
Abstract
Pervasive systems are rapidly growing in size, complex-

ity, distribution, and heterogeneity. As a result, the tradi-
tional practice of developing one-off embedded applications 
that are often rigid and unmanageable is no longer accept-
able. This is particularly evident in a growing class of 
mobile and dynamic pervasive systems that are highly 
unpredictable, and thus require flexible and adaptable soft-
ware support. At the same time, many of these applications 
are mission critical and have stringent fault tolerance 
requirements. In this paper, we argue that an effective 
approach to developing software systems in this domain is to 
employ the principles of software architecture. We discuss 
the design and implementation of facilities we have provided 
in a tool-suite targeted for architecture-based development 
of fault tolerant pervasive systems.

1. Introduction
The past few decades have witnessed an unrelenting 

pattern of growth in the size and complexity of software sys-
tems, which will likely continue well into the foreseeable 
future. This pattern is further evident in an emerging class of 
embedded and pervasive software systems that are growing 
in popularity due to increases in the speed and capacity of 
hardware, a decrease in its cost, the emergence of wireless 
ad hoc networks, the proliferation of sensors and handheld 
computing devices, and so on. Previous studies have shown 
that a promising approach to resolving the challenges of 
developing large-scale software systems is to employ the 
principles of software architectures [5,20]. Software archi-
tectures provide abstractions for representing the structure, 
behavior, and key properties of a software system [15,18]. 
They are described in terms of software components (com-
putational elements), connectors (interaction elements), and 
their configurations. Software architectural styles (e.g., pub-
lish-subscribe, peer-to-peer, pipe-and-filter, client-server) 
further refine the vocabulary of component and connector 
types and propose a set of constraints on how instances of 
those types may be combined in a system. 

For software architectural models to be truly useful in a 

development setting, they must be accompanied by support 
for their implementation [10][19]. This is particularly impor-
tant in the context of pervasive systems: they are often com-
plex, highly distributed, decentralized, heterogeneous, 
mobile, and long-lived, increasing the risk of architectural 
drift [15] unless there is a clear relationship between the 
architecture and its implementation. This suggests that state-
of-the-art middleware solutions (e.g., CORBA Orbix, TAO) 
that lack the implementation-level facilities for key elements 
of software architecture (e.g., explicit support for software 
connectors or architectural styles) are not necessarily the 
best candidates for architecture-based software develop-
ment. 

This paper builds on our previous position [7,8], which 
has emerged from close to ten years of experience with 
embedded and pervasive environments: we argue that an 
architectural middleware platform, which provides native 
implementation-level support for the key architectural 
abstractions, is better suited than traditional middleware 
platforms to address the software engineering challenges 
inherent in developing pervasive systems. In this paper, we 
focus on the challenges posed by the growing class of safety- 
or mission-critical pervasive systems, for which fault toler-
ance is essential. Three key facilities are required for the 
development of fault tolerant pervasive systems: (1) 
dynamic discovery of new services and resources, (2) auto-
mated and transparent recovery from failure, and (3) analyti-
cal determination of component replication strategies and 
deployment architectures. We show that by making fault tol-
erance concerns explicit in the architectural models, we can 
analyze and improve the system’s resilience to unexpected 
failures. Moreover, we demonstrate that an architectural 
middleware can provide advanced fault tolerance facilities, 
while achieving efficiency and architectural clarity. In sup-
port of the above arguments, we discuss our experience with 
a family of fault tolerant sensor network applications that 
has been developed as part of an ongoing collaborative 
project between the University of Southern California and 
the Bosch Research and Technology Center. 

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of a family of sensor network 

Exploring the Role of Software Architecture in Dynamic and 
Fault Tolerant Pervasive Systems

Chiyoung Seo1, Sam Malek1, George Edwards1, Daniel Popescu1, Nenad Medvidovic1,
Brad Petrus2, and Sharmila Ravula3

1Computer Science Department 
Univ. of Southern California

Los Angeles, CA 90089, U.S.A.
{cseo,malek,gedwards,
dpopescu,neno}@usc.edu

2Bosch Rsrch & Tech. Center
Two NorthShore Center, Suite 320

Pittsburgh, PA 15212, U.S.A.
brad.petrus@rtc.bosch.com

3Bosch Rsrch & Tech. Center
4009 Miranda Avenue

Palo Alto, CA 94304, U.S.A.
sharmila.ravula@rtc.bosch.com



applications that illustrates many of the concepts in this 
paper. Section 3 presents a middleware platform we have 
developed that implements an architecture-based solution to 
fault tolerance in pervasive systems. Section 4 discusses our 
support for service discovery. Section 5 presents the facilities 
for recovering from failure. Section 6 presents a tool-suite 
for exploring and analyzing a system’s QoS properties, 
including its fault tolerance. Section 7 presents the related 
work. Finally, the paper concludes with a brief discussion 
and overview of future work.

2. Application Scenario
In this section, 

we describe a family 
of sensor network 
applications, called 
MIDAS. MIDAS is 
composed of a large 
number of sensors, 
gateways, hubs, and 
PDAs that are con-
nected wirelessly in 
the manner shown in 
Figure 1. The sen-
sors, which are used 
to monitor the envi-
ronment around them, communicate their status to one 
another and to the gateways. The gateway computers are 
responsible for managing and coordinating the sensors. In 
addition, the gateways translate, aggregate, and fuse the data 
received from the sensors, and propagate the appropriate 
data (e.g., events) to the hubs. Furthermore, each gateway 
provides various services that can be used by other gateway 
hosts. For example, a gateway can provide a Global Logging 
Service that records events received from all the sensors by 
other gateways. Hubs are used to evaluate and visualize the 
sensor data for the users, as well as provide an interface 
through which the user can send control commands to the 
various sensors and gateways in the system. Hubs may also 
be configured to propagate the appropriate sensor data to 
PDAs, which are then used by the mobile users of the sys-
tem.

Many instances of MIDAS operate in safety-critical or 
regulated environments, in which a given event must be 
delivered to its recipients under all conditions (e.g., medical 
emergency). However, many factors may impact MIDAS’s 
ability to function correctly. For example, since the comput-
ing platforms (e.g., PDA, gateways, and sensors) have finite 
battery lives, a host may go down due to battery depletion. 
Similarly, the wireless communication among various 
MIDAS platforms is susceptible to permanent or temporary 
disconnections. Consequently, all the services provided by 
the components of a disconnected/depleted host become 
unavailable to other hosts. Therefore, the software system 

should support autonomic fail-over: if a host providing a 
given service fails, then another host in the system should 
quickly be enabled as a new provider of the same service.1
Often times it is required for the computational state of the 
newly enabled service to be the same as the last known state 
of the failed service. 

One approach to providing fail-over support is through 
the replication of software components, and thus the services 
they provide. However, component replication in MIDAS is 
difficult mainly due to its resource-constrained nature (i.e., 
limited CPU, memory, battery, network bandwidth, etc.). 
The existing approaches for providing fault tolerance on tra-
ditional desktop platforms are often inefficient in this 
domain. On top of this, given finite computing resources, 
components must be replicated selectively in order to 
achieve the maximum benefit. At the same time, while repli-
cation can improve fault tolerance, other QoS properties can 
degrade due to the overhead of executing additional compo-
nents and keeping replicas synchronized. Finally, often the 
implementation complexity of advanced fail-over support 
(i.e., replication, synchronization, and recovery) and its cou-
pling with the application logic, overwhelms the engineers. 
In the remainder of this paper, we discuss how we addressed 
these problems in the MIDAS project by employing the prin-
ciples of software architecture. We believe that the tech-
niques we have applied and the approach we have taken are 
applicable to pervasive applications in general.

3. Architectural Middleware
Prism-MW [7] is a middleware platform that supports 

architectural abstractions by providing implementation-level 
modules for representing and manipulating each architec-
tural element. These abstractions enable direct mapping 
between an architecture and its implementation. Figure 2
shows the class design view of Prism-MW. The shaded 
classes constitute the middleware core, a minimal subset of 
Prism-MW that enables implementation and execution of 
architectures in a single address space.

Brick represents the different architectural building 
blocks that are described next. Architecture records the con-
figuration of its constituent components, connectors, and 
ports, and provides facilities for their addition and removal. 
Events are used to capture communication in an architecture. 
An event consists of a name and payload. An event type is 
either a request for a recipient component to perform an 
operation or a reply that a sender component has performed 
an operation. Ports are the loci of interaction in an architec-
ture. A link between two ports is made by welding them 
together. Each Port has a type, which is either request or 
reply. An event placed on one port is forwarded to the port 
linked to it in the following manner: request events are for-

Figure 1. MIDAS system.

1. In the context of MIDAS a software component usually provides a 
number of services, which are typically made available to other com-
ponents via the component's public interfaces.



warded from request ports to reply ports, while reply events 
are forwarded in the opposite direction. Components per-
form computations in an architecture and may maintain their 
own internal state. Connectors are used to control the routing 
of events among the attached components. Connectors may 
support arbitrary event delivery semantics (e.g., unicast, 
multicast, broadcast). A component or a connector can have 
any number of attached ports. In order to support the needs 
of dynamically changing applications, each Prism-MW com-
ponent or connector is capable of adding or removing ports 
at runtime. This property, coupled with event-based interac-
tion, has proven to be highly effective for addressing system 
re-configurability. 

Prism-MW's design is intended to be highly extensible 
while keeping Prism-MW's core unchanged. To that end, the 
core constructs (e.g., Component, Connector) are sub-
classed via specialized classes (e.g., ExtensibleComponent, 
ExtensibleConnector), each of which has a reference to a 
number of abstract classes (shown in Figure 2). Each 
abstract class can have multiple implementations, thus 
enabling selection of the desired functionality inside each 
instance of a given extensible class. 

We have employed several novel optimization tech-
niques to minimize the computation, communication, and 
memory overhead of the middleware [7]. For example, we 
have measured the memory overhead of Prism-MW’s core to 
be less than 2.3KB. However, in the context of the MIDAS 
project we came to realize that for these architectural facili-
ties to be truly useful in a highly heterogeneous and resource 
constrained environment, they would need to be comple-
mented with the appropriate low-level system support. Fur-
thermore, it became clear that to fully reap the benefits of 
developing a software system using the architectural facili-
ties provided by Prism-MW, the middleware should be 
accompanied with several more advanced facilities. Our 

experience has shown that an architectural middleware for 
pervasive computing is composed of three distinct layers 
which are deployed on top of an OS (shown in Figure 3): at 
the bottom is a Modular Virtual Machine (MVM) layer that 
allows the middleware to be deployed on heterogeneous 
platforms efficiently; the abstraction facilities provided by 
the virtual machine are leveraged by the middleware's archi-
tectural constructs that lay on top of it; finally, these archi-
tectural constructs are leveraged to implement various 
pervasive computing facilities. In this paper we focus on 
several advanced fault tolerant facilities we have imple-
mented by leveraging Prism-MW’s architectural constructs. 
We point the interested reader to [8] for a more detailed dis-
cussion of the synergy between MVM and the architectural 
layer that has allowed us to satisfy the heterogeneity, effi-
ciency, and scalability requirements in this domain.

4. Service Discovery
Service discovery in the embedded and pervasive envi-

ronments is a challenging problem: (1) we typically do not 
know the location of a service provider at design-time; (2) a 
service provider may become unavailable due to hardware, 
software, or network failures; and (3) the location of a ser-
vice provider may change at runtime (e.g., redeployment of a 
service provider). In this section, we discuss how we have 
implemented dynamic service discovery on top of Prism-
MW’s architectural constructs.

Figure 4 shows a small fragment of the MIDAS archi-
tecture that we use to illustrate some of the concepts in this 
paper. There are two types of components: service providers 
and clients. Service providing components could in turn pro-
vide either local or global services. For example, the Global 
Logging Service component running on Gateway 2 records 
and maintains event messages received from all the sensors 
of all the gateways. Often times a local service provider may 
need to invoke a global service provider to access informa-
tion or services that are not provided locally. Therefore, local 
service providers have to be able to discover the global ser-

IConnector

Abstract 
Monitor

Scaffold

Abstract 
Dispatcher

Round Robin 
Dispatcher

Abstract 
Scheduler

Fifo 
Scheduler

Abstract 
Scaffold

Brick
Architecture

Component
Connector

Event

Port

IComponent

IPort

ISerializable

IArchitecture

#mutualPort

ExtensibleComponent

AbstractServic
eDiscovery

ExtensibleConnector

AbstractHandler

AbstractDeployment

ExtensiblePort

Abstract
Distribution

SocketDistribution

NetworkReliability
Monitor EvtFrequency

Monitor

Extensible 
Event

SDHandler

BestEffortFTHandler
RealTimeFTHandler

Figure 2. UML class diagram of Prism-MW. Middleware core 
classes are highlighted. Figure 3. Layers of System Stack.



vice provider at runtime. As will be discussed in more detail 
in Section 5, fault recovery facilities in this domain also 
depend on the ability to discover services at runtime. 

To support dynamic service discovery, we leveraged 
Prism-MW’s extensible design. We developed an implemen-
tation of AbstractServiceDiscovery shown in Figure 2 that 
provides the support for recording and retrieval of the infor-
mation about services. An ExtensibleComponent with an 
implementation of AbstractServiceDiscovery installed on it 
is called SDEngine (shown in Figure 4). A Local SDEngine
acts as a service discovery agent on its local host. It is “archi-
tecturally aware”: it can access its architecture to determine 
the services installed locally and maintain the database about 
these services. Each Local SDEngine transfers the informa-
tion about all the services running on its local host to the 
Global SDEngine that manages the global database contain-
ing the information about the services running on all of the 
gateway hosts.

We also have developed an implementation of 
AbstractHander (shown in Figure 2), called SDHandler, 
which is responsible for routing a service request event to the 
corresponding service provider. An ExtensibleConnector
with the SDHandler is called SDConnector as shown in Fig-
ure 4. In our solution, service lookup and invocation is per-
formed by the interactions between SDConnectors and
Local/Global SDEngines. For example, suppose Client 3 on 
Gateway 3 receives an event from a sensor and wants to 
record the event in a persistent storage via the Global Log-
ging Service running on Gateway 2. Client 3 then sends the 
event to its local SDConnector. However, since SDConnec-
tor does not have any location information about the Global 
Logging Service in its routing table, it sends a lookup request 
to the Local SDEngine, which then forwards the request to 
the Global SDEngine. The Global SDEngine retrieves the 

location information about the Global Logging Service and 
send it to the Gateway 3’s Local SDEngine, which then 
records this location information in its database, and con-
nects its local SDConnector to Gateway 2’s SDConnector via 
distribution ports (i.e., instances of an ExtensiblePort with 
the SocketDistribution in Figure 2) as shown in Figure 4. 
After the above steps are performed, Gateway 3’s SDCon-
nector sends the request event received from Client 3 to the 
Global Logging Service via the connection with Gateway 2’s 
SDConnector. Future invocations of the Global Logging Ser-
vice by Client 3 (or other clients on Gateway 3) do not 
require the above service lookup steps.

As mentioned earlier (and will be further discussed in 
Section 6) the initial location of a service provider may 
change at runtime. If a component’s location changes, the 
Local SDEngine running on the component’s new host 
informs the Global SDEngine of this location change. The 
Global SDEngine will then broadcast the component’s new 
location to all of the Local SDEngines so that they can 
update their databases and make a new connection on their 
local SDConnectors with the component’s new host.

There are several advantages to providing service dis-
covery facilities on top of the architectural facilities provided 
by Prism-MW:
• Topology-based routing. Events are not tagged with the 

location of service provider; instead, they are routed based 
on the topology of the software architecture and the rout-
ing policies installed on the connectors. In turn, this makes 
a software system’s architecture more flexible. For 
instance, clients are not aware of the location of the service 
provider. Even when the service provider changes location 
at runtime, SDConnectors route events to its new location 
via interacting with Local/Global SDEngines.

• Separation of concerns. Application logic is completely 
separated from the service discovery protocol and its 
nuances. This is because unlike most state-of-the-art mid-
dleware solutions that require the application to perform 
service lookup and binding, in our approach it is entirely 
performed within meta-level connectors and components 
(i.e., SDConnector, Local/Global SDEngine). In fact, it is 
possible to change the service discovery implementation at 
runtime (i.e., by swapping the SDEngine and SDConnec-
tor), without modifying or bringing down the client com-
ponents.

• Efficiency. By leveraging connectors, we are able to mini-
mize the number of required distribution ports. This is 
because a connector in Prism-MW can perform selective 
routing of an event on a port’s connections. Note that net-
work sockets are extremely resource-expensive for embed-
ded and resource constrained platforms. Therefore, it is 
often desirable to minimize the number of instantiated net-
work sockets in a system. Our approach is unlike most 
state-of-the-art middleware solutions, where each client 
would have to connect directly to a service provider via a Figure 4. Service discovery support in the MIDAS system.

GW 2
Global 

Logging 
Service

GW 3

Client 3Client 2

GW 1

Client 1 Global
SDEngine

Local
SDEngine

Local
SDEngine

Legend:

Request port
Reply port

Distribution 
Request Port
Distribution 
Reply Port

SDConnector
SDHandler

SDConnector
SDHandler

SDConnector
SDHandler



separate distribution port.
• Scalability. Our approach performs a service lookup in a 

hierarchical manner, where a service lookup request is 
always first processed by a Local SDEngine. Only when 
the Local SDEngine does not have any information of the 
requested service, the Global SDEngine is queried. There-
fore, our solution can be used effectively for pervasive 
applications running on a large number of platforms, such 
as MIDAS.

5. Replication and Failover Facilities
As mentioned earlier, one approach to providing fail-

over support is through the replication of software compo-
nents, and thus the services they provide. There are two 
types of replication strategies for supporting fault tolerance 
[13]:
1. Active replication. Each replica of a service provider 

(component) processes a service request event and 
returns a response to the client. Hence, duplicate 
detection is necessary for the client to receive only one 
response.

2. Passive replication. Only one of the replicas, selected as 
the primary replica, processes a request event and sends a 
response to the client. With warm passive replication, the 
remaining backup replicas are synchronized periodically 
with the primary replica’s state. With cold passive
replication, a backup replica is loaded into memory and 
its state initialized from a log only if the current primary 
replica fails.

Compared with passive replication, active replication has a 
faster recovery time because the failure of a single replica is 
simply masked by the presence of the other active replicas, 
while requiring more processing power as every replica pro-
cesses each request event. 

MIDAS has a stringent latency requirement of transmit-
ting an event from a sensor to a hub and receiving an 
acknowledgement back in less than two seconds. Therefore, 

our replication strategy was based on the active replication 
style, as it results in a much shorter recovery time. Figure 5
shows our solution for replication synchronization and 
failover in the MIDAS system. We developed two imple-
mentations of AbstractHander (shown in Figure 2), called 
BestEffortFTHandler, and RealTimeFTHandler. Both Han-
dlers not only deliver a service request event to the global 
service provider it was destined for, but also to the service 
provider’s backup replicas. An ExtensibleConnector with an 
instance of BestEffortFTHandler or RealTimeFTHandler
installed on it is called BestEffortFTConnector or Real-
TimeFTConnector, respectively. An FTConnector is placed 
between a global service provider (e.g., Global Logging Ser-
vice component on Gateway 2) and its local SDConnector as 
shown in Figure 5. The two types of connector differ in their 
event delivery semantics as follows:
• BestEffortFTConnector. This connector sends the 

response received from a global service provider to the cli-
ent only when the “ACK” messages are received from all 
the backups. If an “ACK” message is not received from a 
particular backup, the BestEffortConnector sends the 
request event to that backup again. If the connector still 
does not receive an “ACK” from the backup even after a 
pre-specified number of retransmits, it removes that 
backup from the list of backups, sends the response to the 
client, and informs the Local/Global SDEngines of this 
backup failure via its local SDConnector, so that they can 
update their databases.

• RealTimeFTConnector. This connector does not wait for 
“ACK” messages from the backups, but sends the 
response received from a global service provider to the cli-
ent immediately. Hence, a backup does not need to send an 
“ACK” message to the remote RealTimeFTConnector
after processing an event. This connector is preferred in 
situations that a shorter response time to the client is more 
crucial than ensuring that all the active backups are syn-
chronized with a global service provider.

To detect a host’s failure, each Local SDEngine sends a 
heartbeat message periodically to the Global SDEngine. The 
Global SDEngine checks these heartbeat messages to deter-
mine a host’s failure. When the Global SDEngine detects 
that a host has failed, for each global service provider on the 
failed host it promotes one of the backup replicas to take 
over, and informs all the Local SDEngines of this promotion.

We have identified several advantages of providing rep-
lication and failover facilities on top of the architectural 
facilities:
• Efficiency. Typically, one of the main issues in supporting 

fault tolerance is to guarantee that all of the replicas of a 
service receive and process the request events in the same 
order. Otherwise, the replicas could end up in inconsistent 
states. For this, previous solutions [13,14] have relied on 
reliable totally-ordered multicast protocols such as Totem 
[12]. On the other hand, in our solution each request event Figure 5. Fault tolerance support in the MIDAS system.

GW 2Global 
Logging 
Service

GW 3

Client 3Client 2

GW 1

Client 1

Local 
Logging 
Service 

(backup)

Global 
SDEngine

Local 
SDEngine

Local 
SDEngine

Legend:

Request port
Reply port

Distribution 
Request Port
Distribution 
Reply Port

SDConnector
SDHandler

SDConnector
SDHandler

SDConnector
SDHandler

FTConnector
FTHandler



is first routed to the FTConnector attached to a global ser-
vice provider, and then forwarded to both a global service 
provider and its backups. Therefore, all the replicas 
receive the same sequence of request events. Compared 
with a traditional active replication style, our approach 
does not require the detection of duplicate responses from 
the replicas, since only the global service provider gener-
ates a response and the backups simply send an “ACK” 
message.

• Extensibility. Our approach can be easily extended to sup-
port other replication styles. For example, a global service 
provider can simply send its state periodically to all of its 
backups via the FTConnector for supporting a warm pas-
sive replication style.

• Flexibility. Addition and removal of replication support 
can be easily achieved at the architectural level via the 
addition or removal of an FTConnector. Similarly, if a new 
backup needs to be added to the system, it simply needs to 
be connected to the appropriate FTConnector.

6. Replication and Deployment Analysis
In order to effectively utilize the run-time fault tolerance 

facilities provided by Prism-MW, we have developed a com-
plementary suite of modeling and analysis tools to guide rep-
lication and deployment decisions. As noted earlier, 
computational resources like memory, processing power and 
bandwidth are scarce in many pervasive systems, including 
MIDAS. Consequently, replication must be done selectively, 
targeting those services for which the greatest benefit will be 
attained. Furthermore, the system’s deployment architecture 
(i.e., allocation of the system's software modules on its hard-
ware hosts), may have a dramatic effect on the extent to 
which replication is possible and the degree of fault toler-
ance achieved. Enabling the software architect to make 
informed and judicious decisions in these areas is therefore 
critical to a comprehensive fault tolerance approach.

The decision of replication strategy and deployment 
architecture is complex in almost any industrial-scale sys-
tem. Generally, the system components have varying degrees 
of reliability, and the replication of a highly reliably compo-
nent provides less benefit than the replication of an unreli-
able component. Moreover, each component can collaborate 
with other components in multiple system use cases, which 
are of unequal importance to the user; that is, the services 
provided by some components are of higher criticality than 
others. Additionally, the system hardware can fail (e.g., due 
to the exhaustion of battery power), and the performance and 
availability of the wireless network is unpredictable. Finally, 
once a component has been identified as a candidate for rep-
lication, a node must be selected for the replica’s deploy-
ment, taking into consideration the computational resources 
required and those available at each host.

To solve this multidimensional problem, we have devel-
oped an algorithm that determines a subset of software com-

ponents that, once replicated, result in the greatest 
improvement in the system’s fault tolerance. The replication 
decision algorithm iteratively identifies the next component 
for which the greatest benefit will be gained through replica-
tion by considering the utility of the combined services for 
which the component is required and the probability of the 
component's failure (the details of this algorithm are 
described in [16]). If replicating the component that achieves 
the highest value satisfies the computational resource con-
straints, it is suggested to the software architect as the best 
component to replicate next.

Our replication and deployment decision algorithms are 
implemented in DeSi [11], a visual environment that sup-
ports specification, analysis, and manipulation of a distrib-
uted software system's deployment architecture. DeSi 
provides an extensible meta-modeling language that can be 
used to specify arbitrary properties for software components 
and connectors (e.g., maximum memory usage, frequency 
and volume of exchanged data, mean time to failure), as well 
as hardware devices and their network links (e.g., CPU 
speed, available memory, network throughput). Users can 
leverage multiple views of a system model to explore and 
analyze its various properties. DeSi provides an API for 
accessing the system model, which is used to make analyti-
cal improvements to a given system's software architecture. 
For example, DeSi allows a software architect to improve 
the system’s fault tolerance (via intelligent replication and 
deployment, as described above) within the context of a 
wider set of important QoS properties. This is vital, because 
while replication may improve fault tolerance, other QoS 
properties may degrade due to the overhead of executing 
additional components and keeping replicas synchronized.

The final element of our integrated fault tolerance strat-
egy is the determination of component reliabilities, which 
impact heavily the replication and deployment algorithms, 
and ultimately the effectiveness of the runtime service dis-
covery and failover support in Prism-MW. When it is not 
possible to measure component reliabilities empirically, 
these values may be estimated through simulation of archi-
tectural models in the XTEAM environment [3], a suite of 
architecture description language (ADL) extensions and 
model transformation engines targeted specifically for 
highly distributed, resource-constrained, and mobile com-
puting environments. XTEAM implements (among other 
analyses) the component reliability estimation technique 
described in [17]. This approach relies on the definition of 
component failure types, the probabilities of those failures at 
different times during component execution, and the proba-
bility of and time required for failure recovery. Given an exe-
cution scenario (e.g., network loading conditions and service 
usage profiles), the XTEAM simulation provides a reliability 
value for each component, which may then be utilized by 
DeSi’s replication decision algorithms. Together, DeSi and 
XTEAM have allowed us to perform rapid quantitative anal-



yses of our work in a large number of scenarios.

7. Related Work
ArchJava [1] is an extension to Java that unifies soft-

ware architecture with implementation, ensuring that the 
implementation conforms to architectural constraints. Arch-
Java currently has several limitations that would likely limit 
its applicability in the embedded and pervasive computing 
setting: communication between ArchJava components is 
achieved solely via method calls; and ArchJava is only appli-
cable to applications running in a single address space. Aura 
[20] is an architectural style and supporting middleware for 
ubiquitous computing applications with a special focus on 
user mobility, context awareness, and context switching. 
Aura’s performance and scalability have not been assessed in 
distributed, embedded and pervasive settings. Furthermore, 
neither one of the above two technologies provide fault toler-
ance support.

None of the middleware platforms discussed below pro-
vide native implementation facilities required for software 
architecture-based development in a manner that is suitable 
to embedded and pervasive systems. Orbix/E [4] is a light-
weight CORBA ORB optimized for embedded applications, 
including its relatively small memory footprint. XMIDDLE 
[9] is a data-sharing middleware for mobile computing, 
which allows applications to share data that are encoded as 
XML with other hosts. Lime [6] is a Java-based middleware 
that provides a coordination layer that can be exploited for 
designing applications which exhibit either logical or physi-
cal mobility, or both. Finally, MobiPADS [2] is a reflective 
middleware that supports both active deployment of aug-
mented services for mobile computing and dynamic adapta-
tion for providing flexible configuration of resources.

8. Conclusions
The development of fault tolerant software systems in 

pervasive environments is a challenging task. The complex-
ity of providing advanced fault tolerance facilities, such as 
component replication, replica synchronization, and failover, 
often results in rigid and unmanageable applications. In this 
paper, we have presented a novel approach to modeling and 
implementing fault tolerance facilities at the architectural 
level. This approach results in a separation of application 
logic from fault tolerance logic, which in turn aids the con-
struction, analysis, and adaptation of the software system. 
We have leveraged these characteristics to quantitatively 
analyze various replication and deployment strategies. While 
our experience thus far has been very positive, a number of 
pertinent questions remain unexplored. Most importantly, 
one of the current shortcomings is the lack of fault tolerance 
support for middleware-level components (e.g., Global 
SDEngine), potentially resulting in single points of failure. 
In our future work, we plan to investigate these issues in 
more detail.

9. Acknowledgement
This work is sponsored in part by the National Science 

Foundation under Grant number ITR-0312780 and by Bosch 
Research and Technology Center.

10. References 
[1] J. Aldrich, et. al. ArchJava: Connecting Software Architec-

ture to Implementation. ICSE 2002, May 2002. 
[2] A. Chan, et. al. MobiPADS: A Reflective Middleware for 

Context-Aware Mobile Computing. IEEE Transactions on 
Software Engineering, Vol. 29, No.12, December 2003.

[3] G. Edwards, et. al. Scenario-Driven Dynamic Analysis of 
Distributed Architectures. FASE 2007, March 2007.

[4] Orbix/E. http://www.iona.com/whitepapers/orbix-e-DS.pdf
[5] E. A. Lee. Embedded Software. Advances in Computers 

(Marvin V. Zelkowitz, ed.), Academic Press, London, 2002.
[6] LIME http://lime.sourceforge.net/
[7] S. Malek, et. al. A Style-Aware Architectural Middleware for 

Resource Constrained, Distributed Systems. IEEE Transac-
tions on Software Engineering. March 2005.

[8] S. Malek, et. al. Reconceptualizing a Family of Heterogene-
ous Embedded Systems via Explicit Architectural Support. 
IEEE Int’l Conf. on Software Engineering, May 2007.

[9] C. Mascolo et. al. XMIDDLE: A Data-Sharing Middleware 
for Mobile Computing. Personal and Wireless Communica-
tions, Kluwer. 

[10] N. Medvidovic, et. al. A Family of Software Architecture Im-
plementation Frameworks. WICSA 2002, Aug. 2002.

[11] M. Mikic-Rakic, et. al. A Tailorable Environment for Assess-
ing the Quality of Deployment Architectures in Highly Dis-
tributed Settings. CD 2004, Edinburgh, Scotland, May 2004.

[12] L. E. Moser, et. al. Totem: A fault-tolerant multicast group 
communication system. Comms. of the ACM. April 1996.

[13] P. Narasimhan, et. al. State Synchronization and Recovery for 
Strongly Consistent Replicated CORBA Objects. DSN 2001, 
July 2001.

[14] P. Narasimhan, et. al., Eternal-A Component-based Frame-
work for Transparent Fault-Tolerant CORBA. Software 
Practice and Experience, Vol. 32, pp. 771-788, 2002.

[15] D.E. Perry, et. al. Foundations for the Study of Software Ar-
chitectures. Software Engineering Notes, Oct. 1992.

[16] D. Popescu. Framework for Replica Selection in Fault-Toler-
ant Distributed Systems. Tech. Report USC-CSSE-2007-702, 
2007.

[17] R. Roshandel, et. al. Estimating Software Component Relia-
bility by Leveraging Architectural Models. ICSE 2006, May 
2006.

[18] M. Shaw and D. Garlan. Software Architecture: Perspectives 
on an Emerging Discipline. Prentice Hall, 1996.

[19] M. Shaw, et. al. Abstractions for Software Architecture and 
Tools to Support Them. IEEE Trans. on Software Engineer-
ing, April 1995.

[20] J. P. Sousa, et. al. Aura: an Architectural Framework for User 
Mobility in Ubiquitous Computing Environments. WICSA 
2002, Montreal, August 2002.


	1Computer Science Department Univ. of Southern California Los Angeles, CA 90089, U.S.A. {cseo,malek,gedwards, dpopescu,neno}@usc.edu
	2Bosch Rsrch & Tech. Center Two NorthShore Center, Suite 320 Pittsburgh, PA 15212, U.S.A. brad.petrus@rtc.bosch.com
	3Bosch Rsrch & Tech. Center 4009 Miranda Avenue Palo Alto, CA 94304, U.S.A. sharmila.ravula@rtc.bosch.com

