
Providing Middleware-Level Facilities to Support
Architecture-Based Development of Software Systems

 in Pervasive Environments
Sam Malek

1 Chiyoung Seo
1
 Sharmila Ravula

2
 Brad Petrus

2
 Nenad Medvidovic

1

1
Computer Science Department

University of Southern California
Los Angeles, CA, 90089-0781 U.S.A

{malek, cseo, neno}@usc.edu

2
Bosch Research and Technology Center

4009 Miranda Avenue
Palo Alto, CA, 94304

{sharmila.ravula, brad.petrus}@us.bosch.com

ABSTRACT
Software architecture has been widely advocated as an effective
abstraction for modeling, implementing, and evolving complex
software systems such as those in distributed, decentralized,
heterogeneous, mobile, and pervasive environments. Typically,
however, architectural abstractions have not been supported
directly at the level of system implementation. Instead, even
developers with access to state-of-the-art middleware facilities
have had to rely on constructs that are at least in part different from
those used in the design of their systems. In this paper we argue
that it is possible to provide native and flexible software
architectural facilities in a middleware platform geared to
pervasive environments. We refer to such a platform as
"architectural middleware". In support of our argument, we outline
the design, implementation, and our experience with a specific
architectural middleware platform, which has been used in solving
pervasive computing problems in the classroom as well as two
industrial domains. We also demonstrate that middleware-level
architectural support can be effective, efficient, scalable, and
adaptable.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures,
and Languages

Keywords
Prism-MW, Software Architecture, Pervasive Computing

1. INTRODUCTION
Over the past few decades we have witnessed an unrelenting
pattern of growth in size and complexity of software systems,
which will likely continue well into the foreseeable future. This
pattern is further evident in an emerging class of embedded and
pervasive software systems that are growing in popularity due to
increase in the speed and capacity of hardware, decrease in its cost,

emergence of wireless ad hoc networks, proliferation of sensors
and handheld computing devices, etc. Studies have shown that a
promising approach to resolve the challenges of developing large-
scale software systems is to employ the principles of software
architectures [1][9]. Software Architectures provide abstractions
for representing the structure, behavior, and key properties of a
software system [6][7]. They are described in terms of software
components (computational elements), connectors (interaction
elements), and their configurations. Software architectural styles
(e.g., publish-subscribe, peer-to-peer, pipe-and-filter, client-server)
further refine the vocabulary of component and connector types
and propose a set of constraints on how instances of those types
may be combined in a system.

For software architectural models to be truly useful in a
development setting, they must be accompanied by support for
their implementation [4][8]. This is particularly important in the
context of pervasive systems: they are often complex, highly
distributed, decentralized, heterogeneous, mobile, and long-lived,
increasing the risk of architectural drift [6] unless there is a clear
relationship between the architecture and its implementation. This
suggests that state-of-the-art middleware solutions (e.g., CORBA
Orbix, TAO) that lack the implementation-level facilities for key
elements of software architecture (e.g., explicit support for
software connectors or architectural styles) are not necessarily the
best candidates for architecture-based software development.

This paper describes our position, which has emerged from
close to ten years of experience with embedded and pervasive
environments: we argue that an architectural middleware—a
middleware platform that provides native implementation-level
support for the key architectural abstractions—is better suited than
traditional middleware platforms to address the software
engineering challenges inherent in developing pervasive systems.
In support of this argument we present the design and
implementation of Prism-MW, an architectural middleware geared
to distributed, mobile, and pervasive environments. We have
directly leveraged Prism-MW’s architectural focus to provide a
number of facilities required in ad hoc and pervasive systems:
deployment of software across heterogeneous devices, discovery of
resources, runtime analysis, dynamic adaptation and redeployment
of software, fault tolerance, etc. While a number of other existing
middleware platforms also provide some of these facilities [3],
none provide them both at the architectural level and in a manner
that satisfies the challenges imposed by pervasive environments.
Thus far, our experience with Prism-MW in the classroom as well
as two industrial domains has been very positive. However, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MPAC '06, November 27-December 1, 2006 Melbourne, Australia
Copyright 2006 ACM 1-59593-421-9/06/11... $5.00

number of remaining issues remain unresolved, and we discuss
them in this paper.

The paper is organized as follows. Section 2 discusses the
architectural challenges and requirements that should be addressed
in developing and deploying applications in pervasive settings.
Section 3 presents an overview of Prism-MW’s design. Section 4
discusses the extent to which Prism-MW addresses these
requirements in the context of our experiences of applying the
middleware on two families of applications representative of
pervasive domains. The paper concludes with an overview of
several future directions.

2. Architectural Implications
Architecting software systems for pervasive and ad-hoc domains
poses significant challenges, as the software engineer typically
does not know the exact characteristics of the runtime
environments in which the software will be deployed. Below we
discuss some of the main challenges faced by engineers while
developing applications in these domains, and the corresponding
middleware requirements for addressing them:
• Efficiency. Implementing a software system in the pervasive

computing domain is difficult mainly due to its resource-
constrained nature (i.e., limited CPU, memory, battery,
network bandwidth, etc.). The existing approaches for
developing applications on the traditional desktop platforms are
often inefficient for these domains. Hence, a middleware
geared to this domain should not only provide the appropriate
facilities for managing system resources, but it should itself
also be very efficient.

• Analysis. The analysis of a software system with respect to its
properties (e.g., reliability, latency,) at design-time requires the
prediction of the system’s runtime behavior. However, since a
pervasive system’s runtime aspects cannot always be
accurately predicted by the engineer, design-time analysis may
be inaccurate. More precise analysis may only possible at
runtime. For supporting runtime analysis, monitoring facilities
should be provided by a middleware. Furthermore, since the
monitoring activity also uses system resources, it should be
both lightweight and adjustable, such that once sufficient
runtime data is gathered, the monitoring overhead can be
eliminated. In addition, a middleware should be flexible for
supporting various dynamic system adaptations (e.g., addition
and removal of software components, reconfiguration of
system’s software architecture) based on the result of runtime
analysis.

• Heterogeneity. One of the major characteristics of pervasive
and ad-hoc environments is the heterogeneity of the hardware
platforms and the underlying system software. Heterogeneity
of the target platforms impacts most phases of software
development: the properties of target hardware devices should
be represented during the modeling phase; different versions of
the same functionality would need to be developed for and
tested on different platforms during the construction phase; and
software’s platform requirements would need to be considered
during the deployment phase. Therefore, a middleware should
support an efficient mechanism that abstracts the heterogeneity
of target hardware platforms away from the software engineer.
This in turn aids software architectural adaptations, as it allows
the engineer to focus on higher-level implications of adapting
the system. For example, the engineer would only need to
determine whether a software component should be migrated
from one device to another, and not the low-level system-
specific commands for effecting the actual migration.

• Deployment. The deployment of a software system onto
target platforms is a challenging task. Ideally, a central
deployment server would need to communicate with a large
number of heterogeneous hosts, coordinate the deployment
process with them, and ensure that a software system is
deployed and configured correctly. This picture clearly
becomes a lot more complex in a decentralized setting, where
multiple hosts may play the role of the deployment server.
Thus, a middleware running on each host should have a facility
that can connect to a deployment server, receive its
corresponding components from the server, and install and
configure the components according to the overall system’s
architecture. In turn, the servers themselves would (coordinate
to) ensure the architectural integrity [6] of the system.

• Resource Discovery. Application software running on one
host may not be able to complete its task if some of the
resources it requires reside on another host that is unreachable.
The most common example of a resource in software
architecture-based development is a service. A software
component usually provides a number of services, which are
typically made available to other components via the
component’s public interfaces. Hence, a middleware should
support a service discovery mechanism that enables a
component to register its services, as well as to find, bind, and
invoke the services provided by other components.

• Suitable Architectural Styles. No previous studies have
suggested the appropriate architectural style for applications in
pervasive and ad-hoc environments. It is in fact unlikely that a
single architectural style would be suitable for every pervasive
system. Choosing an appropriate style depends on many
factors, such as the interaction patterns among the application’s
components, or the target environment. In fact, often the
engineer will either create a new style (e.g., a hybrid style) or
design each part of the system’s architecture according to a
different style. Thus, a middleware should provide explicit
support for multiple architectural styles even within a single
application.

• Fault Tolerance. Many factors may impact a pervasive
system’s ability to function correctly. For example, since the
computing platforms (e.g., PDA, cellular phones, wearable
devices, etc.) that are widely used in pervasive and ad-hoc
environments have finite battery lives, a host may “go down”
due to battery depletion. Consequently, all the services
provided by the components on that host become unavailable to
other hosts. To address this issue, a lightweight mechanism for
migrating all the services (i.e., components) provided by the
“dead” host to its neighbors transparently and in a manner that
preserves architectural properties should be supported at the
middleware level.

3. Prism-MW
We have attempted to address the above requirements in an
architectural middleware platform called Prism-MW. Our
experience has shown that an architectural middleware for
pervasive computing is composed of three distinct layers which are
deployed on top of an OS (shown in Figure 1): at the bottom is a
virtual machine layer that allows the middleware to be deployed on
heterogeneous platforms efficiently; the abstraction facilities
provided by the virtual machine are leveraged by the middleware’s
architectural constructs that lay on top of it; finally, these
architectural constructs are leveraged to implement various
pervasive computing facilities. In this section, we describe Prism-
MW’s architectural support layer which was our primary focus

Figure 1. Layers of System Stack.

Figure 2. UML class diagram of Prism-MW's design.
Middleware core classes are highlighted.

initially, while in Section 4 we discuss the other two layers of the
middleware as they gained primacy in the context of our
experience.

Prism-MW supports architectural abstractions by providing
classes for representing each architectural element, with methods
for creating, manipulating, and destroying the element. These
abstractions enable direct mapping between an architecture and its
implementation. Figure 2 shows the class design view of Prism-
MW. The shaded classes constitute the middleware core, which
represents a minimal subset of Prism-MW that enables
implementation and execution of architectures in a single address
space. Only the dark gray classes of Prism-MW’s core are directly
relevant to the application developer, requiring a minimal effort to
master the middleware’s basics.

3.1 Architectural Support
Brick is an abstract class that represents an architectural building
block. It encapsulates common features of its subclasses
(Architecture, Component, Connector, and Port). Architecture
records the configuration of its constituent components, connec-
tors, and ports, and provides facilities for their addition, removal,
and reconnection. A distributed application is implemented as a set
of interacting Architecture objects.

Events are used to capture communication in an architecture.
An event consists of a name and payload. An event’s payload
includes a set of typed parameters for carrying data and meta-level
information (e.g., sender, type, and so on). An event type is either a
request for a recipient component to perform an operation or a
reply that a sender component has performed an operation.

Ports are the loci of interaction in an architecture. A link
between two ports is made by welding them together. A port can be
welded to at most one other port. Each Port has a type, which is
either request or reply. An event placed on one port is forwarded to
the port linked to it in the following manner: request events are
forwarded from request ports to reply ports, while reply events are
forwarded in the opposite direction.

Components perform computations in an architecture and may
maintain their own internal state. A component is dynamically
associated with its application-specific functionality via a reference
to the AbstractImplementation class. This allows us to perform
dynamic changes to a component’s application-specific behavior
without having to replace the entire component. Each component
can have an arbitrary number of attached ports. Components
interact with each other by exchanging events via their ports. When
a component generates an event, it places copies of that event on
each of its ports whose type corresponds to the generated event

type. Components may interact either directly (through ports) or
via connectors.

Connectors are used to control the routing of events among
the attached components. Like components, each connector can
have an arbitrary number of attached ports. Components attach to
connectors by creating a link between a component port and a
single connector port. Connectors may support arbitrary event
delivery semantics (e.g., unicast, multicast, broadcast). In order to
support the needs of dynamically changing applications, each
Prism-MW component or connector is capable of adding or
removing ports at runtime. This property of components and
connectors, coupled with event-based interaction, has proven to be
highly effective for addressing system re-configurability.

Finally, Prism-MW provides support for event dispatching,
event queuing, architectural monitoring, and reflection facilities
that the developer can associate with the system’s architecture.

3.2 Extensibility Mechanism
The design of Prism-MW’s core provides extensive separation of
concerns via its explicit architectural constructs and its use of
abstract classes and interfaces. The design is highly extensible. The
extensible nature of Prism-MW has enabled us to directly support
multiple architectural styles, even within a single application. We
do not address this middleware requirement any further due to
space constraints, but point the interested reader to [2].

Our support for extensibility is built around our intent to keep
Prism-MW’s core unchanged. To that end, the core constructs
(Component, Connector, Port, Event, and Architecture) are sub-
classed via specialized classes (ExtensibleComponent, Extensible-
Connector, ExtensiblePort, ExtensibleEvent, and
ExtensibleArchitecture), each of which has a reference to a number
of abstract classes (Figure 2). Each AbstractExtension class can
have multiple implementations, thus enabling selection of the
desired functionality inside each instance of a given extensible
class. If a reference to an AbstractExtension class is instantiated in
a given extensible class instance, that instance will exhibit the
behavior realized inside the implementation of that abstract class.
Multiple references to abstract classes may be instantiated in a
single extensible class instance. In that case, the instance will
exhibit the combined behavior of the installed abstract class
implementations.

4. Experience
We illustrate Prism-MW’s support for the pervasive computing
domain via application families developed in collaboration with

Figure 4. Efficient Event Dispatching in
Prism-MW: steps 1-7 are performed by a
single shepherd thread, assuming that the

connector is sending event E to both
recipient components.

Figure 3. TDS Application.

two external software development organizations. The first
application family, implemented using the Java version of Prism-
MW, is called Troops Deployment Simulation (TDS) and was
developed in collaboration with the U.S. Army. It is representative
of a large number of mobile pervasive systems that are intended to
deal with situations such as natural disasters, search-and-rescue
efforts, and military crises. The second application family,
implemented using the C++ version of Prism-MW, has been
developed as part of an ongoing collaborative project between the
University of Southern California and the Bosch Research and
Technology Center.

4.1 Java-based
Pervasive
Systems
Figure 3 shows one
possible instance of
the TDS application
family with single
Headquarters, four
Commanders, and 36
Soldiers. A computer
at Headquarters
gathers information
from the field and displays the current battlefield status: the
locations of friendly and enemy troops, vehicles, and obstacles
such as mine fields. The headquarters computer is networked via
secure links to a set of PDAs used by Commanders in the field.
The commander PDAs are connected directly to each other and to a
large number of Soldier PDAs. Each commander is capable of
controlling his own part of the battlefield: deploying troops,
analyzing the deployment strategy, transferring troops between
commanders, and so on. In case the Headquarters device fails, a
designated Commander assumes the role of Headquarters. Soldiers
can only view the segment of the battlefield in which they are
located, receive direct orders from the commanders, and report
their status. TDS helps to illustrate a number of concepts related to
pervasive and ad hoc domains, which we will discuss below.
4.1.1 Heterogeneity
Several aspects of TDS embody the notion of multiplicity inherent
in embedded pervasive environments. The devices on which TDS
has been deployed are of several different types (Palm Pilot Vx and
VIIx, Compaq iPAQ, HP Jornada, NEC MobilePro, Sun Ultra, PC),
running four OSs (PalmOS, WindowsCE, Windows XP, and
Solaris). As mentioned earlier and shown in Figure 1 the
architectural
support of the
middleware is
insulated from
the underlying
heterogeneity of
the operating
system and
hardware
platforms via the
virtual machine
layer. In the case
of TDS, since it
was developed
on the Java
version of Prism-
MW, the Java
Virtual Machine

provided the necessary abstractions. As will be discussed below,
supporting heterogeneity in lower level programming languages
(e.g., C, C++) is more challenging.

Another source of heterogeneity that we had to overcome was
the variation in communication protocols. Some of the devices
were equipped with wireless network cards, allowing them to
interact via TCP/IP, while the others devices were only equipped
with the infrared capability. In order to address different aspects of
interaction, we leveraged the extensible nature of Prism-MW’s
ports. The ExtensiblePort class has references to a number of
abstract classes that support various interaction services. In turn,
each abstract class can have multiple implementations. Figure 2
shows some of the many port extensions that we have implemented
thus far. In the case of TDS, we leveraged the AbstractDistribution
class that has been implemented by two concrete classes, one
supporting socket-based and the other infrared port-based inter-
process communication (IPC), to overcome the communication
heterogeneity on the target platforms.
4.1.2 Efficiency and Scalability
A distributed system implemented in Prism-MW consists of a
number of Architecture objects, each of which serves as a container
for a single subsystem and delimits an address space. Components
within and across the different Architecture objects interact by
exchanging Events. Our original implementation of Prism-MW
associated a separate event queue and thread with each
architectural element that could send/receive events. While this
design was the most intuitive and was sufficient for applications
deployed on capacious desktop computers, it proved to be too
expensive to be used in TDS. Therefore, we adapted Prism-MW to
use a fixed-sized, circular array for storing all events in a single
address space (depicted in Figure 4). This allowed us to optimize
event processing by introducing a pool of shepherd threads
(implemented in Prism-MW’s RoundRobinDispatcher class) to
handle events sent by any component in a given address space. The
size of the thread pool and event queue are parameterized and,
hence, adjustable.

By default, Prism-MW processes events asynchronously. A
shepherd thread removes the event from the head of the queue. The
shepherd thread is run through the connector attached to the
sending component; the connector dispatches the event to relevant
components using the same thread. If a recipient component
generates further events, they are added to the tail of the event
queue; different threads are used for dispatching those events to
their intended recipients. The new approach to routing events had a
number of advantages: (1) By leveraging the explicit architectural
topology, an event can be routed to multiple destinations. This
minimizes resource consumption, since events need not be tagged
with their recipients, nor do the recipients need to explicitly
subscribe to events. (2) We further optimize resource consumption
by using a single event queue for storing both locally and remotely
generated events. (3) Since Prism-MW processes local and remote
events uniformly, and all routing is accomplished via the multiple
and explicit ports and/or connectors, Prism-MW allows for
seamless redeployment and redistribution of existing applications
onto different hardware topologies.

TDS was deployed onto 105 mobile devices and mobile
device emulators running on PCs, where a total of 245 software
components interact via 217 software connectors. The dynamic
size of the application is approximately 1 MB for the Headquarters
subsystem, 600 KB for each Commander, and 90 KB for each
Soldier subsystem, resulting in the total application size of 12.5
MB. In this scenario, the total overhead induced by the middleware
on all of the devices was measured to be around 511.5 KB, or 4%.

Figure 5. MIDAS System.

4.1.3 Deployment
As mentioned earlier, deploying applications in the pervasive
environments is a challenging task. Prism-MW components
communicate by exchanging application-level events. Prism-MW
also allows components to exchange ExtensibleEvents, which may
contain architectural elements (components and connectors) as
opposed to data. Additionally, ExtensibleEvents implement the
Serializable interface (as shown in Figure 2), thus allowing their
dispatching across address spaces.

In order to migrate the desired set of architectural elements
onto a set of target hosts, we assume that a skeleton configuration
is preloaded on each host. The skeleton configuration consists of
Prism-MW’s Architecture object that contains an Admin Compo-
nent with a DistributionEnabledPort (i.e., an ExtensiblePort with
the appropriate implementation of AbstractDistribution installed on
it) attached to it. An Admin Component is an ExtensibleComponent
with the Admin implementation of AbstractDeployment installed on
it (shown in Figure 2). Since the Admin Component on each device
contains a pointer to its Architecture object, it is able to effect
runtime changes to its local subsystem’s architecture: instantiation,
addition, removal, connection, and disconnection of components
and connectors. Admin Components are able to send and receive
from any device to which they are connected the ExtensibleEvents
that contain application components and connectors.

4.2 C++ Based Pervasive Systems
In this section, we describe our experience with developing a
distributed software system family, called MIDAS, on top of the
C++ version of Prism-MW. MIDAS is composed of a large number
of sensors, gateways, hubs, and PDAs that are connected wirelessly
in the manner shown in Figure 5. The sensors, which are used to
monitor the environment around them, communicate their status to
one another and to the gateways. The gateway computers are
responsible for managing the sensors. The gateways translate,
aggregate, and fuse the data received from the sensors, and
propagate the appropriate data (e.g., event) to the hubs. Hubs are
used to evaluate and visualize the sensor data for the users, as well
as provide an interface through which the user can send control
commands to the various sensors and gateways in the system. Hubs
may also be configured to propagate the appropriate sensor data to
PDAs, which are then used by the mobile users of the system. This
application scenario helps to illustrate a number of concepts,
several of which are different from those discussed earlier.
4.2.1 Heterogeneity
As mentioned before, the abstractions provided by JVM insulated
the Java version of Prism-MW from the underlying heterogeneity
of the target platforms. However, since MIDAS was a C++
application, we had to resolve the heterogeneity issue at a much
lower-lever than before. In turn, this required us to rethink our
view of what an architectural middleware entails and of its overall
architecture. This process actually resulted in the view of the
architecture of Prism-MW depicted in Figure 1. Initially we set out
to develop, compile, and maintain several version of Prism-MW,
one per each hardware platform and operating system. However,
this approach soon proved to be infeasible: as the number of
different versions of Prism-MW kept growing we were faced with
developing and exhaustively testing the same feature(s) repeatedly.
Instead, we opted to develop a domain specific virtual machine
called Modular Virtual Machine (MVM). MVM provided an
abstraction layer on top of various operating systems (Linux,
Windows, eCos) and hardware platforms (Intel x86, KwikByte,
and several other proprietary sensor platforms). Figure 1 shows
some of the resource abstractions and factories that we have
developed, which are in turn leveraged by the middleware’s

architectural constructs. This
approach proved to be more
flexible and convenient, as
supporting a new OS or
hardware platform would
require only the addition of
simple abstraction facilities to
the virtual machine layer. This
design also allowed for a clear
separation of architectural
constructs from the system-
level constructs (as shown in
Figure 1). Also note that the
design of the middleware’s architectural support (shown in Figure
2) remained intact as we ported it from Java to C++. This was due
to the extensive separation of concerns built into Prism-MW that
allowed for a natural layering of the architectural constructs on top
of the lower-level system constructs.
4.2.2 Resource Discovery and Fault Tolerance
MIDAS platforms could become unavailable for many reasons:
network disconnection, hardware and software failures, and so on.
Therefore, there was a need for a facility that supports recovery
from such scenarios by (re)discovering the orphan sensors (i.e.,
sensors that have lost their connection to a gateway) or
(re)discovering services that resided on a gateway. As shown in the
top layer of Figure 1 and discussed below, we leveraged Prism-
MW’s architectural constructs to implement resource discovery. In
the context of MIDAS a service corresponds roughly to a
component interface. We developed an implementation of
AbstractServiceDiscovery that provides the support for recording
and retrieval of services (as shown in Figure 2). An
ExtensibleComponent with an implementation of
AbstractServiceDiscovery installed on it acts as a service discovery
agent on the host on which it resides. The service discovery
component can leverage ExtensibleComponent’s pointer to the
architecture to determine the services installed on the local host.
Service discovery components leverage DistributionEnabledPorts
to communicate with other service discovery components (e.g.,
send service query or update events). Supporting service discovery
via Prism-MW’s architectural constructs thus provides location
transparency at the level of architecture.
4.2.3 Efficiency and Scalability
In the Java version of Prism-MW, we relied on the JVM to manage
the creation and removal of Java objects. While this approach
incurred an overhead of creating objects dynamically in the heap at
runtime, we were able to ignore this overhead in applications
without strict real-time requirements such as TDS. However,
MIDAS had stringent latency requirements of transmitting an
alarm from a sensor to a hub and receiving an acknowledgement
back in less than two seconds. Therefore, in this application, we
were not able to ignore such inefficiencies. To solve this problem
we enhanced MVM by developing a memory management facility
based on a memory pooling technique, which pre-allocates various
C++ objects (e.g., event, mutex, semaphore, etc.) from the heap
when the middleware starts up. This allowed us to efficiently
access the pool when an object with a particular type was required,
and release it back to the pool when it was not needed any longer.
We were thereby able to reduce the overhead of memory allocation
to a simple pointer operation.

To insulate the architectural layer from the idiosyncrasies of
the underlying memory management facility, we created a number
of factory facilities that manage the (de)allocation of the
architectural constructs. For example, a Component generates an

a) b)

Figure 6. Runtime analysis and adaptation approach: a) DeSi’s view of system, b) a system
running on top of Prism-MW that is monitored and managed by meta-level components.

Event via an API exported by the event
factory facility (shown in Figure 1) in the
virtual machine layer, irrespective of
whether the Event is allocated from the
heap or from a memory pool. The total
memory footprint of the application
running on a gateway was 3.1 MB, while
Prism-MW’s overhead was measured to
be 189 KB, or 6%.

4.2.4 Runtime Analysis and
Dynamic Adaptation

As mentioned earlier, engineers may
not know a priori the properties of the
target hardware platforms, and early on
make decisions that may not be
appropriate for the actual running system.
We came across this in the case of
MIDAS. It became evident that different
deployments of MIDAS had a significant
impact on the resulting quality of service
provided by the system. However, the engineers did not have
sufficient knowledge of runtime properties that could be used to
determine a good deployment of the system. To solve this problem
we leveraged Prism-MW as well as our interactive deployment
analysis environment called DeSi [5] (shown in Figure 6a). DeSi
provides the ability to model the system’s deployment, visualize
and assess its architecture, and improve it via one of the
deployment improving algorithms.

Figure 6b depicts an example distributed system that is
monitored and deployed on top of Prism-MW. We have already
discussed Admin’s role in the deployment and adaptation of TDS.
To support deployment in the C++ version of Prism-MW, we took
the same approach as that described in Section 4.1.3. To monitor
the various system properties, we leveraged Prism-MW’s
AbstractMonitor class, which is associated through the Scaffold
with every Brick (shown in Figure 2). This allows for autonomous,
active monitoring of a Brick’s runtime behavior. Once the
monitoring data on each device becomes stable, the corresponding
Admin forwards the data to a centralized Admin, which is called
Deployer, for aggregating the monitored data. As shown in Figure
6b, we integrated DeSi with Prism-MW, by wrapping DeSi’s
Monitor and Effector components via a Prism-MW Adapter. Once
the Deployer component determines that the monitoring data is
stable, it sends the data to DeSi, which populates its model.
Afterwards, one of the algorithms provided by DeSi is executed for
improving the system’s deployment. Finally, the result is reported
back to the Deployer, which coordinates the redeployment of the
system with the help of the Admin components.

5. Conclusion
In this paper, we presented the design of Prism-MW, an
architectural middleware geared to the pervasive computing
domain. We discussed our experiences in the development of two
families of applications on top of Prism-MW, and provided an
overview of the middleware’s evolution as we adapted it to address
the challenges we came across. In the process our experiences
strongly suggest that it is possible to design a middleware that is
applicable to the pervasive computing domain, while preserving its
inherent support for architecture-based software development. We
realized that for these architectural facilities to be truly useful in a
highly heterogeneous and resource constrained environment, they
would need to be complemented with the appropriate low-level
system support. Furthermore, it became clear that to fully reap the

benefits of developing a software system using the architectural
facilities provided by Prism-MW, the middleware should be
accompanied with advanced facilities that are targeted at the
specific challenges posed by the pervasive computing domain.

While our experience has been positive, there are a number of
open issues. We are developing several new advanced facilities,
including “live update” of software components, fault-tolerance
support by maintaining backups of data, and dynamic adaptation to
decrease a system’s energy consumption. We expect this to further
enrich our understanding of architectural middleware as well as our
appreciation of its appropriate role in pervasive environments.

6. Acknowledgement
This material is based upon work sponsored in part by the

National Science Foundation under Grant number ITR-0312780
and by Bosch.

7. REFERENCES
[1] E. A. Lee. Embedded Software. Advances in Computers

(Marvin V. Zelkowitz, ed.), Academic Press, London, 2002.
[2] S. Malek, et al. Prism-MW: A Style-Aware Architectural

Middleware for Resource Constrained, Distributed Systems.
IEEE Trans. on Software Engineering. March 2005.

[3] C. Mascolo, G. P. Picco, et al. Survey of Middleware for
Networked Embedded Systems. Project Report:
http://www.ist-runes.org/docs/deliverables/D5_01.pdf

[4] N. Medvidovic, et al. A Family of Software Architecture
Implementation Frameworks. Working Conference on
Software Architecture, Montreal, Canada, Aug. 2002.

[5] M. Mikic-Rakic, S. Malek, et al. A Tailorable Environment
for Assessing the Quality of Deployment Architectures in
Highly Distributed Settings. Int’l. Conf. on Component
Deployment, Edinburgh, UK, May 2004.

[6] D. E. Perry, et al. Foundations for the Study of Software
Architecture. Software Engineering Notes, Oct. 1992.

[7] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[8] M. Shaw, et al. Abstractions for Software Architecture and
Tools to Support Them. IEEE Trans. on Software
Engineering, April 1995.

[9] J. Sousa, et al. Aura: An Architectural Framework for User
Mobility in Ubiquitous Computing Environments. Working
Conf. on Software Architecture, Montreal, Aug. 2002.

