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Abstract 

It has been widely advocated that software architecture 
provides an effective set of abstractions for engineering 
(families of) complex software systems.  However, archi-
tectural concepts are seldom supported directly at the 
level of system implementation. In embedded environ-
ments in particular, developers are often forced to rely on 
low-level programming languages.  While this is condu-
cive to fine-grain control over the system, it does not lend 
itself to addressing larger issues such as ensuring archi-
tectural integrity or managing an application family.  In 
this paper we describe our experience with fundamentally 
altering the manner in which a family of embedded appli-
cations is designed, analyzed, implemented, deployed, and 
evolved using explicit architectural constructs.  We dis-
cuss our strategy, the challenges we faced in the course of 
our project, the lessons learned in the process, and sev-
eral open issues that remain unresolved.  

1. Introduction 
Wireless sensor network (WSN) systems are fast be-

coming pervasive in a variety of domains including medi-
cal, defense, industrial automation, navigation, and civil 
engineering. These systems are associated with a number 
of advantages, such as low cost of installation and mainte-
nance, replacement of physical sensor nodes, easy recon-
figurability, and so on. At the same time, they face signifi-
cant challenges, including requirements for scalability, 
fault-tolerance, performance (e.g., response time), avail-
ability, and dependability. Additionally, the software ap-
plications deployed on WSNs are faced with extreme con-
straints in terms of available power, memory, processor or 
controller speed, network throughput, and so on.  

 These issues are reflective of WSN applications be-
ing investigated at Bosch for use in areas such as monitor-
ing, tracking, and control. The WSNs used in these appli-
cations may need to be integrated with legacy wired net-
works, other embedded devices, and mobile networks that 
include PDAs and cell-phones for user notification. This 
suggests that an effective underlying infrastructure used in 

the development, deployment, and execution of these ap-
plications has to be generic enough for use in multiple 
application domains, and flexible enough to offer easy 
customization for specific application requirements and 
heterogeneous operating environments. In other words, 
the distributed systems deployed using WSNs require a 
shared application substrate in the form of a middleware 
platform [5].  

At the same time, conventional software engineering 
wisdom suggests that a most promising approach to ad-
dressing the challenges of developing complex software 
systems, such as those discussed above, is to employ the 
principles of software architecture [15]. Software archi-
tectures provide abstractions for representing the struc-
ture, behavior, and key properties of a software system. 
They are described in terms of software components 
(computational elements), connectors (interaction ele-
ments), and their configurations. A given software archi-
tectural style (e.g., publish-subscribe, peer-to-peer, pipe-
and-filter, client-server) further refines a vocabulary of 
component and connector types and a set of constraints on 
how instances of those types may be combined in a sys-
tem. 

In practice, however, while software developers have 
embraced architectural abstractions as powerful design-
level tools, they are typically forced to realize those ab-
stractions using a different set of implementation-level 
tools.  For example, engineers may prefer to think of sys-
tems in terms of components, connectors, and styles, but 
usually have to implement those systems using low-level 
constructs such as methods, arrays, pointers, and so on 
[9]. This is particularly prevalent in embedded systems, in 
which C/C++ has remained the lingua franca. Even the 
state-of-the-art middleware solutions for embedded sys-
tems development (e.g., CORBA Orbix [14], TAO [1]) 
still lack the necessary implementation-level facilities for 
key elements of software architecture. For example, ex-
plicit architecture-level connectors are usually distributed 
(and thus “lost”) across different implementation-level 
modules as combinations of method calls, shared memory, 



Figure 1. MIDAS 

network sockets, and other facilities supported in the mid-
dleware [11]. Another example is that of application-level 
architectural styles (e.g., pub-sub or peer-to-peer), which 
are often at best mimicked, and at worst ignored, by the 
styles (e.g., client-server) assumed by the middleware.  

For this reason, in the past the researchers from the 
software architecture group at USC have argued that tradi-
tional middleware solutions are not the best candidates for 
architecture-based software development [9].  Instead, we 
have shown that architectural middleware—a middleware 
platform that provides native implementation-level con-
structs for the key architectural abstractions—can be em-
ployed effectively in a number of domains, including em-
bedded systems [7][10].  

Applying an adaptable architectural middleware plat-
form to WSN-based applications thus seemed like a natu-
ral choice, and we decided to undertake the challenge col-
laboratively between Bosch and USC.  The resulting ex-
perience yielded some outcomes we had not anticipated, 
as it forced us to reconceptualize how WSN-based appli-
cations are built most effectively. Similarly, we also had 
to rethink several assumptions and design choices made 
originally in the development of Prism-MW. In the proc-
ess, we have drawn several lessons we believe to be more 
broadly applicable to software development in the WSN 
arena, the role of software architecture in heterogeneous 
embedded systems, and the nature of architectural mid-
dleware. 

The remainder of the paper is organized as follows. 
Section 2 outlines a set of architectural challenges and 
requirements for developing distributed embedded sys-
tems. Section 3 then discusses the related work in terms of 
those requirements. Section 4 provides an overview of the 
approach we took in this project. Section 5 describes and 
evaluates our experience in engineering a family of WSN 
applications using our approach. Finally, a discussion of 
the lessons we have learned and a brief conclusion round 
out the paper.  

2. Requirements  
Early on in the process of formulating our collaborative 
project, we engaged in a requirements elicitation activity. 
The requirements were driven by one of Bosch’s families 
of embedded applications, called MIDAS. MIDAS is 
composed of a large number of sensors, gateways, hubs, 
and PDAs that are connected wirelessly in the manner 
shown in Figure 1. The sensors are used to monitor the 
environment around them. They communicate their status 
to one another and to the gateways via events. The gate-
way nodes are responsible for managing and coordinating 
the sensors. Furthermore, the gateways translate, aggre-
gate, and fuse the data received from the sensors, and 
propagate the appropriate data to the hubs. Hubs are used 
to evaluate and visualize the sensor data for human users. 
They also provide an interface through which a user can 

send control commands 
to various sensors and 
gateways. Hubs may also 
be configured to 
propagate the appropriate 
sensor data to PDAs, 
which are then used by 
the mobile users of the 
system. 

We identified a set of 
eleven key requirements 
driving the middleware, 
as detailed below. We 
should note that the first 
five requirements are non-functional or quality attributes; 
the next four deal with system development support; fi-
nally, the last two requirements impose a software archi-
tectural perspective on the middleware. 

R1: Resource Consumption. Since we are con-
cerned with highly resource-constrained embedded sys-
tems, it is important that the middleware be efficient in its 
use of the resources required to deploy it.  In particular, 
the code space and memory required by the middleware 
should be minimized to realize cost-savings in terms of 
FLASH or EPROM hardware. Also, the communications 
data overhead should be minimized to support communi-
cation over low-bandwidth channels with minimal latency. 
Furthermore, the middleware should also provide the ap-
propriate facilities for managing system resources. 

R2: Performance. Application types that will be de-
ployed using the middleware include time-critical data 
transfers from static and mobile sensors. The factors af-
fecting the middleware performance include performance 
of the hardware on which the application/middleware is 
executed, of the network, and of the application code. In 
light of these parameters, the middleware should provide 
latency guarantees and support priority-based scheduling. 

R3: Scalability. The middleware is intended to be 
deployed in systems that could scale from a control unit 
monitoring 10-15 nodes to a multi-control unit, multi-hub 
network with hundreds of sensors and tens of control 
units. The middleware itself could be deployed on a sen-
sor with extremely limited computing resources or a pow-
erful desktop platform. All such variations should be ef-
fectively supported by the middleware. 

R4: Heterogeneity. Since the middleware is intended 
to be deployed on embedded systems in many domains, it 
is important that it be able to support multiple OSs and 
platforms. For example, the middleware may be deployed 
on embedded systems running VxWorks and eCos.  It is 
also conceivable that an alternative OS may become avail-
able during a product’s lifetime, in which case it should be 
possible to redeploy the middleware and the applications 
developed on top of it to that OS with little effort.   



R5: Fault-Tolerance. Many distributed, embedded 
applications operate in safety-critical or regulated envi-
ronments, in which a given event must be delivered to its 
recipients under all conditions (e.g., medical emergency).  
The middleware platform must support fault-tolerance 
using fail-over techniques: if a host providing a given 
service fails, then another host in the system should 
quickly be enabled as the provider of the same service. 
The computational state of the newly enabled service must 
be the same as the last known state of the failed service.  

R6: System Modeling and Analysis. The ability to 
explicitly model and analyze a distributed system is espe-
cially important in the case of large systems comprising 
hundreds of hosts and providing hundreds of software 
services. The middleware must support analysis of a dis-
tributed application both prior to deployment and during 
runtime, in order to select the location of various system 
services that will minimize the communication latencies 
and battery consumption, maximize performance and ser-
vice availability, and so on.   

R7: Deployment. We require the middleware plat-
form to provide facilities for component download and 
deployment.  This is especially important for WSN sys-
tems, such as MIDAS, that lack a convenient I/O interface 
(e.g., monitor, disk drive, or keyboard) that could be used 
for download and installation of software. Additionally, if 
a new (version of a) component has been developed, it 
would be advantageous to have the ability to deploy it 
without having to remove the target host from the system. 
Given the nature of our target computing environment, 
component deployment is to be supported on multiple 
platforms and in multiple programming languages (PLs). 

R8: Service Discovery. In large distributed systems, 
service providers and clients may join and leave the sys-
tem at arbitrary times. Therefore, the middleware must 
support the ability of a client to discover and/or invoke a 
service without prior knowledge of its physical location.  

R9: Monitoring. It is important to be able to non-
intrusively monitor the activity of a distributed, long-lived 
application for properties such as event rate, resource con-
sumption, device load, amount of battery power remain-
ing, and so on.  For example, if the network traffic at a 
given host is particularly high, some of the local services 
may be migrated to a less congested host. 

R10: Architecture-Based Development. The mid-
dleware should support architecture-based development 
since WSN application designs are increasingly expressed 
in architectural terms, including components, connectors, 
ports, and events.  This requirement eases the translation 
from high-level design to implementation. 

R11: Multiple Architecture Styles. Applications in 
the WSN domain typically employ several architectural 
styles.  For instance, it is not unusual for different parts of 
a single application to be developed using both pub-sub 

and client-server styles.  Direct support for heterogeneous 
styles is thus required of the middleware platform.   

3. Related Work 
 We classify the related literature into (1) technologies 
targeted at supporting implementation of software archi-
tectures and (2) middleware for embedded systems. We 
provide an overview of the most notable solutions from 
each category, and relate them to the above requirements. 
We highlight the requirements each solution fails to sat-
isfy, as it suggests our motivation in searching for an al-
ternative. 

ArchJava [2] is an extension to Java that provides PL-
level constructs for architectural concepts (component, 
connector, port), and ensures that the implementation con-
forms to architectural constraints. ArchJava has several 
limitations with respect to the above requirements (e.g., 
R1, R3, R4, R8), including its assumption of a single ad-
dress space. Aura [17] is an architectural style and sup-
porting middleware for ubiquitous computing. Aura’s 
performance and scalability have not been assessed in 
widely distributed settings (R1, R2, and R3), and it im-
poses a single style for all applications (R11). Finally, 
RUNES [4] is a reconfigurable component-based middle-
ware, but it does not support a number of software archi-
tectural elements, such as connectors and styles (R10, 
R11). Furthermore, since RUNES’s component frame-
work is tied to the implementation platform, it is not pos-
sible to redeploy components among heterogeneous plat-
forms (R4, R7).  

None of the middleware platforms surveyed below 
support requirements R10 and R11. Furthermore, it can be 
argued that only the first two, CORBA-based solutions, 
support R6 to some extent. However, these solutions ad-
dress several of the other requirements, and have certainly 
influenced our work. Orbix/E [14] is a lightweight 
CORBA ORB optimized for embedded applications, in-
cluding its relatively small memory footprint. The ACE 
ORB (TAO) [1] is a CORBA-compliant middleware 
framework that allows clients to invoke operations on 
distributed objects without concern for object location, 
PL, OS, communication protocol, or hardware.  XMID-
DLE [8] is a data-sharing middleware for mobile comput-
ing, which ensures consistency of the shared data across 
hosts. XMIDDLE is lightweight and fast, and caters to the 
frequent disconnections of mobile devices. Lime [6] is a 
Java-based middleware targeted at ad-hoc mobile envi-
ronments. It provides a coordination layer for designing 
applications that exhibit logical and/or physical mobility. 
Finally, MobiPADS [3] is a reflective middleware that 
supports active deployment of augmented services for 
mobile computing. MobiPADS supports dynamic adapta-
tion in order to provide flexible configuration of resources 
and optimize the performance of mobile applications.  



Figure 2. Layers of System Stack. 
 

Figure 3. UML class diagram of Prism-MW's design.  
Middleware core classes are highlighted. 

4. Overview of the Approach 
To meet the requirements discussed in Section 2, and 

to address the shortcomings of the related approaches dis-
cussed in Section 3, we extensively customized and inte-
grated three technologies: a cross-platform virtual ma-
chine, an architectural middleware, and a distributed sys-
tem modeling and analysis environment. In this section, 
we provide an overview of what each of these technolo-
gies contributed, and outline how they were integrated to 
arrive at a comprehensive architecture and tool-suite. A 
much more detailed discussion of the challenges we en-
countered in this process and the significant modifications 
that were made to each of the technologies are provided in 
Sections 5 and 6. As shown in Figure 2, at the bottom of 
the resulting integrated architecture is a virtual machine 
layer that allows the middleware to be deployed on het-
erogeneous OS and hardware platforms efficiently; the 
abstraction facilities provided by the virtual machine are 
leveraged by the middleware’s architectural constructs 
that lay on top of it; finally, these constructs are used to 
implement various domain-specific computing facilities.   

4.1 Modular Virtual Machine  
To cope with the heterogeneity and resource-

constrained nature of the hardware platforms frequently 
encountered in embedded systems, we adapted a domain-
specific virtual machine called Modular Virtual Machine 
(MVM). MVM was designed at Bosch as a configurable 
family of utilities, including support for threading, IO 
management, networking, and so forth (see the MVM 
layer in Figure 2). MVM provides an abstraction layer on 
top of various OSs (Linux, Windows, eCos) and hardware 
platforms (Intel x86, KwikByte, and several proprietary 
sensor platforms). It is composed of three parts: resource 
abstractions, implementations, and factories. Resource 
abstractions provide a common API that is leveraged by 
the higher middleware layers as well as application devel-
opers to produce platform-independent code. An example 
of a resource made available via resource abstraction is a 
thread. A resource abstraction is realized via its imple-

mentation, which may use OS- or hardware-specific li-
braries. Resource abstractions are managed via their cor-
responding factories. For example, a thread factory may 
manage the number of threads that could be created in the 
system. For a given target host, the executable image of 
MVM is created by building the MVM source code with 
the appropriate implementation files included.  

Given MVM’s support for the development of plat-
form-independent source code, it was hoped that MVM 
would allow for a higher degree of software reuse, as well 
as support for more advanced capabilities, such as code 
mobility, runtime adaptation, and so on. However, appli-
cation modules developed on top of it frequently suffered 
from unintended dependencies. Furthermore, since MVM 
lacked support for service discovery, dynamic adaptation, 
and component-level deployment, software systems de-
veloped on top of it were compiled into monolithic, rigid 
executable images. These shortcomings were a direct by-
product of MVM’s lack of support for architecture-based 
development, and ultimately hindered its potential to pro-
mote software reuse and adaptability among distributed 
embedded applications. 

4.2 Prism-MW 
Prism-MW [7] is an architectural middleware devel-

oped at USC. It supports architectural abstractions that 
enable direct mapping between an architecture and its im-
plementation. Figure 3 shows the class design view of 
Prism-MW. The shaded classes constitute the middleware 
core, a minimal subset of Prism-MW that enables imple-
mentation and execution of architectures in a single ad-
dress space. We describe the design of Prism-MW in more 
detail here because we have leveraged it extensively in 
this project, as will be seen in Sections 5 and 6. 

Brick represents an architectural building block and 
encapsulates common features of its subclasses (Architec-
ture, Component, Connector, and Port). Architecture re-
cords the configuration of its constituent components, 



connectors, and ports, and provides facilities for their ad-
dition and removal. A distributed application is imple-
mented as a set of interacting Architecture objects.  

Events are used to capture communication between 
components. An event consists of a name and payload, 
i.e., a set of typed parameters that carry data and meta-
level information (e.g., sender, time stamp). An event type 
is either a request for a recipient to perform an operation 
or a reply that a sender has performed an operation.  

Ports are the loci of interaction in an architecture. A 
link between two ports is made by welding them together. 
Each port has a type, which is either request or reply. Re-
quest events are always forwarded from request to reply 
ports; reply events are forwarded in the opposite direction.  

Components perform computations in an architecture 
and may maintain their own internal state. A component 
can have any number of attached ports, used for exchang-
ing events. Components may interact either directly 
(through ports) or via connectors.  

Connectors are used to control the routing of events 
among the attached components. Like components, a con-
nector can have any number of attached ports. Connectors 
may support arbitrary event delivery semantics (e.g., uni-
cast, multicast, broadcast). In order to support the needs of 
dynamically changing applications, each Prism-MW com-
ponent or connector is capable of adding or removing 
ports at runtime. This property, coupled with event-based 
interaction, has proven to be highly effective for address-
ing system re-configurability.  

Finally, Prism-MW provides support for event dis-
patching, event queuing, architectural monitoring, and 
reflection facilities that the developer can associate with 
the system’s architecture.  

Prism-MW’s design is intended to be highly extensi-
ble while keeping Prism-MW’s core unchanged. To that 
end, the core constructs (e.g., Component, Port) are sub-
classed via specialized classes (e.g., ExtensibleCompo-
nent, ExtensiblePort), each of which has a reference to a 
number of abstract classes (Figure 3). Each AbstractEx-
tension class can have multiple implementations, thus 
enabling selection of the desired functionality inside each 
instance of a given extensible class.  

Prism-MW’s support for architecture-based develop-
ment and its highly flexible nature made it an appropriate 
solution to many of the requirements discussed in Section 
2. However, before Prism-MW could be used in this pro-
ject, we had to overcome a number of challenges. The 
existing version of Prism-MW had been developed in 
Java, and relied on JVM to abstract away the heterogene-
ity of the computing substrate. On the other hand, for leg-
acy and efficiency reasons most embedded applications 
are developed in C and, more recently, C++. Therefore, 
we decided to port Prism-MW to C++. To safeguard 
Prism-MW from the heterogeneity of the computing sub-
strate (e.g., different C++ runtime libraries or threading 

semantics on different platforms) we decided to reimple-
ment it on top of MVM. But there still were a number of 
unanswered questions: What design implications will this 
have on Prism-MW and MVM? How efficient will a solu-
tion developed on top of the resulting middleware be? 
And so on. In Sections 5 and 6, we will revisit these issues 
in much more detail. 

4.3 DeSi 
DeSi [13] is a visual environment that supports speci-

fication, analysis, and manipulation of a distributed soft-
ware system’s deployment architecture (i.e., allocation of 
the system’s software modules on its hardware hosts). 
DeSi provides an XML-based meta-modeling language 
that can be used to specify arbitrary properties for soft-
ware components and connectors (e.g., maximum memory 
usage, frequency and volume of exchanged data), as well 
as hardware devices and their network links (e.g., CPU 
speed, available memory, network throughput). DeSi 
completely separates the underlying system model from 
the various visualization facilities that it provides. This 
simplifies the development of new customized views that 
may focus on a particular aspect of the system (an exam-
ple view of DeSi is shown in Figure 4b). Users can lever-
age multiple views of the system’s model to explore and 
analyze its various properties. Furthermore, since by de-
fault DeSi synchronizes all views with the underlying 
model, it is a suitable environment for visualizing and 
monitoring the dynamic aspects of a running system. In 
addition to its visualization and modeling capabilities, 
DeSi also provides an API for accessing the system 
model, which we have leveraged to develop a number of 
algorithms for analyzing a given system’s software archi-
tecture and improving its properties (e.g., availability, 
latency) via redeployment [12]. 

DeSi’s modeling and visualization capabilities made 
it an appropriate tool for representing the software and 
hardware architectures of distributed embedded systems 
such as WSN systems. Its plug-in architecture also facili-
tated the development of new algorithms for architectural 
analyses. Our objective was to leverage DeSi’s analysis 
capabilities both at design-time and at runtime, such that 
we can possibly adapt a running system based on the re-
sults of the analysis. However, in order for DeSi’s model 
to be populated with a system’s runtime data, and the re-
sults of its analysis to be effected on the running system, 
we needed to integrate DeSi with the implementation sub-
strate (i.e., Prism-MW and MVM). This posed several 
challenges, on which we will elaborate in the next section. 

5. Experience 
The direct motivation for the collaborative project be-

tween Bosch and USC was the construction of the MI-
DAS family of WSN-based applications. Our pursuit of 
this immediate goal resulted in a significant adaptation 



Figure 4. An abridged view of MIDAS's architecture that is monitored, analyzed, and adapted at runtime: a) por-
tions of MIDAS’s software architecture, including its three sub-architectures; b) DeSi and its Prism-MW Adapter 

and integration of the three infrastructure tools discussed 
in the previous section. For exposition purposes, we will 
describe this experience in terms of an instance of MI-
DAS’s reference architecture, shown in Figure 4a. Fur-
thermore, we will organize our discussion around the re-
quirements introduced in Section 2. Note that we do not 
explicitly address requirements R6, R9, and R10, since 
DeSi and Prism-MW natively support them and no sig-
nificant changes to them were required. Furthermore, sev-
eral requirements (e.g., R5) are discussed in a different 
order than in Section 2 because we use facilities built in 
support of other requirements (e.g., R8) to address them.  

5.1 Resource Consumption (R1) 
In the Java version of Prism-MW, we relied on the 

JVM to manage the (de)allocation of memory for Java 
objects at runtime. While this approach incurred an over-
head in terms of both computational resources and time, 
with Java we realistically did not have other alternatives 
as we were limited to JVM’s somewhat unpredictable and 
opaque memory management mechanism. A similar over-
head also exists in C++, caused by the (de)allocation of 
memory on the heap by both Prism-MW and application 
logic. We were not able to ignore this type of overhead in 
MIDAS. To address this problem we enhanced the MVM 
by developing a memory management facility based on a 
memory pooling technique, which pre-allocates various 
C++ objects (e.g., event, mutex, semaphore, etc.) from the 
heap when the middleware starts up. This in turn allowed 
us to efficiently access the pool when an object of a par-
ticular type was required, and release it back to the pool 
when it was not needed any longer. We were thereby able 
to reduce the overhead of memory allocation to a simple 
pointer operation.  

To insulate the architectural layer from the idiosyn-
crasies of the underlying memory management facility, we 

created a number of factory facilities that manage the 
(de)allocation of architectural constructs. For example, a 
component generates an Event via an API exported by the 
EventFactory facility (shown in Figure 2) in the MVM 
layer, irrespective of whether the Event is allocated from 
the heap or from a memory pool. The total memory foot-
print of the C++ portion of the MIDAS application shown 
in Figure 4 was measured to be 3.1 MB, while Prism-
MW’s memory overhead was 189 KB, or 6%. 

5.2 Performance (R2) 
MIDAS has stringent real-time requirements, such as 

transmitting a high-priority event from a sensor to a hub 
and receiving an acknowledgement back in less than two 
seconds. Prism-MW’s default event processing mecha-
nism [7], which is based on a FIFO implementation of 
event queue and round robin dispatching of threads (i.e., 
FIFOScheduler and RoundRobinDispatcher shown in 
Figure 3), was not sufficient for guarantying the delivery 
of such high-priority events. For this reason, we devel-
oped an implementation of AbstractScheduler, called Pri-
orityBasedScheduler, which maintains multiple event 
queues with different priorities. We also developed an 
implementation of AbstractDispatcher, called Priority-
BasedDispatcher, which maintains multiple thread pools 
with different priorities. A thread pool is associated with 
an event queue of the same priority. Thus a high-priority 
event is processed (by a high-priority thread) before a 
lower-priority event. To avoid starvation of low-priority 
events, PriorityBasedDispatcher can be configured to 
periodically pre-empt the high-priority thread pool and 
allow the low-priority pool to process an event. 

5.3 Scalability (R3) 
In our previous work, we have shown that Prism-MW 



can scale up to hundreds of hardware devices and OS 
processes, and to architectures comprising thousands of 
software components and connectors [7]. To satisfy the 
specific scalability requirements of MIDAS outlined in 
Section 2, we relied on the modularity and extensibility 
across different layers of the middleware shown in Figure 
2. The configurable nature of the MVM allows us to 
“strip” it of any functionality that is not required on a tar-
get platform. Similarly, recall from Section 4.2 that we are 
able to reduce Prism-MW’s configuration down all the 
way to its core, which represents the minimum functional-
ity required for deploying Prism-MW. MVM factory fa-
cilities were also leveraged to configure the resources 
used by the application (e.g., maximum number of threads 
to be used in the system). Therefore, the modularity and 
extensibility of both MVM and Prism-MW allowed us to 
customize each deployment of the middleware as well as 
the application running on it based on the properties of the 
target platform. We are currently in the process of assess-
ing the limits of our middleware’s scalability using varia-
tions of the configuration shown in Figure 1. 

5.4 Heterogeneity (R4) 
Several aspects of MIDAS embody the notion of mul-

tiplicity inherent in embedded environments. The devices 
on which MIDAS has been deployed are of several differ-
ent types (ARM-based Compaq iPAQ and KwikByte, 
Intel-based Dell laptops, and several proprietary sensor 
platforms), and are running four OSs (Windows CE and 
XP, Linux, and eCos). MIDAS was also developed in two 
PLs: C++ for applications running on sensors, gateways, 
and hubs, and Java for applications running on PDAs (re-
call Figure 1). Furthermore, some of the devices were 
equipped with wireless network cards, while others only 
had infrared and serial port capabilities. 

The heterogeneity of the Java portion of MIDAS was 
enabled by the JVM, which abstracts away the variations 
in the computing substrate. However, this was not the case 
with the C++ portion of MIDAS. As mentioned earlier 
and shown in Figure 2, we opted to satisfy this require-
ment by layering Prism-MW’s architectural constructs on 
top of MVM’s system facilities. To further understand the 
role of MVM, as an example consider the support it pro-
vides for threads. In Java, we relied on native thread and 
thread synchronization mechanisms. However, in C++ 
developers typically have to use the OS’s support for 
threads, and to rely on OS-level semaphore or mutex li-
braries for thread synchronization. To remove this de-
pendency on the OS, we developed thread, mutex, and 
semaphore abstractions and the corresponding implemen-
tations in the MVM layer. Other resource abstractions 
were provided similarly.  

MIDAS’s multi-lingual nature also introduced a type 
of heterogeneity that was not abstracted away by the 
MVM. This was due to the difference in the representation 

of objects between Java and C++. For example, a Java 
character is represented as two bytes, while in ANSI C++ 
it is represented as one byte. To solve this we leveraged 
the extensible nature of Prism-MW’s ports. As shown in 
Figure 3, we created an implementation of AbstractCon-
version, called JavaToC++Interop, that translates an 
event message between the C++ and Java formats. Simi-
larly, to address the heterogeneity of remote communica-
tion, we developed two different implementations of Ab-
stractDistribution in Prism-MW: SocketDistribution (for 
devices with wireless cards) and IPCDistribution (for de-
vices with infra-red or serial ports).  Additionally, we had 
to enhance the MVM to provide the required platform-
specific networking facilities: TCP socket, UDP socket, 
connection thread, network buffers, and so on. 

Our approach to satisfying the heterogeneity require-
ments of MIDAS proved to be flexible and extensible, as 
supporting a new OS or hardware platform would require 
only the addition of host-specific resource implementa-
tions in the MVM. The design of the middleware’s archi-
tectural support (recall Figure 3) remained intact as we 
ported it from Java to C++. This design also allowed for a 
clear separation between architectural and system-level 
concerns. For example, it helped us to categorize a Port’s 
JavaToC++Interop extension as an architectural facility 
(architectural layer of Figure 2), and endian conversion on 
which JavaToC++Interop may rely as a system-specific 
facility (MVM layer of Figure 2). Furthermore, due to the 
extensive separation of concerns built into Prism-MW, 
modifying MVM’s facilities resulted in only localized 
changes to Prism-MW. For example, changing the thread-
ing API in the MVM only results in changes to Abstract-
Dispatcher’s implementation class in the architecture 
layer of Figure 2. Similarly, changing the interface of net-
work communication abstractions (e.g., socket) in the 
MVM layer only results in subsequent changes to Ab-
stractDistribution’s implementation class.  

5.5 Deployment and Adaptation (R7) 
We have leveraged DeSi’s system modelling and 

Prism-MW’s architectural reflection capabilities to satisfy 
MIDAS’s deployment requirement, as depicted in Figure 4. 
In order to migrate the desired set of architectural ele-
ments onto target hosts, a skeleton configuration is pre-
loaded on each host. The skeleton configuration consists 
of Prism-MW’s Architecture object that contains an 
Admin component. Admin component is an Extensible-
Component with the Admin implementation of Abstract-
Deployment installed on it (recall Figure 3 as well as the 
top layer of Figure 2). As such, the Admin component is 
“architecturally aware”: it has a pointer to its Architecture 
and is able to effect runtime changes to it (instantiation, 
addition, removal, and (dis)connection of components and 
connectors). Additionally, Admin components on different 



devices are peers capable of exchanging ExtensibleEvents 
that contain application-level components and connectors. 

As shown in Figure 4b, we integrated DeSi with 
Prism-MW, by wrapping DeSi’s Monitor and Effector 
components via a Prism-MW Adapter. This allows us to 
model a system’s deployment architecture in DeSi and 
associate each component in the model with its corre-
sponding implementation. The deployment may be as-
sessed for properties of interest via the analysis algorithms 
provided by DeSi [12]. Once a deployment is selected, 
DeSi’s Effector sends a sequence of commands (via 
Prism-MW’s ExtensibleEvents) to a centralized Admin 
component, called Deployer. Deployer in turn propagates 
the commands to Admin components on each host, which 
then perform the tasks corresponding to the commands 
(e.g., download component, weld ports, start component). 

Very often engineers will not know a priori the prop-
erties of the target hardware platform, and will make de-
ployment decisions that may turn out to be inappropriate 
within the context of the actual running system. This is of 
particular concern in mobile embedded systems such as 
MIDAS, which are affected by unpredictable movement 
of target hosts and fluctuations in the quality of wireless 
network links. To address this issue, we have used Prism-
MW’s monitoring facilities to observe the system in ac-
tion, and DeSi to visualize the system and suggest alterna-
tive deployments. Figure 4 depicts an example MIDAS 
application that is monitored and deployed on top of our 
middleware, and visualized in DeSi. Once the monitoring 
data on each device is sent by the local Admin to the De-
ployer, Deployer aggregates and forwards the data to 
DeSi’s Monitor component, which in turn populates 
DeSi’s model. At that point, one of the algorithms pro-
vided by DeSi is selected and executed for improving the 
system’s deployment architecture. Finally, the result is 
reported back to the Deployer, which coordinates the re-
deployment of the system with the Admin components. 

5.6 Fault Tolerance (R5) 
Currently we do not fully support the fail-over re-

quirement. However, we have provided a utility that will 
be used as the foundation for completing this task.  We 
have developed a mechanism that replicates components 
identified as critical either by the system engineers or by 
DeSi (e.g., components that provide services essential to 
the processing of high-priority events). DeSi’s analysis 
capabilities are then used to find the optimal allocation of 
each component’s replicas, such that the effects of the 
failure of (1) the original component, (2) the host on 
which it is deployed, or (3) a network link, are minimized. 
Our solution currently does not guarantee that each client 
of the original component will have uninterrupted access 
at least to one of its replicas.  Furthermore, the event rout-
ing and constant state updates to multiple replicas of mul-

tiple components in a system may be very costly in terms 
of resource consumption (R1) and performance (R2). 

5.7 Service Discovery (R8) 
We have directly leveraged Prism-MW’s architectural 

constructs to satisfy MIDAS’s service discovery require-
ment. In the context of MIDAS a service corresponds 
roughly to a component interface. We developed an im-
plementation of AbstractServiceDiscovery shown in 
Figure 3 that provides the support for recording and re-
trieval of services. An ExtensibleComponent with an im-
plementation of AbstractServiceDiscovery installed on it 
is called SDEngine (shown in Figure 4a and the top layer 
of Figure 2). SDEngine acts as a service discovery agent 
on its local host. It is “architecturally aware”: it can access 
its architecture to determine the services installed locally. 
SDEngines then communicate this information across 
hosts via events. Any remote service requests by applica-
tion-level components are routed via their local SDEngi-
nes, ensuring complete location transparency. 

5.8 Multiple Architectural Styles (R11) 
As depicted in Figure 4a, MIDAS’s reference architec-

ture encompasses three different architectural styles. We 
briefly discussed the peer-to-peer portion of this architec-
ture in Section 5.5. The pub-sub portion of MIDAS corre-
sponds to the communication backbone that is responsible 
for routing and processing of sensor data among the vari-
ous platforms. Unlike the services provided by pub-sub 
components that are platform-specific, MIDAS applica-
tions also require a number of more generic but less fre-
quently used services. To minimize resource utilization, 
these services are distributed among the platforms and 
comprise the service-oriented portion of MIDAS. The 
extensible nature of Prism-MW has enabled us to directly 
support the three different architectural styles. In the pre-
vious section, we discussed how this extensibility was 
leveraged to provide a service discovery mechanism, 
which forms the centrepiece of our support for the ser-
vice-oriented style. Similarly, we implemented support for 
the pub-sub style by extending and adapting some of 
Prism-MW’s architectural abstractions. For example, a 
pub-sub connector (shown in Figure 4a) is implemented as 
an ExtensibleConnector that overrides the default routing 
policy of a basic Prism-MW connector. In MIDAS, the 
pub-sub sub-architecture can find and invoke services 
provided by the service-oriented sub-architecture via a 
handle that Prism-MW provides to SDEngine. In fact, 
from the pub-sub sub-architecture’s perspective, services 
provided by the service-oriented sub-architecture are the 
same as the facilities provided by the middleware.  



6. Discussion 
 Our experiences with MIDAS, which is both more 
heterogeneous and had more stringent requirements than 
other application scenarios to which Prism-MW had been 
applied, inspired us to reassess some of our earlier design 
decisions. This in turn has helped us to further understand 
the nature of architectural middleware. In this section we 
discuss some of the salient lessons we have learned. 

6.1 Design of an Architectural Middleware 
Our experience helped us realize that for Prism-

MW’s architectural facilities to be truly useful in a highly 
heterogeneous and resource-constrained environment, 
they need to be complemented with the appropriate low-
level system support. This resulted in the architecture de-
picted in Figure 2. In turn, the separation of system from 
architectural concerns not only increased the flexibility 
and extensibility of the middleware, but also gave us more 
control over resource utilization and system performance.   

It also became apparent that, to fully reap the benefits 
of developing a software system using the architectural 
facilities provided by Prism-MW, the middleware should 
be accompanied with several more advanced facilities. We 
already discussed some of those above: deployment, run-
time analysis, adaptation, resource discovery, and so on. 
The common design decision behind these services has 
been to realize them using the architectural constructs 
provided by Prism-MW. This approach has a number of 
advantages. First, it helps to keep the middleware’s core 
small and efficient. Second, it allows us to “recursively” 
reap the benefits of using an architectural middleware for 
these facilities as well. For example, we can modify a dis-
tributed system’s service discovery mechanism, by dy-
namically swapping the service discovery component (re-
call Section 5.7) with a different implementation of it. 
Finally, the architectural basis of our solution allows for 
efficient monitoring and adaptation of the system via 
Prism-MW’s “architectural awareness” capability.  

6.2 Flexibility and Extensibility 

 Another observation is that there are sources of het-
erogeneity other than those of the underlying hardware 
and system software. In Section 5.4 we discussed an in-
stance of PL-level heterogeneity. Similar sources of het-
erogeneity can also be found in other aspects of a middle-
ware. For example, there are different protocols for estab-
lishing trust and determining group membership among 
hosts in an ad-hoc environment. Therefore, while a virtual 
machine layer such as MVM can abstract away the het-
erogeneity of the hardware and system software, it is not 
sufficient by itself. Rather, the middleware should be 
flexible and extensible, such that heterogeneity at the level 
of application can also be resolved by adapting and ex-
tending each of the three middleware layers appropriately.  

6.3 Efficiency vs. Configuration Complexity 

 Recall from Section 5.1 that MVM’s resource facto-
ries were leveraged to manage the utilization of system 
resources. In fact, since all of the architectural constructs 
are treated as resources and are pre-allocated from the 
memory pool, we are able to estimate a system’s resource 
consumption from its software architectural models (even 
at design-time). This in turn allows us to analyze and in-
spect the impact of architectural changes on resource us-
age. This level of control is important in resource-
constrained systems. However, it also has a drawback, as 
it increases the complexity of system configuration. For 
example, consider some of the configuration parameters 
required in the C++ version of Prism-MW: size of event 
queue; number of pre-allocated system resources (sema-
phore, mutex, file, DLL); number of pre-allocated archi-
tectural constructs (Component, Connector, Port); size of 
memory buffer used by the network sockets; and size of 
pre-allocated memory pool used by application-level vari-
ables. On the other hand, the Java version of Prism-MW 
has only two configuration “knobs”: sizes of event queue 
and thread pool. Of course, as mentioned earlier, the Java 
version of Prism-MW also incurs a large overhead due to 
the dynamic allocation of resources. It is also unpredict-
able, which makes it harder to estimate and control an 
application’s resource usage at the level of architecture.  

This indicates a clear trade-off between resource utili-
zation control and configuration complexity of a middle-
ware solution. Increased control over resource utilization 
allows for the development of more efficient systems. On 
the other hand, increased complexity in a middleware 
hampers its ease of use and validation. This suggests that 
developing a “one size fits all” solution is impractical. 
Instead, it is the software engineer’s responsibility to de-
termine the appropriate middleware solution based on the 
characteristics of the application and/or the domain. 

6.4 System Validation  

 One of the greatest challenges we have faced in the 
MIDAS project to date has been the validation of an ap-
plication on its target platforms. It became clear early on 
that manual testing, debugging, and installation of the 
software is infeasible. Every time a bug was fixed, an up-
dated version of the software had to be installed manually 
on the various devices, resulting in an extremely time con-
suming and redundant task. Advanced facilities, such as 
deployment, runtime monitoring, and analysis, proved to 
be essential as they automated many steps in the process.  

Another reason that validation in this domain is diffi-
cult can be attributed to the fact that a virtual machine 
may not be able to abstract away completely the behav-
ioral variations in the computing substrates. For example, 
we initially developed and tested the software targeted for 
the MIDAS gateways on top of Windows. We relied on 



our middleware’s MVM layer to insulate us from OS-
level variations such as different APIs or libraries. After 
testing the application on Windows, we ported it to the 
gateway platforms running Linux (with the Linux version 
of MVM) for the final evaluation. However, the applica-
tion kept failing on the gateways. Eventually, we located 
the source of failure in the application logic, which was 
performing two consecutive lock operations on the same 
mutex by the same thread. We could not recreate the fail-
ure in Windows because Windows allows this, while 
Linux prevents it by throwing an exception. 

This example also demonstrates that, as we provide 
more facilities in a middleware solution, it becomes harder 
to validate applications developed on top it. In fact, as we 
already hinted in the previous section, another culprit in 
making it harder to validate applications was the complex-
ity of configuring the C++ version of Prism-MW. For 
example, since the resources are pre-allocated at system 
start-up, if at runtime Prism-MW runs out of available re-
sources, it will fail. This is clearly a trade-off when com-
pared to the Java implementation: Java will dynamically 
allocate all the resources needed by an application hosted 
on Prism-MW, but at a performance cost. 

6.5 Advanced Facilities 

 Many embedded systems are long-lived and perva-
sive. As a result, they are constantly evolving in response 
to the changing environment around them. Architectural 
middleware for this domain should thus not only provide 
support for the implementation of a system in terms of its 
architectural elements, but also facilities that minimize the 
potential for architectural erosion [15] after the initial de-
ployment. Our middleware’s deployment and analysis 
tools are good examples of facilities that can be used to 
keep an architectural model synchronized with the actual 
system. For such tools to be useful, they must be able to 
represent the dynamic nature of software architectures, 
analyze their properties “on the fly”, and configure the 
running system based on the results of the analysis. Our 
experience suggests that middleware-level architectural 
facilities, such as those provided in Prism-MW’s, can be 
effective enablers of such advanced capabilities. 

7. Conclusions 
In this paper we have described our experience drawn 
from an on-going collaborative project between Bosch 
and USC. The novelty of our work lies in the fact that we 
have leveraged explicit architectural constructs in the de-
sign, analysis, implementation, deployment, and evolution 
of a family of embedded applications.  While, our strategy 
has proven to be sound, several open issues remain unre-
solved and are a topic of our future work. 
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