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Abstract 
 

Architecture-based software development is the 
implementation of a software system in terms of its 
architectural constructs (e.g., components, connectors, 
ports). It has been shown as an effective approach to 
realizing and managing the architecture of large-scale 
software systems. Several techniques and tools have 
been developed that are intended to aid with the 
architecture-based development of software systems. 
While these approaches provide adequate 
implementation support for some aspects of software 
architectures, they often lack sufficient support for 
implementing and enforcing the system’s software 
architectural style. In this paper, we argue that the 
lack of sufficient support for architectural styles is a 
by-product of its crosscutting structure. In turn, this 
makes it impossible to realize styles using the object-
oriented programming methodology. We present a new 
approach to implementing architectural styles that is 
based on the aspect-oriented programming paradigm.   

1. Introduction 

Software engineering researchers and practitioners 
have successfully dealt with the increasing complexity 
of software systems by employing the principles of 
software architecture. Software architectures provide 
design-level models and guidelines for composing 
software systems in terms of components 
(computational elements), connectors (interaction 
elements), and their configurations (also referred to as 
topologies) [15]. Software architectural styles (e.g., 
publish-subscribe, client-server, pipe-and-filter) further 
codify structural, behavioral, interaction, and 
composition guidelines that are likely to result in 
software systems with desired properties [15].  

For the software architectural models and 
guidelines to be truly useful in a development setting, 
they must be accompanied by support for their 
implementation [14]. However, there is a gap between 

the high-level architectural concepts and the low-level 
programming language constructs that are used for the 
implementation. This gap requires engineers to 
maintain a (potentially complex) mental map between 
components, connectors, communication ports, events, 
etc. on the one hand, and classes, objects, shared 
variables, pointers, etc. on the other hand. A more 
effective approach for architecture-based software 
development is to leverage architectural middleware 
solutions [2][8][14], which provide native 
implementation-level support for the architectural 
concepts. 

The state-of-the-art architectural middlewares 
provide implementation support for some architectural 
concepts (e.g., components, ports, events), but they do 
not provide adequate support for the others, most 
importantly architectural styles. In fact, most 
commercial and architectural middleware solutions 
ignore, mimic, or at best assume a particular 
architectural style. Therefore, forcing the software 
architect to choose a style that is best supported by a 
given middleware platform, as opposed to a style that 
suits the requirements of a particular software system. 

We argue that the lack of sufficient support for 
implementing architectural styles is due to the 
crosscutting structure of styles. Architectural styles 
often prescribe rules and guidelines that impact the 
behavior and structure of all the other architectural 
concepts and constructs. Therefore, unlike any other 
architectural concept, architectural styles cannot be 
effectively abstracted and implemented using the 
traditional object-oriented programming language con-
structs. In fact, if a middleware provides support for 
the stylistic concerns, they are often implemented as 
dispersed code snippets, and thus lost in the final 
product [8].  

In this paper, we propose a new approach for 
implementing architectural styles that is based on the 
aspect-oriented programming (AOP) paradigm [6]. We 
provide an overview of our approach on top of an 
architectural middleware platform, called Prism-MW 
[8]. Our approach allows for modularized 



representation of stylistic concerns, which are weaved 
into the middleware’s implementation at compile time. 
In turn, this aids system understanding, and the 
flexibility of changing a system’s architectural style 
without impacting the rest of the system. Our approach 
shifts the responsibility of making stylistic decisions 
from the middleware designer to the software engineer. 
It allows the engineer to implement support for a new, 
potentially domain specific, style in a given 
middleware platform.  

The remainder of the paper is organized as 
follows. Section 2 motivates our research in response 
to the shortcomings of the current technologies. 
Section 3 describes our overall approach.  Section 4 
provides an overview of Prism-MW, an architectural 
middleware platform that we have leveraged to 
implement our approach. Section 5 demonstrates the 
crosscutting structure of styles using Prism-MW. 
Section 6 presents an example style that we have 
implemented using our approach. Section 7 describes 
our experience with the validation of this research. 
Section 8 highlights the related work. Finally, the 
paper concludes with a summary of our contributions, 
and future work. 

2. Motivation 

Software engineers have often relied on the 
facilities and abstractions provided by a middleware 
platform to aid with the implementation of complex 
large-scale software system. Ideally, to deal with the 
complexity of building large-scale software systems, 
the engineers should be able to construct a software 
architecture that best satisfies the system’s 
requirements, irrespective of the candidate 
middlewares that could be used for the 
implementation. This is consistent with the Object 
Management Group’s two stage modeling approach: 
Platform Independent Model (PIM) and Platform 
Specific Model (PSM) [12]. However, in practice, the 
engineers are constrained significantly by a subset of 
architectural choices, including architectural styles, 
that can effectively be realized in a given middleware 
platform. In fact, previous researchers have realized 
that deriving PSM from PIM is often very challenging 
and sometimes not even feasible [3]. This is largely 
due to the rigidity of the target implementation 
platforms that are often developed with certain 
intrinsic assumptions about the structural and 
behavioral characteristics of the applications that will 
be deployed on top of them. One objective of our 
research has been to make the mapping from PIM to 
PSM a more straightforward process. To this end we 
have previously developed an extensible architectural 

middleware that provides one-to-one mapping between 
constructs in the architectural diagrams and their 
implementation counterparts. In this paper, we focus 
on the next logical problem: mapping the stylistic 
decisions to their implementation counterparts. 

An important shortcoming of the most commonly 
used state-of-the-art middlewares (e.g., Java RMI, 
CORBA, DCOM, and Microsoft .net) is the lack of 
sufficient support for architectural styles. They often 
provide support for some aspects of architectural 
styles, such as the communication style (e.g., 
synchronous vs. asynchronous), but do not support 
others. For example, the necessary implementation-
level facilities for some key elements of software 
architectures are often missing─explicit architecture-
level connectors are usually distributed (and thus 
“lost”) across different implementation-level modules 
as combinations of method calls, shared memory, 
network sockets, and other facilities in the middleware 
[11]. Moreover, stylistic rules and constraints on the 
valid configurations of a software system are rarely 
ensured and enforced by the middleware. Thereby, it is 
extremely difficult to verify the fidelity of the 
constructed software system with respect to the 
system’s intended architecture. An important goal in 
our research has been to provide complete support for 
arbitrary complex styles in a given middleware. This is 
in contrast to previous well-known architectural 
middlewares that either do not provide stylistic support 
at all (e.g., ArchJava [2]) or are targeted specifically to 
a predetermined style (e.g., C2 Framework [9]). 

Finally, one approach to providing support for 
several styles in a middleware is to parameterize it, 
such that it can be configured to behave according to 
the rules of a style at run-time. This is in fact the 
approach that was taken in an earlier work [8]. 
However, we argue that this is not a viable solution for 
any general purpose middleware for the following 
reasons. Firstly, there are many well-known 
architectural styles and infinitely more domain-specific 
patterns and hybrid styles that an architect may opt to 
use. Predicting those a priori (i.e., during the 
construction of the middleware) is infeasible. 
Secondly, providing implementation support for any 
substantive set of styles inevitably makes the 
middleware bulky and has a significant impact on its 
performance. One of our key objectives in this research 
has been to develop a technique for efficiently 
configuring a middleware to support arbitrary, 
potentially domain specific, architectural styles.  



3. Approach 

Figure 1 shows an overview of our approach. A 
typical structure of the middleware stack is shown on 
the left side of the figure. We have distinguished 
between two types of facilities that a middleware may 
provide on top of the Operating System: at the bottom 
is a virtual machine layer that allows the middleware 
to be deployed on heterogeneous platforms; the 
abstraction facilities provided by the virtual machine 
are leveraged by the middleware’s architectural 
constructs, and application logic that lay on top of it. 
In this research, we are more interested in the top 
layer, i.e., architectural support layer. As mentioned 
earlier, the level of architectural support provided by 
middlewares vary. In this figure, we are depicting the 
typical facilities an architectural middleware, which 
provides extensive support for architecture-based 
software development, may provide. We provide a 
detailed overview of an architectural middleware in the 
next section.  

In our approach we assume the architectural 
facilities provided by the middleware are generic, i.e., 
they are not stylistically constrained. This assumption 
does not impede the applicability of our approach, 
since as you may recall from Section 2 most 
middlewares do not provide sophisticated support for 
architectural styles by default. We implement the 
stylistic concerns of the middleware in one or more 
aspects, which when weaved with the generic 
middleware constructs provide style-specific support. 
For example, as depicted in Figure 1, to provide 
support for the Client-Server style, the Client-Server 
Aspect is weaved with the middleware to generate a 
more specialized version of the middleware with typed 
components (clients, servers), typed events (request, 
reply), modified component behavior (client blocks 
after making a request), new connector functionality 

(server connector buffers incoming requests), and strict 
configuration rules (e.g., preventing a client from 
connecting and making requests to other clients). In the 
remainder of the paper, we describe a middleware 
platform and a style that we have implemented support 
for in the middleware using the above approach.  

4. Overview of Prism-MW 

In this section, we provide an overview of Prism-
MW, an architectural middleware platform that we 
have leveraged extensively in this research. Prism-MW 
is an architectural middleware platform that provides 
implementation-level support for architectural 
constructs in an extensible, efficient, and scalable 
manner [8]. Prism-MW is a suitable platform for 
describing and applying our approach: 1) Prism-MW 
provides support for straightforward one-to-one 
mapping of architectural constructs to their 
implementations, which is ideal for demonstrating the 
crosscutting impact of styles; and 2) Prism-MW is 
open source, which allows us to weave the style-
specific code with the middleware’s implementation. 

4.1 Core design 

Prism-MW supports architectural abstractions by 
providing classes for representing each architectural 
element, with methods for creating, manipulating, and 
destroying the element. These abstractions enable 
direct mapping between an architecture and its 
implementation. Figure 2 shows a partial class design 
view of Prism-MW. The shaded classes constitute the 
middleware core, which represents a minimal subset of 
Prism-MW that enables implementation and execution 
of architectures in a single address space. Essentially 
Figure 2 corresponds to the “Generic Architectural 
Support” layer of the middleware stack (depicted on 

 
Figure 1. Overall approach. 



Figure 2. Abridged UML class design view of 
Prism-MW. Middleware core classes are 

highlighted. 

the left hand side of Figure 1), and shows the 
interrelationships between its constructs. 

Brick is an abstract class that represents an 
architectural building block. It encapsulates common 
features of its subclasses (Architecture, Component, 
Connector, and Port). Architecture records the 
configuration of its constituent components, 
connectors, and ports, and provides facilities for their 
addition, removal, and reconnection, possibly at 
system runtime. 

Events are used to capture communication in an 
architecture. An event consists of a name and payload. 
An event’s payload includes a set of typed parameters 
for carrying data and meta-level information (e.g., 
sender, type, and so on). An event type is either a 
request for a recipient to perform an operation or a 
reply that a sender has per-formed an operation. 

Ports are the loci of interaction in an architecture. 
A link between two ports is made by welding them 
together. A port can be welded to at most one other 
port. Each port has a type, which is either request or 
reply. Request events are always forwarded from 
request to reply ports; reply events are forwarded in the 
opposite direction. 

Components perform computations in an 
architecture and may maintain their own internal state. 
The developer provides the application-specific logic 
by extending the component class. Each component 
can have an arbitrary number of attached ports. 
Components interact via their ports.  

Connectors are used to control the routing of 
events among the attached components. Like 
components, each connector can have an arbitrary 

number of attached ports. Components attach to 
connectors by creating a link between a component 
port and a single connector port. In order to support the 
needs of dynamically changing applications, each 
Prism-MW component or connector is capable of add-
ing or removing ports at runtime [8].  

Finally, Prism-MW’s core associates the Scaffold 
class with every Brick. Scaffold is used to schedule and 
queue events for delivery (via the AbstractScheduler 
class) and pool execution threads used for event 
dispatching (via the AbstractDispatcher class) in a 
decoupled manner. Prism-MW’s core provides default 
implementations of AbstractScheduler and 
AbstractDispatcher: FIFOScheduler and 
RoundRobinDispatcher, respectively. For brevity, we 
do not discuss many other Prism-MW facilities (e.g., 
distribution, monitoring, reflection, service discovery) 
that are not directly relevant to this research. Interested 
reader should refer to [8].  

4.2 Using the middleware 

Prism-MW’s core provides the necessary support 
for developing arbitrarily complex applications, so 
long as they rely on the provided default facilities (e.g., 
event scheduling, dispatching, and routing) and stay 
within a single address space. The first step a 
developer takes is to subclass from the Component 
class for all components in the architecture and to 
implement their application-specific methods. The next 
step is to instantiate the Architecture class and to 
define the needed instances of components, 
connectors, and ports. Finally, attaching component 
and connector instances into a configuration is 
achieved by using the weld method of the Architecture 
class.  

For illustration, Figure 3 shows a simple usage 
scenario of the Java version of Prism-MW. The 
application consists of two components 
communicating through a single connector. The 
Calculator class’s main method instantiates 
components, connectors, and ports; adds them to the 
architecture; and composes (welds) them into a 
configuration. Figure 3 also demonstrates event-based 
communication between the two components. The GUI 
component creates and sends an event with two 
numbers in its payload, in response to which the Adder 
component adds the two numbers and sends the result 
back via an event. In core Prism-MW, an event need 
not identify its recipient components; they are uniquely 
defined by the topology of the architecture and routing 
policies of the employed connectors [11]. 



Architecture initialization
class Calculator {

static public void main(String argv[]) {
FIFOScheduler sched = new FIFOScheduler(50);
RRobinDispatcher disp = new RRobinDispatcher(5);
Architecture arch = new Architecture(sched, disp);

// create components and connectors here
Component adder = new Addition(); 
Component gui = new GUI();
Connector conn = new Connector();

// add components and connectors to architecture
arch.add(adder);
arch.add(gui);
arch.add(conn);

// attach the communication ports
Port guiPort = new Port(gui);
Port adderPort = new Port(adder);
Port connGuiPort = new Port(conn);
Port connAdderPort = new Port(conn);

// establish the interconnections
arch.weld(guiPort, connGuiPort);
arch.weld(connAdderPort, adderPort);

arch.start(); } }

GUI component sends an event
Event request = new Event ("add");
request.addParameter ("num_1", new Integer (2));
request.addParaemter ("num_2", new Integer (5));
send (request);

Adder component handles the event
public void handle (Event e){

if (e.equals("add")) {
...
Event reply = new Event ("response");
reply.addParameter("result", new Integer (7));
send (reply);

}...
} 

Figure 3. Illustration of application 
implementation fragments. 

4.3 Under the hood 

Figure 4 depicts the most commonly used event 
routing mechanism in Prism-MW, as implemented in 
FIFOScheduler, and RoundRobingDipatcher. A pool 
of shepherd threads (implemented in 
RoundRobinDispatcher class) is associated with an 
event queue (implemented in FIFOScheduler). They 
are used to handle events sent by any component in a 
given address space. The size of the thread pool and 
queue is parameterized and, hence, adjustable. To 
process an event, a shepherd thread removes the event 
from the head of the queue. For local communication, 
the shepherd thread is run through the connector 
attached to the sending component; the connector 
dispatches the event to relevant components using the 
same thread (see Figure 4). If a recipient component 
generates further events, they are added to the tail of 
the event queue; different threads are used for 
dispatching those events to their intended recipients. 
Routing the events in a distributed system is achieved 
very similarly, via a special type of Prism-MW port 

that is capable of communicating remotely. For 
brevity, the details of Prism-MW’s support for 
distributed communication and other routing 
mechanisms that are not directly relevant to this 
research have been omitted. Interested reader should 
refer to [8].  

5. Crosscutting impact of style 

We believe effective support for architectural style 
in a middleware platform requires at least:  
• the ability to distinguish among different 

architectural elements of a given style (e.g., 
distinguishing Clients from Servers in the client-
server style);  

• the ability to specify the architectural elements’ 
stylistic behaviors (e.g., Clients block after 
sending a request in the client-server style, while 
C2Components send requests asynchronously in 
the C2 style [18]); 

• the ability to specify the rules and constraints that 
govern the architectural elements’ valid 
configurations (e.g., disallowing Clients from 
connecting to each other in the client-server style, 
or allowing a Filter to connect only to a Pipe in the 
pipe-and-filter style). 
The above discussion suggests that architectural 

styles could have a significant impact on the behavior 
and structure of all the architectural constructs. Below 
we further demonstrate the extent of this using Prism-
MW. We could have selected any other middleware 
solution for this purpose. However, as mentioned 
earlier, Prism-MW’s extensive separation of concern 
and modularized implementation of architectural 
constructs, allow us to demonstrate the crosscutting 
impact of styles most effectively. We believe the 

 
Figure 4 Event dispatching in Prism-MW for 

a single address space. Steps (1)-(7) are 
performed by a single shepherd thread. 



lessons learned here are more generally applicable. 
By default Prism-MW’s core is style agnostic, and 

to provide support for an architectural style, one would 
have to modify Prism-MW. There are two ways of 
doing this: 1) leverage Prism-MW’s extensible classes 
to override the core behavior (shown in Figure 2 and 
discussed in [8]), or 2) modify the implementation of 
the core classes directly. Note that neither approach 
allows us to represent and implement a style in a 
modularized and decoupled manner, nor do they allow 
for the implementation of a domain-specific style by 
the middleware users. For the clarity of exposition, we 
describe the changes to the middleware using the 
second approach: 
1. As mentioned in our first requirement earlier, before 

we can enforce the stylistic rules and constraints, we 
need to be able to distinguish the style of each 
architectural construct. One (and probably the most 
trivial) approach is to define a new variable in Brick 
that identifies the style of an architectural object. 
The value of this variable corresponds to a given 
architectural style element, e.g., Client, Server, Pipe, 
Filter, and so on. 

2. As mentioned in our second requirement earlier, we 
may need to modify the behavior of architectural 
constructs. We may need to:  
• Modify the behavior of core Prism-MW 

Connector to support style-specific event routing 
policies. For example, Pipe forwards data 
unidirectionally, while a C2Connector uses 
bidirectional event broadcast [18]. For this we 
would need to modify the core connector’s handle 
method, which is responsible for routing events. 

• Modify the behavior of core Prism-MW 
Component to provide synchronous component 
interaction. The default, asynchronous interaction 
is provided by the core component’s send method. 
For example, a Client blocks after it sends a 
request to a Server and unblocks when it receives 
a response. 

• Modify the behavior of core Prism-MW Port to 
support different types of inter-process 
communication (e.g., socket-based, infrared). 
Prism-MW’s core ports only provide support for a 
single address space.  

• Modify core Prism-MW Event to support new 
event types. For example, a C2Component in the 
c2 style exchanges Notifications and Requests, 
while Publisher and Subscriber components in 
publish-subscribe style exchange Advertisements, 
Subscriptions, and Publications.  

3. As mentioned in our third requirement earlier, we 
may need to specify and enforce constraints on the 
allowable configurations. For this, we would need to 
modify the Architecture’s weld method to ensure 
that the topological constraints of a given style are 
satisfied. The weld method is used to connect 
components and connectors by associating their 
ports with one another. For example, in the client-
server style, Clients can connect to Servers, but two 
Clients cannot be connected to one another.  

From the above discussion it is evident that 
supporting a new architecture style in Prism-MW 
impacts most of the middleware’s core facilities (dark 
gray classes in Figure 2). It also shows that changes are 
dispersed among the various parts of the middleware’s 
implementation. The situation is exacerbated with 
middlewares that do not provide the same level of 
support for implementing software architectures as 
Prism-MW. In fact, finding the classes that need to be 
modified for a particular characteristic of a style is 
fairly straightforward in Prism-MW. This is not 
necessarily the case with the more traditional 
middlewares that do not provide explicit support for 
some of the architectural concepts (e.g., connector, 
port, and configuration). 

6. Stylistic aspect 

In this section, we provide a concrete example of 
an architectural style that we have implemented on top 
of Prism-MW using AOP paradigm. The steps for 
providing implementation support for a new 
architectural style are as follows:  
1. define a new aspect for each architectural style;  
2. define the new style-specific facilities and 

properties using the aspect’s inter-type decla-
ration; and  

3. override or refine the middleware’s default 
behavior using the aspect’s pointcut and advice 
constructs.  

Below we detail the approach for providing 
implementation support for the C2 [18] architectural 
style in Prism-MW using AspectJ [1]. 

Figure 5 shows portion of an aspect that we have 
developed for supporting the C2 style in Prism-MW. 
Line 5 of the code snippet shows the ability to augment 
the architectural elements with new properties. In this 
case, we are using aspect’s inter-type declaration 
capability to add a new member variable to each Brick 
object of Prism-MW, which allows us to determine its 
architectural style. Recall from Section 4.1 that all 
architectural elements (e.g., components, connectors, 
ports) in Prism-MW extend Brick. Thus, with the 



newly added variable we are able to determine the 
style of each architectural construct, which is required 
for enforcing the stylistic rules and constraints.  

C2 style does not allow two components to be 
connected directly (i.e., without being mediated by 
explicit connectors) [18]. Therefore, the default 
behavior of the Architecture’s weld method, which 
does not enforce any constraints, needs to be modified. 
Recall from Section 4.2 that the Architecture’s weld 
method is used to connect components and connectors 
by associating their corresponding ports with one 
another (shown in Figure 3). Lines 7-21 in Figure 5 
show a pointcut for picking out join points that are 
calls to the weld method of the Architecture object, and 
the corresponding advice that gets executed. Basically, 
the before advice is executed before the architecture’s 
weld method is executed. In this advice, we have 
implemented the necessary checks to enforce that two 
C2 components are not connected directly to one 
another (lines 13-15 show the condition statement).  

C2 connectors broadcast Request events on their 
Request (top) ports, and Notification events on their 
Notification (bottom) ports [18]. Recall from Section 5 
that Prism-MW connector’s handle method 
implements the default routing, which in our version of 
Prism-MW just broadcasts events on its ports (shown 
in Figure 4). We override the connector’s routing via 

the pointcut and advice shown in Lines 23-33 of Figure 
5. The pointcut (lines 24-25) picks out join points that 
are calls to the connector’s handle method. The 
corresponding around advice gets executed in place of 
the connector’s handle method, and provides support 
for routing events according to the C2 guidelines.  

Due to space constraint, we do not provide the full 
detail of implementation support for the C2 style. 
However, the above examples demonstrate that aspects 
can be effectively leveraged in providing support for 
the stylistic concerns in middlewares. Furthermore, the 
resulting style-specific code is both localized and 
modularized, which in turn improves the system’s 
ability to evolve, and aids with system understanding. 

7. Validation 

To validate the research, we have implemented 
more than twenty architectural styles from [5] using 
our approach. In the process, we have noticed that the 
amount of the effort required to implement a new style 
decreased over time. That is as more styles were 
developed, the level of code reuse from previously 
developed styles increased. This is attributed to the fact 
that sometimes seemingly different architectural styles 
have common traits with one another. For example, to 
implement the aspect that realizes a layered-client-
server style, we were able to leverage a significant 
portion of the two aspects that realized the layered, and 
the client-server style.  

8. Related work 

Several previous works have developed 
technologies for architecture-based software 
development. One of these is Prism-MW that was 
discussed earlier. Below we provide an overview of 
some of the other prominent technologies.  

ArchJava [2] is an extension to Java that unifies 
software architecture with implementation, ensuring 
that the implementation conforms to architectural 
constraints. ArchJava does not provide support for 
enforcing topological constraints, and therefore lacks 
the support for implementing and enforcing a software 
system’s architectural style. 

Aura [17] is an architectural style and supporting 
middleware for ubiquitous computing applications 
with a special focus on user mobility, context 
awareness, and context switching. Similar to Prism-
MW, Aura has explicit, first-class connectors. 
However, Aura does not provide support for specifying 
a new architectural style that could be supported by the 
middleware. 

1. import Prism.core.*;
2. 
3. public aspect C2Style {
4. 
5. public String Brick.archStyle; 
6. 
7. void before (Architecture arch, Port p1, Port p2): 
8. call (void Architecture.weld(Port,Port))
9. && target(arch) && args(p1, p2)
10.   {
11. Brick b1 = p1.getParentBrick();
12. Brick b2 = p2.getParentBrick();
13. if (b1 instanceof Component && b2 instanceof Component
14. && b1.archStyle.equals("C2Comp") 
15. && b2.archStyle.equals("C2Comp"))
16. {
17. System.out.println
18. ("C2 does not allow conneting two components");
19. System.exit(0);
20 }
21. }
22.
23. void around (Connector conn, Event e):
24. call (void Connector.handle(Event))
25. && target (conn)&& args (e) 
26. {
27. for (int i=0; i < conn.ports.size(); i++)
28. {
29. Port thisPort = (Port)conn.ports.elementAt(i);
30. if (thisPort.getPortType() == e.eventType)
31. thisPort.handle(e);
32. }
33. }

...
}

 

Figure 5. Code snippet of an aspect that 
implements rules and constraints of the C2 

architectural style. 



Middlewares such as TAO [16], Orbix/E [13], 
.Net, and MobiPADS [4] provide partial support for 
architectural abstractions in the form of explicit 
components. However, none of these middleware 
solutions support multiple, explicit, and/or tailorable 
software connectors. Furthermore, none of them 
support explicit architectural styles, thus clearly 
distinguishing our work from them. The styles in all of 
the surveyed technologies are implicit and mostly fall 
within the distributed objects category. 

Another area of related work has been the usage of 
aspects in realizing the design decisions. Most 
prominently, in [7] a technique is presented for aspect-
oriented development of design patterns. Our work is 
different from this work in several ways. Firstly, our 
work is geared towards the implementation of software 
architectural styles, as opposed to design patterns. 
Secondly, our approach deals with realizing support 
for styles in middleware solutions, as opposed to 
traditional programming languages. 

9. Conclusion 

Architectural middlewares have been shown as an 
effective approach to implementing a system’s 
software architecture. However, due to the crosscutting 
structure of styles, there has been a lack of adequate 
support for implementing architectural styles in most 
middleware solutions, including architectural 
middlewares. In this paper, we demonstrated the 
crosscutting impact of styles on an architectural 
middleware platform. We also presented a new 
approach to implementing architectural styles that is 
based on the aspect-oriented programming paradigm. 
Aspects allow for modularized and localized imple-
mentation of stylistic support in middlewares. 
Furthermore, they allow an informed engineer to 
modify the default behavior of a middleware by 
implementing support for an arbitrary, possibly domain 
specific, architectural style. As part of our future work, 
we plan to extend our work to other architectural 
styles, and middleware solutions. An interesting 
avenue for future study is to determine the feasibility 
of providing support for a given hybrid style (e.g., 
layered-client-server) via composition (e.g., abstract-
aspect, sub-aspect) of several basic style aspects (e.g., 
layered aspect, client-server aspect).  
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