.,
they are not stylistically constrained. This assumption
does not impede the applicability of our approach,
since as you may recall from Section 2 most
middlewares do not provide sophisticated support for
architectural styles by default. We implement the
stylistic concerns of the middleware in one or more
aspects, which when weaved with the generic
middleware constructs provide style-specific support.
For example, as depicted in Figure 1, to provide
support for the Client-Server style, the Client-Server
Aspect is weaved with the middleware to generate a
more specialized version of the middleware with typed
components (clients, servers), typed events (request,
reply), modified component behavior (client blocks
after making a request), new connector functionality

(server connector buffers incoming requests), and strict
configuration rules (e.g., preventing a client from
connecting and making requests to other clients). In the
remainder of the paper, we describe a middleware
platform and a style that we have implemented support
for in the middleware using the above approach.

4. Overview of Prism-MW

In this section, we provide an overview of Prism-
MW, an architectural middleware platform that we
have leveraged extensively in this research. Prism-MW
is an architectural middleware platform that provides
implementation-level support for architectural
constructs in an extensible, efficient, and scalable
manner [8]. Prism-MW is a suitable platform for
describing and applying our approach: 1) Prism-MW
provides support for straightforward one-to-one
mapping of architectural constructs to their
implementations, which is ideal for demonstrating the
crosscutting impact of styles; and 2) Prism-MW is
open source, which allows us to weave the style-
specific code with the middleware’s implementation.

4.1 Core design

Prism-MW supports architectural abstractions by
providing classes for representing each architectural
element, with methods for creating, manipulating, and
destroying the element. These abstractions enable
direct mapping between an architecture and its
implementation. Figure 2 shows a partial class design
view of Prism-MW. The shaded classes constitute the
middleware core, which represents a minimal subset of
Prism-MW that enables implementation and execution
of architectures in a single address space. Essentially
Figure 2 corresponds to the “Generic Architectural
Support” layer of the middleware stack (depicted on

Figure 1. Overall approach.

Figure 2. Abridged UML class design view of
Prism-MW. Middleware core classes are

highlighted.

the left hand side of Figure 1), and shows the
interrelationships between its constructs.

Brick is an abstract class that represents an
architectural building block. It encapsulates common
features of its subclasses (Architecture, Component,
Connector, and Port). Architecture records the
configuration of its constituent components,
connectors, and ports, and provides facilities for their
addition, removal, and reconnection, possibly at
system runtime.

Events are used to capture communication in an
architecture. An event consists of a name and payload.
An event’s payload includes a set of typed parameters
for carrying data and meta-level information (e.g.,
sender, type, and so on). An event type is either a
request for a recipient to perform an operation or a
reply that a sender has per-formed an operation.

Ports are the loci of interaction in an architecture.
A link between two ports is made by welding them
together. A port can be welded to at most one other
port. Each port has a type, which is either request or
reply. Request events are always forwarded from
request to reply ports; reply events are forwarded in the
opposite direction.

Components perform computations in an
architecture and may maintain their own internal state.
The developer provides the application-specific logic
by extending the component class. Each component
can have an arbitrary number of attached ports.
Components interact via their ports.

Connectors are used to control the routing of
events among the attached components. Like
components, each connector can have an arbitrary

number of attached ports. Components attach to
connectors by creating a link between a component
port and a single connector port. In order to support the
needs of dynamically changing applications, each
Prism-MW component or connector is capable of add-
ing or removing ports at runtime [8].

Finally, Prism-MW’s core associates the Scaffold
class with every Brick. Scaffold is used to schedule and
queue events for delivery (via the AbstractScheduler
class) and pool execution threads used for event
dispatching (via the AbstractDispatcher class) in a
decoupled manner. Prism-MW’s core provides default
implementations of AbstractScheduler and
AbstractDispatcher: FIFOScheduler and
RoundRobinDispatcher, respectively. For brevity, we
do not discuss many other Prism-MW facilities (e.g.,
distribution, monitoring, reflection, service discovery)
that are not directly relevant to this research. Interested
reader should refer to [8].

4.2 Using the middleware

Prism-MW’s core provides the necessary support
for developing arbitrarily complex applications, so
long as they rely on the provided default facilities (e.g.,
event scheduling, dispatching, and routing) and stay
within a single address space. The first step a
developer takes is to subclass from the Component
class for all components in the architecture and to
implement their application-specific methods. The next
step is to instantiate the Architecture class and to
define the needed instances of components,
connectors, and ports. Finally, attaching component
and connector instances into a configuration is
achieved by using the weld method of the Architecture
class.

For illustration, Figure 3 shows a simple usage
scenario of the Java version of Prism-MW. The
application consists of two components
communicating through a single connector. The
Calculator class’s main method instantiates
components, connectors, and ports; adds them to the
architecture; and composes (welds) them into a
configuration. Figure 3 also demonstrates event-based
communication between the two components. The GUI
component creates and sends an event with two
numbers in its payload, in response to which the Adder
component adds the two numbers and sends the result
back via an event. In core Prism-MW, an event need
not identify its recipient components; they are uniquely
defined by the topology of the architecture and routing
policies of the employed connectors [11].

Architecture initialization
class Calculator {

static public void main(String argv[]) {
FIFOScheduler sched = new FIFOScheduler(50);
RRobinDispatcher disp = new RRobinDispatcher(5);
Architecture arch = new Architecture(sched, disp);

// create components and connectors here
Component adder = new Addition();
Component gui = new GUI();
Connector conn = new Connector();

// add components and connectors to architecture
arch.add(adder);
arch.add(gui);
arch.add(conn);

// attach the communication ports
Port guiPort = new Port(gui);
Port adderPort = new Port(adder);
Port connGuiPort = new Port(conn);
Port connAdderPort = new Port(conn);

// establish the interconnections
arch.weld(guiPort, connGuiPort);
arch.weld(connAdderPort, adderPort);

arch.start(); } }

GUI component sends an event
Event request = new Event ("add");
request.addParameter ("num_1", new Integer (2));
request.addParaemter ("num_2", new Integer (5));
send (request);

Adder component handles the event
public void handle (Event e){

if (e.equals("add")) {
...
Event reply = new Event ("response");
reply.addParameter("result", new Integer (7));
send (reply);

}...
}

Figure 3. Illustration of application
implementation fragments.

4.3 Under the hood

Figure 4 depicts the most commonly used event
routing mechanism in Prism-MW, as implemented in
FIFOScheduler, and RoundRobingDipatcher. A pool
of shepherd threads (implemented in
RoundRobinDispatcher class) is associated with an
event queue (implemented in FIFOScheduler). They
are used to handle events sent by any component in a
given address space. The size of the thread pool and
queue is parameterized and, hence, adjustable. To
process an event, a shepherd thread removes the event
from the head of the queue. For local communication,
the shepherd thread is run through the connector
attached to the sending component; the connector
dispatches the event to relevant components using the
same thread (see Figure 4). If a recipient component
generates further events, they are added to the tail of
the event queue; different threads are used for
dispatching those events to their intended recipients.
Routing the events in a distributed system is achieved
very similarly, via a special type of Prism-MW port

that is capable of communicating remotely. For
brevity, the details of Prism-MW’s support for
distributed communication and other routing
mechanisms that are not directly relevant to this
research have been omitted. Interested reader should
refer to [8].

5. Crosscutting impact of style

We believe effective support for architectural style
in a middleware platform requires at least:
• the ability to distinguish among different

architectural elements of a given style (e.g.,
distinguishing Clients from Servers in the client-
server style);

• the ability to specify the architectural elements’
stylistic behaviors (e.g., Clients block after
sending a request in the client-server style, while
C2Components send requests asynchronously in
the C2 style [18]);

• the ability to specify the rules and constraints that
govern the architectural elements’ valid
configurations (e.g., disallowing Clients from
connecting to each other in the client-server style,
or allowing a Filter to connect only to a Pipe in the
pipe-and-filter style).
The above discussion suggests that architectural

styles could have a significant impact on the behavior
and structure of all the architectural constructs. Below
we further demonstrate the extent of this using Prism-
MW. We could have selected any other middleware
solution for this purpose. However, as mentioned
earlier, Prism-MW’s extensive separation of concern
and modularized implementation of architectural
constructs, allow us to demonstrate the crosscutting
impact of styles most effectively. We believe the

Figure 4 Event dispatching in Prism-MW for

a single address space. Steps (1)-(7) are
performed by a single shepherd thread.

lessons learned here are more generally applicable.
By default Prism-MW’s core is style agnostic, and

to provide support for an architectural style, one would
have to modify Prism-MW. There are two ways of
doing this: 1) leverage Prism-MW’s extensible classes
to override the core behavior (shown in Figure 2 and
discussed in [8]), or 2) modify the implementation of
the core classes directly. Note that neither approach
allows us to represent and implement a style in a
modularized and decoupled manner, nor do they allow
for the implementation of a domain-specific style by
the middleware users. For the clarity of exposition, we
describe the changes to the middleware using the
second approach:
1. As mentioned in our first requirement earlier, before

we can enforce the stylistic rules and constraints, we
need to be able to distinguish the style of each
architectural construct. One (and probably the most
trivial) approach is to define a new variable in Brick
that identifies the style of an architectural object.
The value of this variable corresponds to a given
architectural style element, e.g., Client, Server, Pipe,
Filter, and so on.

2. As mentioned in our second requirement earlier, we
may need to modify the behavior of architectural
constructs. We may need to:
• Modify the behavior of core Prism-MW

Connector to support style-specific event routing
policies. For example, Pipe forwards data
unidirectionally, while a C2Connector uses
bidirectional event broadcast [18]. For this we
would need to modify the core connector’s handle
method, which is responsible for routing events.

• Modify the behavior of core Prism-MW
Component to provide synchronous component
interaction. The default, asynchronous interaction
is provided by the core component’s send method.
For example, a Client blocks after it sends a
request to a Server and unblocks when it receives
a response.

• Modify the behavior of core Prism-MW Port to
support different types of inter-process
communication (e.g., socket-based, infrared).
Prism-MW’s core ports only provide support for a
single address space.

• Modify core Prism-MW Event to support new
event types. For example, a C2Component in the
c2 style exchanges Notifications and Requests,
while Publisher and Subscriber components in
publish-subscribe style exchange Advertisements,
Subscriptions, and Publications.

3. As mentioned in our third requirement earlier, we
may need to specify and enforce constraints on the
allowable configurations. For this, we would need to
modify the Architecture’s weld method to ensure
that the topological constraints of a given style are
satisfied. The weld method is used to connect
components and connectors by associating their
ports with one another. For example, in the client-
server style, Clients can connect to Servers, but two
Clients cannot be connected to one another.

From the above discussion it is evident that
supporting a new architecture style in Prism-MW
impacts most of the middleware’s core facilities (dark
gray classes in Figure 2). It also shows that changes are
dispersed among the various parts of the middleware’s
implementation. The situation is exacerbated with
middlewares that do not provide the same level of
support for implementing software architectures as
Prism-MW. In fact, finding the classes that need to be
modified for a particular characteristic of a style is
fairly straightforward in Prism-MW. This is not
necessarily the case with the more traditional
middlewares that do not provide explicit support for
some of the architectural concepts (e.g., connector,
port, and configuration).

6. Stylistic aspect

In this section, we provide a concrete example of
an architectural style that we have implemented on top
of Prism-MW using AOP paradigm. The steps for
providing implementation support for a new
architectural style are as follows:
1. define a new aspect for each architectural style;
2. define the new style-specific facilities and

properties using the aspect’s inter-type decla-
ration; and

3. override or refine the middleware’s default
behavior using the aspect’s pointcut and advice
constructs.

Below we detail the approach for providing
implementation support for the C2 [18] architectural
style in Prism-MW using AspectJ [1].

Figure 5 shows portion of an aspect that we have
developed for supporting the C2 style in Prism-MW.
Line 5 of the code snippet shows the ability to augment
the architectural elements with new properties. In this
case, we are using aspect’s inter-type declaration
capability to add a new member variable to each Brick
object of Prism-MW, which allows us to determine its
architectural style. Recall from Section 4.1 that all
architectural elements (e.g., components, connectors,
ports) in Prism-MW extend Brick. Thus, with the

newly added variable we are able to determine the
style of each architectural construct, which is required
for enforcing the stylistic rules and constraints.

C2 style does not allow two components to be
connected directly (i.e., without being mediated by
explicit connectors) [18]. Therefore, the default
behavior of the Architecture’s weld method, which
does not enforce any constraints, needs to be modified.
Recall from Section 4.2 that the Architecture’s weld
method is used to connect components and connectors
by associating their corresponding ports with one
another (shown in Figure 3). Lines 7-21 in Figure 5
show a pointcut for picking out join points that are
calls to the weld method of the Architecture object, and
the corresponding advice that gets executed. Basically,
the before advice is executed before the architecture’s
weld method is executed. In this advice, we have
implemented the necessary checks to enforce that two
C2 components are not connected directly to one
another (lines 13-15 show the condition statement).

C2 connectors broadcast Request events on their
Request (top) ports, and Notification events on their
Notification (bottom) ports [18]. Recall from Section 5
that Prism-MW connector’s handle method
implements the default routing, which in our version of
Prism-MW just broadcasts events on its ports (shown
in Figure 4). We override the connector’s routing via

the pointcut and advice shown in Lines 23-33 of Figure
5. The pointcut (lines 24-25) picks out join points that
are calls to the connector’s handle method. The
corresponding around advice gets executed in place of
the connector’s handle method, and provides support
for routing events according to the C2 guidelines.

Due to space constraint, we do not provide the full
detail of implementation support for the C2 style.
However, the above examples demonstrate that aspects
can be effectively leveraged in providing support for
the stylistic concerns in middlewares. Furthermore, the
resulting style-specific code is both localized and
modularized, which in turn improves the system’s
ability to evolve, and aids with system understanding.

7. Validation

To validate the research, we have implemented
more than twenty architectural styles from [5] using
our approach. In the process, we have noticed that the
amount of the effort required to implement a new style
decreased over time. That is as more styles were
developed, the level of code reuse from previously
developed styles increased. This is attributed to the fact
that sometimes seemingly different architectural styles
have common traits with one another. For example, to
implement the aspect that realizes a layered-client-
server style, we were able to leverage a significant
portion of the two aspects that realized the layered, and
the client-server style.

8. Related work

Several previous works have developed
technologies for architecture-based software
development. One of these is Prism-MW that was
discussed earlier. Below we provide an overview of
some of the other prominent technologies.

ArchJava [2] is an extension to Java that unifies
software architecture with implementation, ensuring
that the implementation conforms to architectural
constraints. ArchJava does not provide support for
enforcing topological constraints, and therefore lacks
the support for implementing and enforcing a software
system’s architectural style.

Aura [17] is an architectural style and supporting
middleware for ubiquitous computing applications
with a special focus on user mobility, context
awareness, and context switching. Similar to Prism-
MW, Aura has explicit, first-class connectors.
However, Aura does not provide support for specifying
a new architectural style that could be supported by the
middleware.

1. import Prism.core.*;
2.
3. public aspect C2Style {
4.
5. public String Brick.archStyle;
6.
7. void before (Architecture arch, Port p1, Port p2):
8. call (void Architecture.weld(Port,Port))
9. && target(arch) && args(p1, p2)
10. {
11. Brick b1 = p1.getParentBrick();
12. Brick b2 = p2.getParentBrick();
13. if (b1 instanceof Component && b2 instanceof Component
14. && b1.archStyle.equals("C2Comp")
15. && b2.archStyle.equals("C2Comp"))
16. {
17. System.out.println
18. ("C2 does not allow conneting two components");
19. System.exit(0);
20 }
21. }
22.
23. void around (Connector conn, Event e):
24. call (void Connector.handle(Event))
25. && target (conn)&& args (e)
26. {
27. for (int i=0; i < conn.ports.size(); i++)
28. {
29. Port thisPort = (Port)conn.ports.elementAt(i);
30. if (thisPort.getPortType() == e.eventType)
31. thisPort.handle(e);
32. }
33. }

...
}

Figure 5. Code snippet of an aspect that
implements rules and constraints of the C2

architectural style.

Middlewares such as TAO [16], Orbix/E [13],
.Net, and MobiPADS [4] provide partial support for
architectural abstractions in the form of explicit
components. However, none of these middleware
solutions support multiple, explicit, and/or tailorable
software connectors. Furthermore, none of them
support explicit architectural styles, thus clearly
distinguishing our work from them. The styles in all of
the surveyed technologies are implicit and mostly fall
within the distributed objects category.

Another area of related work has been the usage of
aspects in realizing the design decisions. Most
prominently, in [7] a technique is presented for aspect-
oriented development of design patterns. Our work is
different from this work in several ways. Firstly, our
work is geared towards the implementation of software
architectural styles, as opposed to design patterns.
Secondly, our approach deals with realizing support
for styles in middleware solutions, as opposed to
traditional programming languages.

9. Conclusion

Architectural middlewares have been shown as an
effective approach to implementing a system’s
software architecture. However, due to the crosscutting
structure of styles, there has been a lack of adequate
support for implementing architectural styles in most
middleware solutions, including architectural
middlewares. In this paper, we demonstrated the
crosscutting impact of styles on an architectural
middleware platform. We also presented a new
approach to implementing architectural styles that is
based on the aspect-oriented programming paradigm.
Aspects allow for modularized and localized imple-
mentation of stylistic support in middlewares.
Furthermore, they allow an informed engineer to
modify the default behavior of a middleware by
implementing support for an arbitrary, possibly domain
specific, architectural style. As part of our future work,
we plan to extend our work to other architectural
styles, and middleware solutions. An interesting
avenue for future study is to determine the feasibility
of providing support for a given hybrid style (e.g.,
layered-client-server) via composition (e.g., abstract-
aspect, sub-aspect) of several basic style aspects (e.g.,
layered aspect, client-server aspect).

10. References

[1] AspectJ web site. http://www.eclipse.org/aspectj/

[2] J. Aldrich, et al. ArchJava: Connecting Software
Architecture to Implementation. Int’l Conference on
Software Engineering, Orlando, Florida, May 2002.

[3] G. Caplat, et al. Model Mapping in MDA. Workshop on
Software Model Engineering, Dresden, Germany, Oct.
2002.

[4] A. Chan, et al. MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing. IEEE
Transactions on Software Engineering, Dec. 2003.

[5] R. Fielding. Architectural Styles and the Design of
Network-Based Software Architectures. PhD thesis,
Univ. of California Irvine, June 200.

[6] G. Kiczales, et al. Aspect-Oriented Programming.
European Conference on Object-Oriented
Programming, Jyvaskyla, Finland, July 1997.

[7] J. Hannemann, and G. Kiczales. Design pattern
implementation in Java and aspectJ. Object-Oriented
Programming Systems Language and Applications,
Seattle, Washington, 2002.

[8] S. Malek, et al. A Style-Aware Architectural
Middleware for Resource-Constrained, Distributed
Systems. IEEE Transactions on Software Engineering,
March 2005.

[9] N. Medvidovic, et al. Reuse of Off-the-Shelf
Components in C2-Style Architectures. International
Conference on Software Engineering, Boston, MA, May
1997.

[10] Shelf Components in C2-Style Architectures.
[11] N. Mehta, et al. Towards a Taxonomy of Software

Connectors. International Conference on Software
Engineering, Limerick, Ireland, June 2000.

[12] Object Management Group’s Model Driven
Architecture. http://www.omg.org/mda/

[13] IONA Orbix/E Datasheet,
http://www.iona.com/whitepapers/orbixe-DS.pdf

[14] M. Shaw, et al. Abstractions for Software Architecture
and Tools to Support Them. IEEE Transactions on
Software Engineering, April 1995.

[15] M. Shaw, et al. Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[16] Real-time Corba with TAO (The ACE ORB).
http://www.cs.wustl.edu/~schmidt/TAO.html

[17] J. P. Sousa, and D. Garlan. Aura: an Architectural
Framework for User Mobility in Ubiquitous Computing
Environments. Working International Conference on
Software Architectures, Montreal, Canada, 2002.

[18] R. N. Taylor, et al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE
Transactions on Software Engineering, June 1996.

