
Reconceptualizing a Family of Heterogeneous Embedded Systems
 via Explicit Architectural Support

 Sam Malek
1
 Chiyoung Seo

1
 Sharmila Ravula

2
 Brad Petrus

3
 Nenad Medvidovic

1

1Computer Science Dept

Univ of Southern California
Los Angeles, CA 90089, U.S.A.

{malek,cseo,neno}@usc.edu

2Bosch Rsrch & Tech. Center

4009 Miranda Avenue
Palo Alto, CA 94304, U.S.A.

sharmila.ravula@rtc.bosch.com

3Bosch Rsrch & Tech. Center

Two NorthShore Center, Suite 320
Pittsburgh, PA 15212, U.S.A.
brad.petrus@rtc.bosch.com

Abstract

It has been widely advocated that software architecture
provides an effective set of abstractions for engineering
(families of) complex software systems. However, archi-
tectural concepts are seldom supported directly at the
level of system implementation. In embedded environ-
ments in particular, developers are often forced to rely on
low-level programming languages. While this is condu-
cive to fine-grain control over the system, it does not lend
itself to addressing larger issues such as ensuring archi-
tectural integrity or managing an application family. In
this paper we describe our experience with fundamentally
altering the manner in which a family of embedded appli-
cations is designed, analyzed, implemented, deployed, and
evolved using explicit architectural constructs. We dis-
cuss our strategy, the challenges we faced in the course of
our project, the lessons learned in the process, and sev-
eral open issues that remain unresolved.

1. Introduction
Wireless sensor network (WSN) systems are fast be-

coming pervasive in a variety of domains including medi-
cal, defense, industrial automation, navigation, and civil
engineering. These systems are associated with a number
of advantages, such as low cost of installation and mainte-
nance, replacement of physical sensor nodes, easy recon-
figurability, and so on. At the same time, they face signifi-
cant challenges, including requirements for scalability,
fault-tolerance, performance (e.g., response time), avail-
ability, and dependability. Additionally, the software ap-
plications deployed on WSNs are faced with extreme con-
straints in terms of available power, memory, processor or
controller speed, network throughput, and so on.

 These issues are reflective of WSN applications be-
ing investigated at Bosch for use in areas such as monitor-
ing, tracking, and control. The WSNs used in these appli-
cations may need to be integrated with legacy wired net-
works, other embedded devices, and mobile networks that
include PDAs and cell-phones for user notification. This
suggests that an effective underlying infrastructure used in

the development, deployment, and execution of these ap-
plications has to be generic enough for use in multiple
application domains, and flexible enough to offer easy
customization for specific application requirements and
heterogeneous operating environments. In other words,
the distributed systems deployed using WSNs require a
shared application substrate in the form of a middleware
platform [5].

At the same time, conventional software engineering
wisdom suggests that a most promising approach to ad-
dressing the challenges of developing complex software
systems, such as those discussed above, is to employ the
principles of software architecture [15]. Software archi-
tectures provide abstractions for representing the struc-
ture, behavior, and key properties of a software system.
They are described in terms of software components
(computational elements), connectors (interaction ele-
ments), and their configurations. A given software archi-
tectural style (e.g., publish-subscribe, peer-to-peer, pipe-
and-filter, client-server) further refines a vocabulary of
component and connector types and a set of constraints on
how instances of those types may be combined in a sys-
tem.

In practice, however, while software developers have
embraced architectural abstractions as powerful design-
level tools, they are typically forced to realize those ab-
stractions using a different set of implementation-level
tools. For example, engineers may prefer to think of sys-
tems in terms of components, connectors, and styles, but
usually have to implement those systems using low-level
constructs such as methods, arrays, pointers, and so on
[9]. This is particularly prevalent in embedded systems, in
which C/C++ has remained the lingua franca. Even the
state-of-the-art middleware solutions for embedded sys-
tems development (e.g., CORBA Orbix [14], TAO [1])
still lack the necessary implementation-level facilities for
key elements of software architecture. For example, ex-
plicit architecture-level connectors are usually distributed
(and thus “lost”) across different implementation-level
modules as combinations of method calls, shared memory,

Figure 1. MIDAS

network sockets, and other facilities supported in the mid-
dleware [11]. Another example is that of application-level
architectural styles (e.g., pub-sub or peer-to-peer), which
are often at best mimicked, and at worst ignored, by the
styles (e.g., client-server) assumed by the middleware.

For this reason, in the past the researchers from the
software architecture group at USC have argued that tradi-
tional middleware solutions are not the best candidates for
architecture-based software development [9]. Instead, we
have shown that architectural middleware—a middleware
platform that provides native implementation-level con-
structs for the key architectural abstractions—can be em-
ployed effectively in a number of domains, including em-
bedded systems [7][10].

Applying an adaptable architectural middleware plat-
form to WSN-based applications thus seemed like a natu-
ral choice, and we decided to undertake the challenge col-
laboratively between Bosch and USC. The resulting ex-
perience yielded some outcomes we had not anticipated,
as it forced us to reconceptualize how WSN-based appli-
cations are built most effectively. Similarly, we also had
to rethink several assumptions and design choices made
originally in the development of Prism-MW. In the proc-
ess, we have drawn several lessons we believe to be more
broadly applicable to software development in the WSN
arena, the role of software architecture in heterogeneous
embedded systems, and the nature of architectural mid-
dleware.

The remainder of the paper is organized as follows.
Section 2 outlines a set of architectural challenges and
requirements for developing distributed embedded sys-
tems. Section 3 then discusses the related work in terms of
those requirements. Section 4 provides an overview of the
approach we took in this project. Section 5 describes and
evaluates our experience in engineering a family of WSN
applications using our approach. Finally, a discussion of
the lessons we have learned and a brief conclusion round
out the paper.

2. Requirements
Early on in the process of formulating our collaborative
project, we engaged in a requirements elicitation activity.
The requirements were driven by one of Bosch’s families
of embedded applications, called MIDAS. MIDAS is
composed of a large number of sensors, gateways, hubs,
and PDAs that are connected wirelessly in the manner
shown in Figure 1. The sensors are used to monitor the
environment around them. They communicate their status
to one another and to the gateways via events. The gate-
way nodes are responsible for managing and coordinating
the sensors. Furthermore, the gateways translate, aggre-
gate, and fuse the data received from the sensors, and
propagate the appropriate data to the hubs. Hubs are used
to evaluate and visualize the sensor data for human users.
They also provide an interface through which a user can

send control commands
to various sensors and
gateways. Hubs may also
be configured to
propagate the appropriate
sensor data to PDAs,
which are then used by
the mobile users of the
system.

We identified a set of
eleven key requirements
driving the middleware,
as detailed below. We
should note that the first
five requirements are non-functional or quality attributes;
the next four deal with system development support; fi-
nally, the last two requirements impose a software archi-
tectural perspective on the middleware.

R1: Resource Consumption. Since we are con-
cerned with highly resource-constrained embedded sys-
tems, it is important that the middleware be efficient in its
use of the resources required to deploy it. In particular,
the code space and memory required by the middleware
should be minimized to realize cost-savings in terms of
FLASH or EPROM hardware. Also, the communications
data overhead should be minimized to support communi-
cation over low-bandwidth channels with minimal latency.
Furthermore, the middleware should also provide the ap-
propriate facilities for managing system resources.

R2: Performance. Application types that will be de-
ployed using the middleware include time-critical data
transfers from static and mobile sensors. The factors af-
fecting the middleware performance include performance
of the hardware on which the application/middleware is
executed, of the network, and of the application code. In
light of these parameters, the middleware should provide
latency guarantees and support priority-based scheduling.

R3: Scalability. The middleware is intended to be
deployed in systems that could scale from a control unit
monitoring 10-15 nodes to a multi-control unit, multi-hub
network with hundreds of sensors and tens of control
units. The middleware itself could be deployed on a sen-
sor with extremely limited computing resources or a pow-
erful desktop platform. All such variations should be ef-
fectively supported by the middleware.

R4: Heterogeneity. Since the middleware is intended
to be deployed on embedded systems in many domains, it
is important that it be able to support multiple OSs and
platforms. For example, the middleware may be deployed
on embedded systems running VxWorks and eCos. It is
also conceivable that an alternative OS may become avail-
able during a product’s lifetime, in which case it should be
possible to redeploy the middleware and the applications
developed on top of it to that OS with little effort.

R5: Fault-Tolerance. Many distributed, embedded
applications operate in safety-critical or regulated envi-
ronments, in which a given event must be delivered to its
recipients under all conditions (e.g., medical emergency).
The middleware platform must support fault-tolerance
using fail-over techniques: if a host providing a given
service fails, then another host in the system should
quickly be enabled as the provider of the same service.
The computational state of the newly enabled service must
be the same as the last known state of the failed service.

R6: System Modeling and Analysis. The ability to
explicitly model and analyze a distributed system is espe-
cially important in the case of large systems comprising
hundreds of hosts and providing hundreds of software
services. The middleware must support analysis of a dis-
tributed application both prior to deployment and during
runtime, in order to select the location of various system
services that will minimize the communication latencies
and battery consumption, maximize performance and ser-
vice availability, and so on.

R7: Deployment. We require the middleware plat-
form to provide facilities for component download and
deployment. This is especially important for WSN sys-
tems, such as MIDAS, that lack a convenient I/O interface
(e.g., monitor, disk drive, or keyboard) that could be used
for download and installation of software. Additionally, if
a new (version of a) component has been developed, it
would be advantageous to have the ability to deploy it
without having to remove the target host from the system.
Given the nature of our target computing environment,
component deployment is to be supported on multiple
platforms and in multiple programming languages (PLs).

R8: Service Discovery. In large distributed systems,
service providers and clients may join and leave the sys-
tem at arbitrary times. Therefore, the middleware must
support the ability of a client to discover and/or invoke a
service without prior knowledge of its physical location.

R9: Monitoring. It is important to be able to non-
intrusively monitor the activity of a distributed, long-lived
application for properties such as event rate, resource con-
sumption, device load, amount of battery power remain-
ing, and so on. For example, if the network traffic at a
given host is particularly high, some of the local services
may be migrated to a less congested host.

R10: Architecture-Based Development. The mid-
dleware should support architecture-based development
since WSN application designs are increasingly expressed
in architectural terms, including components, connectors,
ports, and events. This requirement eases the translation
from high-level design to implementation.

R11: Multiple Architecture Styles. Applications in
the WSN domain typically employ several architectural
styles. For instance, it is not unusual for different parts of
a single application to be developed using both pub-sub

and client-server styles. Direct support for heterogeneous
styles is thus required of the middleware platform.

3. Related Work
 We classify the related literature into (1) technologies
targeted at supporting implementation of software archi-
tectures and (2) middleware for embedded systems. We
provide an overview of the most notable solutions from
each category, and relate them to the above requirements.
We highlight the requirements each solution fails to sat-
isfy, as it suggests our motivation in searching for an al-
ternative.

ArchJava [2] is an extension to Java that provides PL-
level constructs for architectural concepts (component,
connector, port), and ensures that the implementation con-
forms to architectural constraints. ArchJava has several
limitations with respect to the above requirements (e.g.,
R1, R3, R4, R8), including its assumption of a single ad-
dress space. Aura [17] is an architectural style and sup-
porting middleware for ubiquitous computing. Aura’s
performance and scalability have not been assessed in
widely distributed settings (R1, R2, and R3), and it im-
poses a single style for all applications (R11). Finally,
RUNES [4] is a reconfigurable component-based middle-
ware, but it does not support a number of software archi-
tectural elements, such as connectors and styles (R10,
R11). Furthermore, since RUNES’s component frame-
work is tied to the implementation platform, it is not pos-
sible to redeploy components among heterogeneous plat-
forms (R4, R7).

None of the middleware platforms surveyed below
support requirements R10 and R11. Furthermore, it can be
argued that only the first two, CORBA-based solutions,
support R6 to some extent. However, these solutions ad-
dress several of the other requirements, and have certainly
influenced our work. Orbix/E [14] is a lightweight
CORBA ORB optimized for embedded applications, in-
cluding its relatively small memory footprint. The ACE
ORB (TAO) [1] is a CORBA-compliant middleware
framework that allows clients to invoke operations on
distributed objects without concern for object location,
PL, OS, communication protocol, or hardware. XMID-
DLE [8] is a data-sharing middleware for mobile comput-
ing, which ensures consistency of the shared data across
hosts. XMIDDLE is lightweight and fast, and caters to the
frequent disconnections of mobile devices. Lime [6] is a
Java-based middleware targeted at ad-hoc mobile envi-
ronments. It provides a coordination layer for designing
applications that exhibit logical and/or physical mobility.
Finally, MobiPADS [3] is a reflective middleware that
supports active deployment of augmented services for
mobile computing. MobiPADS supports dynamic adapta-
tion in order to provide flexible configuration of resources
and optimize the performance of mobile applications.

Figure 2. Layers of System Stack.

Figure 3. UML class diagram of Prism-MW's design.
Middleware core classes are highlighted.

4. Overview of the Approach
To meet the requirements discussed in Section 2, and

to address the shortcomings of the related approaches dis-
cussed in Section 3, we extensively customized and inte-
grated three technologies: a cross-platform virtual ma-
chine, an architectural middleware, and a distributed sys-
tem modeling and analysis environment. In this section,
we provide an overview of what each of these technolo-
gies contributed, and outline how they were integrated to
arrive at a comprehensive architecture and tool-suite. A
much more detailed discussion of the challenges we en-
countered in this process and the significant modifications
that were made to each of the technologies are provided in
Sections 5 and 6. As shown in Figure 2, at the bottom of
the resulting integrated architecture is a virtual machine
layer that allows the middleware to be deployed on het-
erogeneous OS and hardware platforms efficiently; the
abstraction facilities provided by the virtual machine are
leveraged by the middleware’s architectural constructs
that lay on top of it; finally, these constructs are used to
implement various domain-specific computing facilities.

4.1 Modular Virtual Machine
To cope with the heterogeneity and resource-

constrained nature of the hardware platforms frequently
encountered in embedded systems, we adapted a domain-
specific virtual machine called Modular Virtual Machine
(MVM). MVM was designed at Bosch as a configurable
family of utilities, including support for threading, IO
management, networking, and so forth (see the MVM
layer in Figure 2). MVM provides an abstraction layer on
top of various OSs (Linux, Windows, eCos) and hardware
platforms (Intel x86, KwikByte, and several proprietary
sensor platforms). It is composed of three parts: resource
abstractions, implementations, and factories. Resource
abstractions provide a common API that is leveraged by
the higher middleware layers as well as application devel-
opers to produce platform-independent code. An example
of a resource made available via resource abstraction is a
thread. A resource abstraction is realized via its imple-

mentation, which may use OS- or hardware-specific li-
braries. Resource abstractions are managed via their cor-
responding factories. For example, a thread factory may
manage the number of threads that could be created in the
system. For a given target host, the executable image of
MVM is created by building the MVM source code with
the appropriate implementation files included.

Given MVM’s support for the development of plat-
form-independent source code, it was hoped that MVM
would allow for a higher degree of software reuse, as well
as support for more advanced capabilities, such as code
mobility, runtime adaptation, and so on. However, appli-
cation modules developed on top of it frequently suffered
from unintended dependencies. Furthermore, since MVM
lacked support for service discovery, dynamic adaptation,
and component-level deployment, software systems de-
veloped on top of it were compiled into monolithic, rigid
executable images. These shortcomings were a direct by-
product of MVM’s lack of support for architecture-based
development, and ultimately hindered its potential to pro-
mote software reuse and adaptability among distributed
embedded applications.

4.2 Prism-MW
Prism-MW [7] is an architectural middleware devel-

oped at USC. It supports architectural abstractions that
enable direct mapping between an architecture and its im-
plementation. Figure 3 shows the class design view of
Prism-MW. The shaded classes constitute the middleware
core, a minimal subset of Prism-MW that enables imple-
mentation and execution of architectures in a single ad-
dress space. We describe the design of Prism-MW in more
detail here because we have leveraged it extensively in
this project, as will be seen in Sections 5 and 6.

Brick represents an architectural building block and
encapsulates common features of its subclasses (Architec-
ture, Component, Connector, and Port). Architecture re-
cords the configuration of its constituent components,

connectors, and ports, and provides facilities for their ad-
dition and removal. A distributed application is imple-
mented as a set of interacting Architecture objects.

Events are used to capture communication between
components. An event consists of a name and payload,
i.e., a set of typed parameters that carry data and meta-
level information (e.g., sender, time stamp). An event type
is either a request for a recipient to perform an operation
or a reply that a sender has performed an operation.

Ports are the loci of interaction in an architecture. A
link between two ports is made by welding them together.
Each port has a type, which is either request or reply. Re-
quest events are always forwarded from request to reply
ports; reply events are forwarded in the opposite direction.

Components perform computations in an architecture
and may maintain their own internal state. A component
can have any number of attached ports, used for exchang-
ing events. Components may interact either directly
(through ports) or via connectors.

Connectors are used to control the routing of events
among the attached components. Like components, a con-
nector can have any number of attached ports. Connectors
may support arbitrary event delivery semantics (e.g., uni-
cast, multicast, broadcast). In order to support the needs of
dynamically changing applications, each Prism-MW com-
ponent or connector is capable of adding or removing
ports at runtime. This property, coupled with event-based
interaction, has proven to be highly effective for address-
ing system re-configurability.

Finally, Prism-MW provides support for event dis-
patching, event queuing, architectural monitoring, and
reflection facilities that the developer can associate with
the system’s architecture.

Prism-MW’s design is intended to be highly extensi-
ble while keeping Prism-MW’s core unchanged. To that
end, the core constructs (e.g., Component, Port) are sub-
classed via specialized classes (e.g., ExtensibleCompo-
nent, ExtensiblePort), each of which has a reference to a
number of abstract classes (Figure 3). Each AbstractEx-
tension class can have multiple implementations, thus
enabling selection of the desired functionality inside each
instance of a given extensible class.

Prism-MW’s support for architecture-based develop-
ment and its highly flexible nature made it an appropriate
solution to many of the requirements discussed in Section
2. However, before Prism-MW could be used in this pro-
ject, we had to overcome a number of challenges. The
existing version of Prism-MW had been developed in
Java, and relied on JVM to abstract away the heterogene-
ity of the computing substrate. On the other hand, for leg-
acy and efficiency reasons most embedded applications
are developed in C and, more recently, C++. Therefore,
we decided to port Prism-MW to C++. To safeguard
Prism-MW from the heterogeneity of the computing sub-
strate (e.g., different C++ runtime libraries or threading

semantics on different platforms) we decided to reimple-
ment it on top of MVM. But there still were a number of
unanswered questions: What design implications will this
have on Prism-MW and MVM? How efficient will a solu-
tion developed on top of the resulting middleware be?
And so on. In Sections 5 and 6, we will revisit these issues
in much more detail.

4.3 DeSi
DeSi [13] is a visual environment that supports speci-

fication, analysis, and manipulation of a distributed soft-
ware system’s deployment architecture (i.e., allocation of
the system’s software modules on its hardware hosts).
DeSi provides an XML-based meta-modeling language
that can be used to specify arbitrary properties for soft-
ware components and connectors (e.g., maximum memory
usage, frequency and volume of exchanged data), as well
as hardware devices and their network links (e.g., CPU
speed, available memory, network throughput). DeSi
completely separates the underlying system model from
the various visualization facilities that it provides. This
simplifies the development of new customized views that
may focus on a particular aspect of the system (an exam-
ple view of DeSi is shown in Figure 4b). Users can lever-
age multiple views of the system’s model to explore and
analyze its various properties. Furthermore, since by de-
fault DeSi synchronizes all views with the underlying
model, it is a suitable environment for visualizing and
monitoring the dynamic aspects of a running system. In
addition to its visualization and modeling capabilities,
DeSi also provides an API for accessing the system
model, which we have leveraged to develop a number of
algorithms for analyzing a given system’s software archi-
tecture and improving its properties (e.g., availability,
latency) via redeployment [12].

DeSi’s modeling and visualization capabilities made
it an appropriate tool for representing the software and
hardware architectures of distributed embedded systems
such as WSN systems. Its plug-in architecture also facili-
tated the development of new algorithms for architectural
analyses. Our objective was to leverage DeSi’s analysis
capabilities both at design-time and at runtime, such that
we can possibly adapt a running system based on the re-
sults of the analysis. However, in order for DeSi’s model
to be populated with a system’s runtime data, and the re-
sults of its analysis to be effected on the running system,
we needed to integrate DeSi with the implementation sub-
strate (i.e., Prism-MW and MVM). This posed several
challenges, on which we will elaborate in the next section.

5. Experience
The direct motivation for the collaborative project be-

tween Bosch and USC was the construction of the MI-
DAS family of WSN-based applications. Our pursuit of
this immediate goal resulted in a significant adaptation

Figure 4. An abridged view of MIDAS's architecture that is monitored, analyzed, and adapted at runtime: a) por-
tions of MIDAS’s software architecture, including its three sub-architectures; b) DeSi and its Prism-MW Adapter

and integration of the three infrastructure tools discussed
in the previous section. For exposition purposes, we will
describe this experience in terms of an instance of MI-
DAS’s reference architecture, shown in Figure 4a. Fur-
thermore, we will organize our discussion around the re-
quirements introduced in Section 2. Note that we do not
explicitly address requirements R6, R9, and R10, since
DeSi and Prism-MW natively support them and no sig-
nificant changes to them were required. Furthermore, sev-
eral requirements (e.g., R5) are discussed in a different
order than in Section 2 because we use facilities built in
support of other requirements (e.g., R8) to address them.

5.1 Resource Consumption (R1)
In the Java version of Prism-MW, we relied on the

JVM to manage the (de)allocation of memory for Java
objects at runtime. While this approach incurred an over-
head in terms of both computational resources and time,
with Java we realistically did not have other alternatives
as we were limited to JVM’s somewhat unpredictable and
opaque memory management mechanism. A similar over-
head also exists in C++, caused by the (de)allocation of
memory on the heap by both Prism-MW and application
logic. We were not able to ignore this type of overhead in
MIDAS. To address this problem we enhanced the MVM
by developing a memory management facility based on a
memory pooling technique, which pre-allocates various
C++ objects (e.g., event, mutex, semaphore, etc.) from the
heap when the middleware starts up. This in turn allowed
us to efficiently access the pool when an object of a par-
ticular type was required, and release it back to the pool
when it was not needed any longer. We were thereby able
to reduce the overhead of memory allocation to a simple
pointer operation.

To insulate the architectural layer from the idiosyn-
crasies of the underlying memory management facility, we

created a number of factory facilities that manage the
(de)allocation of architectural constructs. For example, a
component generates an Event via an API exported by the
EventFactory facility (shown in Figure 2) in the MVM
layer, irrespective of whether the Event is allocated from
the heap or from a memory pool. The total memory foot-
print of the C++ portion of the MIDAS application shown
in Figure 4 was measured to be 3.1 MB, while Prism-
MW’s memory overhead was 189 KB, or 6%.

5.2 Performance (R2)
MIDAS has stringent real-time requirements, such as

transmitting a high-priority event from a sensor to a hub
and receiving an acknowledgement back in less than two
seconds. Prism-MW’s default event processing mecha-
nism [7], which is based on a FIFO implementation of
event queue and round robin dispatching of threads (i.e.,
FIFOScheduler and RoundRobinDispatcher shown in
Figure 3), was not sufficient for guarantying the delivery
of such high-priority events. For this reason, we devel-
oped an implementation of AbstractScheduler, called Pri-
orityBasedScheduler, which maintains multiple event
queues with different priorities. We also developed an
implementation of AbstractDispatcher, called Priority-
BasedDispatcher, which maintains multiple thread pools
with different priorities. A thread pool is associated with
an event queue of the same priority. Thus a high-priority
event is processed (by a high-priority thread) before a
lower-priority event. To avoid starvation of low-priority
events, PriorityBasedDispatcher can be configured to
periodically pre-empt the high-priority thread pool and
allow the low-priority pool to process an event.

5.3 Scalability (R3)
In our previous work, we have shown that Prism-MW

can scale up to hundreds of hardware devices and OS
processes, and to architectures comprising thousands of
software components and connectors [7]. To satisfy the
specific scalability requirements of MIDAS outlined in
Section 2, we relied on the modularity and extensibility
across different layers of the middleware shown in Figure
2. The configurable nature of the MVM allows us to
“strip” it of any functionality that is not required on a tar-
get platform. Similarly, recall from Section 4.2 that we are
able to reduce Prism-MW’s configuration down all the
way to its core, which represents the minimum functional-
ity required for deploying Prism-MW. MVM factory fa-
cilities were also leveraged to configure the resources
used by the application (e.g., maximum number of threads
to be used in the system). Therefore, the modularity and
extensibility of both MVM and Prism-MW allowed us to
customize each deployment of the middleware as well as
the application running on it based on the properties of the
target platform. We are currently in the process of assess-
ing the limits of our middleware’s scalability using varia-
tions of the configuration shown in Figure 1.

5.4 Heterogeneity (R4)
Several aspects of MIDAS embody the notion of mul-

tiplicity inherent in embedded environments. The devices
on which MIDAS has been deployed are of several differ-
ent types (ARM-based Compaq iPAQ and KwikByte,
Intel-based Dell laptops, and several proprietary sensor
platforms), and are running four OSs (Windows CE and
XP, Linux, and eCos). MIDAS was also developed in two
PLs: C++ for applications running on sensors, gateways,
and hubs, and Java for applications running on PDAs (re-
call Figure 1). Furthermore, some of the devices were
equipped with wireless network cards, while others only
had infrared and serial port capabilities.

The heterogeneity of the Java portion of MIDAS was
enabled by the JVM, which abstracts away the variations
in the computing substrate. However, this was not the case
with the C++ portion of MIDAS. As mentioned earlier
and shown in Figure 2, we opted to satisfy this require-
ment by layering Prism-MW’s architectural constructs on
top of MVM’s system facilities. To further understand the
role of MVM, as an example consider the support it pro-
vides for threads. In Java, we relied on native thread and
thread synchronization mechanisms. However, in C++
developers typically have to use the OS’s support for
threads, and to rely on OS-level semaphore or mutex li-
braries for thread synchronization. To remove this de-
pendency on the OS, we developed thread, mutex, and
semaphore abstractions and the corresponding implemen-
tations in the MVM layer. Other resource abstractions
were provided similarly.

MIDAS’s multi-lingual nature also introduced a type
of heterogeneity that was not abstracted away by the
MVM. This was due to the difference in the representation

of objects between Java and C++. For example, a Java
character is represented as two bytes, while in ANSI C++
it is represented as one byte. To solve this we leveraged
the extensible nature of Prism-MW’s ports. As shown in
Figure 3, we created an implementation of AbstractCon-
version, called JavaToC++Interop, that translates an
event message between the C++ and Java formats. Simi-
larly, to address the heterogeneity of remote communica-
tion, we developed two different implementations of Ab-
stractDistribution in Prism-MW: SocketDistribution (for
devices with wireless cards) and IPCDistribution (for de-
vices with infra-red or serial ports). Additionally, we had
to enhance the MVM to provide the required platform-
specific networking facilities: TCP socket, UDP socket,
connection thread, network buffers, and so on.

Our approach to satisfying the heterogeneity require-
ments of MIDAS proved to be flexible and extensible, as
supporting a new OS or hardware platform would require
only the addition of host-specific resource implementa-
tions in the MVM. The design of the middleware’s archi-
tectural support (recall Figure 3) remained intact as we
ported it from Java to C++. This design also allowed for a
clear separation between architectural and system-level
concerns. For example, it helped us to categorize a Port’s
JavaToC++Interop extension as an architectural facility
(architectural layer of Figure 2), and endian conversion on
which JavaToC++Interop may rely as a system-specific
facility (MVM layer of Figure 2). Furthermore, due to the
extensive separation of concerns built into Prism-MW,
modifying MVM’s facilities resulted in only localized
changes to Prism-MW. For example, changing the thread-
ing API in the MVM only results in changes to Abstract-
Dispatcher’s implementation class in the architecture
layer of Figure 2. Similarly, changing the interface of net-
work communication abstractions (e.g., socket) in the
MVM layer only results in subsequent changes to Ab-
stractDistribution’s implementation class.

5.5 Deployment and Adaptation (R7)
We have leveraged DeSi’s system modelling and

Prism-MW’s architectural reflection capabilities to satisfy
MIDAS’s deployment requirement, as depicted in Figure 4.
In order to migrate the desired set of architectural ele-
ments onto target hosts, a skeleton configuration is pre-
loaded on each host. The skeleton configuration consists
of Prism-MW’s Architecture object that contains an
Admin component. Admin component is an Extensible-
Component with the Admin implementation of Abstract-
Deployment installed on it (recall Figure 3 as well as the
top layer of Figure 2). As such, the Admin component is
“architecturally aware”: it has a pointer to its Architecture
and is able to effect runtime changes to it (instantiation,
addition, removal, and (dis)connection of components and
connectors). Additionally, Admin components on different

devices are peers capable of exchanging ExtensibleEvents
that contain application-level components and connectors.

As shown in Figure 4b, we integrated DeSi with
Prism-MW, by wrapping DeSi’s Monitor and Effector
components via a Prism-MW Adapter. This allows us to
model a system’s deployment architecture in DeSi and
associate each component in the model with its corre-
sponding implementation. The deployment may be as-
sessed for properties of interest via the analysis algorithms
provided by DeSi [12]. Once a deployment is selected,
DeSi’s Effector sends a sequence of commands (via
Prism-MW’s ExtensibleEvents) to a centralized Admin
component, called Deployer. Deployer in turn propagates
the commands to Admin components on each host, which
then perform the tasks corresponding to the commands
(e.g., download component, weld ports, start component).

Very often engineers will not know a priori the prop-
erties of the target hardware platform, and will make de-
ployment decisions that may turn out to be inappropriate
within the context of the actual running system. This is of
particular concern in mobile embedded systems such as
MIDAS, which are affected by unpredictable movement
of target hosts and fluctuations in the quality of wireless
network links. To address this issue, we have used Prism-
MW’s monitoring facilities to observe the system in ac-
tion, and DeSi to visualize the system and suggest alterna-
tive deployments. Figure 4 depicts an example MIDAS
application that is monitored and deployed on top of our
middleware, and visualized in DeSi. Once the monitoring
data on each device is sent by the local Admin to the De-
ployer, Deployer aggregates and forwards the data to
DeSi’s Monitor component, which in turn populates
DeSi’s model. At that point, one of the algorithms pro-
vided by DeSi is selected and executed for improving the
system’s deployment architecture. Finally, the result is
reported back to the Deployer, which coordinates the re-
deployment of the system with the Admin components.

5.6 Fault Tolerance (R5)
Currently we do not fully support the fail-over re-

quirement. However, we have provided a utility that will
be used as the foundation for completing this task. We
have developed a mechanism that replicates components
identified as critical either by the system engineers or by
DeSi (e.g., components that provide services essential to
the processing of high-priority events). DeSi’s analysis
capabilities are then used to find the optimal allocation of
each component’s replicas, such that the effects of the
failure of (1) the original component, (2) the host on
which it is deployed, or (3) a network link, are minimized.
Our solution currently does not guarantee that each client
of the original component will have uninterrupted access
at least to one of its replicas. Furthermore, the event rout-
ing and constant state updates to multiple replicas of mul-

tiple components in a system may be very costly in terms
of resource consumption (R1) and performance (R2).

5.7 Service Discovery (R8)
We have directly leveraged Prism-MW’s architectural

constructs to satisfy MIDAS’s service discovery require-
ment. In the context of MIDAS a service corresponds
roughly to a component interface. We developed an im-
plementation of AbstractServiceDiscovery shown in
Figure 3 that provides the support for recording and re-
trieval of services. An ExtensibleComponent with an im-
plementation of AbstractServiceDiscovery installed on it
is called SDEngine (shown in Figure 4a and the top layer
of Figure 2). SDEngine acts as a service discovery agent
on its local host. It is “architecturally aware”: it can access
its architecture to determine the services installed locally.
SDEngines then communicate this information across
hosts via events. Any remote service requests by applica-
tion-level components are routed via their local SDEngi-
nes, ensuring complete location transparency.

5.8 Multiple Architectural Styles (R11)
As depicted in Figure 4a, MIDAS’s reference architec-

ture encompasses three different architectural styles. We
briefly discussed the peer-to-peer portion of this architec-
ture in Section 5.5. The pub-sub portion of MIDAS corre-
sponds to the communication backbone that is responsible
for routing and processing of sensor data among the vari-
ous platforms. Unlike the services provided by pub-sub
components that are platform-specific, MIDAS applica-
tions also require a number of more generic but less fre-
quently used services. To minimize resource utilization,
these services are distributed among the platforms and
comprise the service-oriented portion of MIDAS. The
extensible nature of Prism-MW has enabled us to directly
support the three different architectural styles. In the pre-
vious section, we discussed how this extensibility was
leveraged to provide a service discovery mechanism,
which forms the centrepiece of our support for the ser-
vice-oriented style. Similarly, we implemented support for
the pub-sub style by extending and adapting some of
Prism-MW’s architectural abstractions. For example, a
pub-sub connector (shown in Figure 4a) is implemented as
an ExtensibleConnector that overrides the default routing
policy of a basic Prism-MW connector. In MIDAS, the
pub-sub sub-architecture can find and invoke services
provided by the service-oriented sub-architecture via a
handle that Prism-MW provides to SDEngine. In fact,
from the pub-sub sub-architecture’s perspective, services
provided by the service-oriented sub-architecture are the
same as the facilities provided by the middleware.

6. Discussion
 Our experiences with MIDAS, which is both more
heterogeneous and had more stringent requirements than
other application scenarios to which Prism-MW had been
applied, inspired us to reassess some of our earlier design
decisions. This in turn has helped us to further understand
the nature of architectural middleware. In this section we
discuss some of the salient lessons we have learned.

6.1 Design of an Architectural Middleware
Our experience helped us realize that for Prism-

MW’s architectural facilities to be truly useful in a highly
heterogeneous and resource-constrained environment,
they need to be complemented with the appropriate low-
level system support. This resulted in the architecture de-
picted in Figure 2. In turn, the separation of system from
architectural concerns not only increased the flexibility
and extensibility of the middleware, but also gave us more
control over resource utilization and system performance.

It also became apparent that, to fully reap the benefits
of developing a software system using the architectural
facilities provided by Prism-MW, the middleware should
be accompanied with several more advanced facilities. We
already discussed some of those above: deployment, run-
time analysis, adaptation, resource discovery, and so on.
The common design decision behind these services has
been to realize them using the architectural constructs
provided by Prism-MW. This approach has a number of
advantages. First, it helps to keep the middleware’s core
small and efficient. Second, it allows us to “recursively”
reap the benefits of using an architectural middleware for
these facilities as well. For example, we can modify a dis-
tributed system’s service discovery mechanism, by dy-
namically swapping the service discovery component (re-
call Section 5.7) with a different implementation of it.
Finally, the architectural basis of our solution allows for
efficient monitoring and adaptation of the system via
Prism-MW’s “architectural awareness” capability.

6.2 Flexibility and Extensibility

 Another observation is that there are sources of het-
erogeneity other than those of the underlying hardware
and system software. In Section 5.4 we discussed an in-
stance of PL-level heterogeneity. Similar sources of het-
erogeneity can also be found in other aspects of a middle-
ware. For example, there are different protocols for estab-
lishing trust and determining group membership among
hosts in an ad-hoc environment. Therefore, while a virtual
machine layer such as MVM can abstract away the het-
erogeneity of the hardware and system software, it is not
sufficient by itself. Rather, the middleware should be
flexible and extensible, such that heterogeneity at the level
of application can also be resolved by adapting and ex-
tending each of the three middleware layers appropriately.

6.3 Efficiency vs. Configuration Complexity

 Recall from Section 5.1 that MVM’s resource facto-
ries were leveraged to manage the utilization of system
resources. In fact, since all of the architectural constructs
are treated as resources and are pre-allocated from the
memory pool, we are able to estimate a system’s resource
consumption from its software architectural models (even
at design-time). This in turn allows us to analyze and in-
spect the impact of architectural changes on resource us-
age. This level of control is important in resource-
constrained systems. However, it also has a drawback, as
it increases the complexity of system configuration. For
example, consider some of the configuration parameters
required in the C++ version of Prism-MW: size of event
queue; number of pre-allocated system resources (sema-
phore, mutex, file, DLL); number of pre-allocated archi-
tectural constructs (Component, Connector, Port); size of
memory buffer used by the network sockets; and size of
pre-allocated memory pool used by application-level vari-
ables. On the other hand, the Java version of Prism-MW
has only two configuration “knobs”: sizes of event queue
and thread pool. Of course, as mentioned earlier, the Java
version of Prism-MW also incurs a large overhead due to
the dynamic allocation of resources. It is also unpredict-
able, which makes it harder to estimate and control an
application’s resource usage at the level of architecture.

This indicates a clear trade-off between resource utili-
zation control and configuration complexity of a middle-
ware solution. Increased control over resource utilization
allows for the development of more efficient systems. On
the other hand, increased complexity in a middleware
hampers its ease of use and validation. This suggests that
developing a “one size fits all” solution is impractical.
Instead, it is the software engineer’s responsibility to de-
termine the appropriate middleware solution based on the
characteristics of the application and/or the domain.

6.4 System Validation

 One of the greatest challenges we have faced in the
MIDAS project to date has been the validation of an ap-
plication on its target platforms. It became clear early on
that manual testing, debugging, and installation of the
software is infeasible. Every time a bug was fixed, an up-
dated version of the software had to be installed manually
on the various devices, resulting in an extremely time con-
suming and redundant task. Advanced facilities, such as
deployment, runtime monitoring, and analysis, proved to
be essential as they automated many steps in the process.

Another reason that validation in this domain is diffi-
cult can be attributed to the fact that a virtual machine
may not be able to abstract away completely the behav-
ioral variations in the computing substrates. For example,
we initially developed and tested the software targeted for
the MIDAS gateways on top of Windows. We relied on

our middleware’s MVM layer to insulate us from OS-
level variations such as different APIs or libraries. After
testing the application on Windows, we ported it to the
gateway platforms running Linux (with the Linux version
of MVM) for the final evaluation. However, the applica-
tion kept failing on the gateways. Eventually, we located
the source of failure in the application logic, which was
performing two consecutive lock operations on the same
mutex by the same thread. We could not recreate the fail-
ure in Windows because Windows allows this, while
Linux prevents it by throwing an exception.

This example also demonstrates that, as we provide
more facilities in a middleware solution, it becomes harder
to validate applications developed on top it. In fact, as we
already hinted in the previous section, another culprit in
making it harder to validate applications was the complex-
ity of configuring the C++ version of Prism-MW. For
example, since the resources are pre-allocated at system
start-up, if at runtime Prism-MW runs out of available re-
sources, it will fail. This is clearly a trade-off when com-
pared to the Java implementation: Java will dynamically
allocate all the resources needed by an application hosted
on Prism-MW, but at a performance cost.

6.5 Advanced Facilities

 Many embedded systems are long-lived and perva-
sive. As a result, they are constantly evolving in response
to the changing environment around them. Architectural
middleware for this domain should thus not only provide
support for the implementation of a system in terms of its
architectural elements, but also facilities that minimize the
potential for architectural erosion [15] after the initial de-
ployment. Our middleware’s deployment and analysis
tools are good examples of facilities that can be used to
keep an architectural model synchronized with the actual
system. For such tools to be useful, they must be able to
represent the dynamic nature of software architectures,
analyze their properties “on the fly”, and configure the
running system based on the results of the analysis. Our
experience suggests that middleware-level architectural
facilities, such as those provided in Prism-MW’s, can be
effective enablers of such advanced capabilities.

7. Conclusions
In this paper we have described our experience drawn
from an on-going collaborative project between Bosch
and USC. The novelty of our work lies in the fact that we
have leveraged explicit architectural constructs in the de-
sign, analysis, implementation, deployment, and evolution
of a family of embedded applications. While, our strategy
has proven to be sound, several open issues remain unre-
solved and are a topic of our future work.

8. Acknowledgments
This material is based upon work sponsored by

Bosch. The work was also sponsored by the National Sci-
ence Foundation under Grant number ITR-0312780. Any
opinions, findings, and conclusions expressed in this pa-
per are those of the authors and do not necessarily reflect
the views of the NSF. The authors wish to thank the
anonymous reviewers for their helpful comments. Finally,
the authors wish to express their gratitude to Christoph
Stoermer for his support and guidance on this project.

9. References
[1] TAO. http://www.cs.wustl.edu/~schmidt/ACE-

documentation.html
[2] J.Aldrich et al. ArchJava: Connecting Software Architec-

ture to Implementation. ICSE, Orlando, May 2002.
[3] A.Chan et al. MobiPADS: A Reflective Middleware for

Context-Aware Mobile Computing. IEEE Transactions on
Software Engineering, Vol. 29, No.12, Dec. 03.

[4] P. Costa et al. The RUNES Middleware: A Reconfigurable
Component-based Approach to Networked Embedded Sys-
tems. Int’l. Symp. on Personal Indoor and Mobile Radio
Communications, Berlin, Sep. 05.

[5] W. Emmerich. Engineering Distributed Objects. John Wiley
& Sons, Chichester, UK, 2000.

[6] LIME http://lime.sourceforge.net/
[7] S. Malek et al. Prism-MW: A Style-Aware Architectural

Middleware for Resource Constrained, Distributed Systems.
IEEE Trans. on Software Engineering, 31(3), March 2005.

[8] C. Mascolo et al. XMIDDLE: A Data-Sharing Middleware
for Mobile Computing. Personal and Wireless Communica-
tions, Kluwer.

[9] N. Medvidovic et al. A Family of Software Architecture
Implementation Frameworks. Working Conference on Soft-
ware Architecture, Montreal, Canada, Aug. 2002.

[10] N. Medvidovic et al. Software Architectural Support for
Handheld Computing. IEEE Computer, Sep. 2003.

[11] N. R. Mehta et al. Towards a Taxonomy of Software Con-
nectors. ICSE, Limerick, Ireland, June, 2000

[12] M. Mikic-Rakic, S. Malek et al. Improving Availability in
Large, Distributed Component-Based Systems via Rede-
ployment. Int’l. Conf. on Component Deployment, Greno-
ble, France, Nov. 2005.

[13] M. Mikic-Rakic, S. Malek et al. A Tailorable Environment
for Assessing the Quality of Deployment Architectures in
Highly Distributed Settings. Int’l. Conf. on Component De-
ployment, Edinburgh, May 2004.

[14] Orbix/E. www.iona.com/whitepapers/orbix-e-DS.pdf
[15] D.E. Perry, et al. Foundations for the Study of Software Ar-

chitectures. Software Engineering Notes, Oct. 1992.
[16] M. Shaw et al. Abstractions for Software Architecture and

Tools to Support Them. IEEE Trans. on Software Engineer-
ing, April 1995.

[17] J. P. Sousa et al. Aura: an Architectural Framework for
User Mobility in Ubiquitous Computing Environments.
Working IEEE/IFIP Conf. on Software Architecture, Mont-
real, 2002.

