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ABSTRACT 
Software architecture has been widely advocated as an effective 
abstraction for modeling, implementing, and evolving complex 
software systems such as those in distributed, decentralized, 
heterogeneous, mobile, and pervasive environments.  Typically, 
however, architectural abstractions have not been supported 
directly at the level of system implementation.  Instead, even 
developers with access to state-of-the-art middleware facilities 
have had to rely on constructs that are at least in part different from 
those used in the design of their systems.  In this paper we argue 
that it is possible to provide native and flexible software 
architectural facilities in a middleware platform geared to 
pervasive environments.  We refer to such a platform as 
"architectural middleware". In support of our argument, we outline 
the design, implementation, and our experience with a specific 
architectural middleware platform, which has been used in solving 
pervasive computing problems in the classroom as well as two 
industrial domains. We also demonstrate that middleware-level 
architectural support can be effective, efficient, scalable, and 
adaptable.  

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Domain-specific architectures, 
and Languages 

Keywords 
Prism-MW, Software Architecture, Pervasive Computing  

1.  INTRODUCTION 
Over the past few decades we have witnessed an unrelenting 
pattern of growth in size and complexity of software systems, 
which will likely continue well into the foreseeable future. This 
pattern is further evident in an emerging class of embedded and 
pervasive software systems that are growing in popularity due to 
increase in the speed and capacity of hardware, decrease in its cost, 

emergence of wireless ad hoc networks, proliferation of sensors 
and handheld computing devices, etc. Studies have shown that a 
promising approach to resolve the challenges of developing large-
scale software systems is to employ the principles of software 
architectures [1][9].  Software Architectures provide abstractions 
for representing the structure, behavior, and key properties of a 
software system [6][7]. They are described in terms of software 
components (computational elements), connectors (interaction 
elements), and their configurations. Software architectural styles 
(e.g., publish-subscribe, peer-to-peer, pipe-and-filter, client-server) 
further refine the vocabulary of component and connector types 
and propose a set of constraints on how instances of those types 
may be combined in a system.  

For software architectural models to be truly useful in a 
development setting, they must be accompanied by support for 
their implementation [4][8]. This is particularly important in the 
context of pervasive systems: they are often complex, highly 
distributed, decentralized, heterogeneous, mobile, and long-lived, 
increasing the risk of architectural drift [6] unless there is a clear 
relationship between the architecture and its implementation. This 
suggests that state-of-the-art middleware solutions (e.g., CORBA 
Orbix, TAO) that lack the implementation-level facilities for key 
elements of software architecture (e.g., explicit support for 
software connectors or architectural styles) are not necessarily the 
best candidates for architecture-based software development.  

This paper describes our position, which has emerged from 
close to ten years of experience with embedded and pervasive 
environments: we argue that an architectural middleware—a 
middleware platform that provides native implementation-level 
support for the key architectural abstractions—is better suited than 
traditional middleware platforms to address the software 
engineering challenges inherent in developing  pervasive systems. 
In support of this argument we present the design and 
implementation of Prism-MW, an architectural middleware geared 
to distributed, mobile, and pervasive environments. We have 
directly leveraged Prism-MW’s architectural focus to provide a 
number of facilities required in ad hoc and pervasive systems: 
deployment of software across heterogeneous devices, discovery of 
resources, runtime analysis, dynamic adaptation and redeployment 
of software, fault tolerance, etc. While a number of other existing 
middleware platforms also provide some of these facilities [3], 
none provide them both at the architectural level and in a manner 
that satisfies the challenges imposed by pervasive environments. 
Thus far, our experience with Prism-MW in the classroom as well 
as two industrial domains has been very positive. However, a 
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number of remaining issues remain unresolved, and we discuss 
them in this paper.  

The paper is organized as follows. Section 2 discusses the 
architectural challenges and requirements that should be addressed 
in developing and deploying applications in pervasive settings. 
Section 3 presents an overview of Prism-MW’s design. Section 4 
discusses the extent to which Prism-MW addresses these 
requirements in the context of our experiences of applying the 
middleware on two families of applications representative of 
pervasive domains. The paper concludes with an overview of 
several future directions. 

2. Architectural Implications 
Architecting software systems for pervasive and ad-hoc domains 
poses significant challenges, as the software engineer typically 
does not know the exact characteristics of the runtime 
environments in which the software will be deployed. Below we 
discuss some of the main challenges faced by engineers while 
developing applications in these domains, and the corresponding 
middleware requirements for addressing them:     
• Efficiency. Implementing a software system in the pervasive 

computing domain is difficult mainly due to its resource-
constrained nature (i.e., limited CPU, memory, battery, 
network bandwidth, etc.). The existing approaches for 
developing applications on the traditional desktop platforms are 
often inefficient for these domains. Hence, a middleware 
geared to this domain should not only provide the appropriate 
facilities for managing system resources, but it should itself 
also be very efficient. 

• Analysis. The analysis of a software system with respect to its 
properties (e.g., reliability, latency,) at design-time requires the 
prediction of the system’s runtime behavior. However, since a 
pervasive system’s runtime aspects cannot always be 
accurately predicted by the engineer, design-time analysis may 
be inaccurate. More precise analysis may only possible at 
runtime. For supporting runtime analysis, monitoring facilities 
should be provided by a middleware. Furthermore, since the 
monitoring activity also uses system resources, it should be 
both lightweight and adjustable, such that once sufficient 
runtime data is gathered, the monitoring overhead can be 
eliminated. In addition, a middleware should be flexible for 
supporting various dynamic system adaptations (e.g., addition 
and removal of software components, reconfiguration of 
system’s software architecture) based on the result of runtime 
analysis. 

• Heterogeneity. One of the major characteristics of pervasive 
and ad-hoc environments is the heterogeneity of the hardware 
platforms and the underlying system software.  Heterogeneity 
of the target platforms impacts most phases of software 
development: the properties of target hardware devices should 
be represented during the modeling phase; different versions of 
the same functionality would need to be developed for and 
tested on different platforms during the construction phase; and 
software’s platform requirements would need to be considered 
during the deployment phase. Therefore, a middleware should 
support an efficient mechanism that abstracts the heterogeneity 
of target hardware platforms away from the software engineer. 
This in turn aids software architectural adaptations, as it allows 
the engineer to focus on higher-level implications of adapting 
the system. For example, the engineer would only need to 
determine whether a software component should be migrated 
from one device to another, and not the low-level system-
specific commands for effecting the actual migration. 

• Deployment. The deployment of a software system onto 
target platforms is a challenging task. Ideally, a central 
deployment server would need to communicate with a large 
number of heterogeneous hosts, coordinate the deployment 
process with them, and ensure that a software system is 
deployed and configured correctly. This picture clearly 
becomes a lot more complex in a decentralized setting, where 
multiple hosts may play the role of the deployment server. 
Thus, a middleware running on each host should have a facility 
that can connect to a deployment server, receive its 
corresponding components from the server, and install and 
configure the components according to the overall system’s 
architecture. In turn, the servers themselves would (coordinate 
to) ensure the architectural integrity [6] of the system. 

• Resource Discovery.  Application software running on one 
host may not be able to complete its task if some of the 
resources it requires reside on another host that is unreachable. 
The most common example of a resource in software 
architecture-based development is a service. A software 
component usually provides a number of services, which are 
typically made available to other components via the 
component’s public interfaces. Hence, a middleware should 
support a service discovery mechanism that enables a 
component to register its services, as well as to find, bind, and 
invoke the services provided by other components. 

• Suitable Architectural Styles. No previous studies have 
suggested the appropriate architectural style for applications in 
pervasive and ad-hoc environments. It is in fact unlikely that a 
single architectural style would be suitable for every pervasive 
system. Choosing an appropriate style depends on many 
factors, such as the interaction patterns among the application’s 
components, or the target environment. In fact, often the 
engineer will either create a new style (e.g., a hybrid style) or 
design each part of the system’s architecture according to a 
different style. Thus, a middleware should provide explicit 
support for multiple architectural styles even within a single 
application. 

• Fault Tolerance. Many factors may impact a pervasive 
system’s ability to function correctly. For example, since the 
computing platforms (e.g., PDA, cellular phones, wearable 
devices, etc.) that are widely used in pervasive and ad-hoc 
environments have finite battery lives, a host may “go down” 
due to battery depletion. Consequently, all the services 
provided by the components on that host become unavailable to 
other hosts. To address this issue, a lightweight mechanism for 
migrating all the services (i.e., components) provided by the 
“dead” host to its neighbors transparently and in a manner that 
preserves architectural properties should be supported at the 
middleware level.  

3. Prism-MW 
We have attempted to address the above requirements in an 
architectural middleware platform called Prism-MW. Our 
experience has shown that an architectural middleware for 
pervasive computing is composed of three distinct layers which are 
deployed on top of an OS (shown in Figure 1): at the bottom is a 
virtual machine layer that allows the middleware to be deployed on 
heterogeneous platforms efficiently; the abstraction facilities 
provided by the virtual machine are leveraged by the middleware’s 
architectural constructs that lay on top of it; finally, these 
architectural constructs are leveraged to implement various 
pervasive computing facilities. In this section, we describe Prism-
MW’s architectural support layer which was our primary focus 



Figure 1. Layers of System Stack. 
 

Figure 2. UML class diagram of Prism-MW's design.  
Middleware core classes are highlighted. 

initially, while in Section 4 we discuss the other two layers of the 
middleware as they gained primacy in the context of our 
experience.  

Prism-MW supports architectural abstractions by providing 
classes for representing each architectural element, with methods 
for creating, manipulating, and destroying the element. These 
abstractions enable direct mapping between an architecture and its 
implementation. Figure 2 shows the class design view of Prism-
MW. The shaded classes constitute the middleware core, which 
represents a minimal subset of Prism-MW that enables 
implementation and execution of architectures in a single address 
space. Only the dark gray classes of Prism-MW’s core are directly 
relevant to the application developer, requiring a minimal effort to 
master the middleware’s basics. 

3.1 Architectural Support  
Brick is an abstract class that represents an architectural building 
block. It encapsulates common features of its subclasses 
(Architecture, Component, Connector, and Port). Architecture 
records the configuration of its constituent components, connec-
tors, and ports, and provides facilities for their addition, removal, 
and reconnection. A distributed application is implemented as a set 
of interacting Architecture objects.  

Events are used to capture communication in an architecture. 
An event consists of a name and payload. An event’s payload 
includes a set of typed parameters for carrying data and meta-level 
information (e.g., sender, type, and so on). An event type is either a 
request for a recipient component to perform an operation or a 
reply that a sender component has performed an operation.  

Ports are the loci of interaction in an architecture. A link 
between two ports is made by welding them together. A port can be 
welded to at most one other port. Each Port has a type, which is 
either request or reply. An event placed on one port is forwarded to 
the port linked to it in the following manner: request events are 
forwarded from request ports to reply ports, while reply events are 
forwarded in the opposite direction.  

Components perform computations in an architecture and may 
maintain their own internal state. A component is dynamically 
associated with its application-specific functionality via a reference 
to the AbstractImplementation class. This allows us to perform 
dynamic changes to a component’s application-specific behavior 
without having to replace the entire component. Each component 
can have an arbitrary number of attached ports. Components 
interact with each other by exchanging events via their ports. When 
a component generates an event, it places copies of that event on 
each of its ports whose type corresponds to the generated event 

type. Components may interact either directly (through ports) or 
via connectors.  

Connectors are used to control the routing of events among 
the attached components. Like components, each connector can 
have an arbitrary number of attached ports. Components attach to 
connectors by creating a link between a component port and a 
single connector port. Connectors may support arbitrary event 
delivery semantics (e.g., unicast, multicast, broadcast). In order to 
support the needs of dynamically changing applications, each 
Prism-MW component or connector is capable of adding or 
removing ports at runtime. This property of components and 
connectors, coupled with event-based interaction, has proven to be 
highly effective for addressing system re-configurability.  

Finally, Prism-MW provides support for event dispatching, 
event queuing, architectural monitoring, and reflection facilities 
that the developer can associate with the system’s architecture.   

3.2 Extensibility Mechanism 
The design of Prism-MW’s core provides extensive separation of 
concerns via its explicit architectural constructs and its use of 
abstract classes and interfaces. The design is highly extensible. The 
extensible nature of Prism-MW has enabled us to directly support 
multiple architectural styles, even within a single application. We 
do not address this middleware requirement any further due to 
space constraints, but point the interested reader to [2]. 

Our support for extensibility is built around our intent to keep 
Prism-MW’s core unchanged. To that end, the core constructs 
(Component, Connector, Port, Event, and Architecture) are sub-
classed via specialized classes (ExtensibleComponent, Extensible-
Connector, ExtensiblePort, ExtensibleEvent, and 
ExtensibleArchitecture), each of which has a reference to a number 
of abstract classes (Figure 2). Each AbstractExtension class can 
have multiple implementations, thus enabling selection of the 
desired functionality inside each instance of a given extensible 
class. If a reference to an AbstractExtension class is instantiated in 
a given extensible class instance, that instance will exhibit the 
behavior realized inside the implementation of that abstract class. 
Multiple references to abstract classes may be instantiated in a 
single extensible class instance. In that case, the instance will 
exhibit the combined behavior of the installed abstract class 
implementations. 

4. Experience 
We illustrate Prism-MW’s support for the pervasive computing 
domain via application families developed in collaboration with 



Figure 4. Efficient Event Dispatching in 
Prism-MW: steps 1-7 are performed by a 
single shepherd thread, assuming that the 

connector is sending event E to both 
recipient components. 

Figure 3. TDS Application. 

two external software development organizations. The first 
application family, implemented using the Java version of Prism-
MW, is called Troops Deployment Simulation (TDS) and was 
developed in collaboration with the U.S. Army. It is representative 
of a large number of mobile pervasive systems that are intended to 
deal with situations such as natural disasters, search-and-rescue 
efforts, and military crises. The second application family, 
implemented using the C++ version of Prism-MW, has been 
developed as part of an ongoing collaborative project between the 
University of Southern California and the Bosch Research and 
Technology Center. 

4.1 Java-based 
Pervasive 
Systems 
Figure 3 shows one 
possible instance of 
the TDS application 
family with single 
Headquarters, four 
Commanders, and 36 
Soldiers. A computer 
at Headquarters 
gathers information 
from the field and displays the current battlefield status: the 
locations of friendly and enemy troops, vehicles, and obstacles 
such as mine fields. The headquarters computer is networked via 
secure links to a set of PDAs used by Commanders in the field. 
The commander PDAs are connected directly to each other and to a 
large number of Soldier PDAs. Each commander is capable of 
controlling his own part of the battlefield: deploying troops, 
analyzing the deployment strategy, transferring troops between 
commanders, and so on. In case the Headquarters device fails, a 
designated Commander assumes the role of Headquarters. Soldiers 
can only view the segment of the battlefield in which they are 
located, receive direct orders from the commanders, and report 
their status. TDS helps to illustrate a number of concepts related to 
pervasive and ad hoc domains, which we will discuss below. 
4.1.1 Heterogeneity 
Several aspects of TDS embody the notion of multiplicity inherent 
in embedded pervasive environments. The devices on which TDS 
has been deployed are of several different types (Palm Pilot Vx and 
VIIx, Compaq iPAQ, HP Jornada, NEC MobilePro, Sun Ultra, PC), 
running four OSs (PalmOS, WindowsCE, Windows XP, and 
Solaris). As mentioned earlier and shown in Figure 1 the 
architectural 
support of the 
middleware is 
insulated from 
the underlying 
heterogeneity of 
the operating 
system and 
hardware 
platforms via the 
virtual machine 
layer. In the case 
of TDS, since it 
was developed 
on the Java 
version of Prism-
MW, the Java 
Virtual Machine 

provided the necessary abstractions. As will be discussed below, 
supporting heterogeneity in lower level programming languages 
(e.g., C, C++) is more challenging. 

Another source of heterogeneity that we had to overcome was 
the variation in communication protocols. Some of the devices 
were equipped with wireless network cards, allowing them to 
interact via TCP/IP, while the others devices were only equipped 
with the infrared capability. In order to address different aspects of 
interaction, we leveraged the extensible nature of Prism-MW’s 
ports. The ExtensiblePort class has references to a number of 
abstract classes that support various interaction services. In turn, 
each abstract class can have multiple implementations. Figure 2 
shows some of the many port extensions that we have implemented 
thus far. In the case of TDS, we leveraged the AbstractDistribution 
class that has been implemented by two concrete classes, one 
supporting socket-based and the other infrared port-based inter-
process communication (IPC), to overcome the communication 
heterogeneity on the target platforms.  
4.1.2 Efficiency and Scalability 
A distributed system implemented in Prism-MW consists of a 
number of Architecture objects, each of which serves as a container 
for a single subsystem and delimits an address space. Components 
within and across the different Architecture objects interact by 
exchanging Events. Our original implementation of Prism-MW 
associated a separate event queue and thread with each 
architectural element that could send/receive events. While this 
design was the most intuitive and was sufficient for applications 
deployed on capacious desktop computers, it proved to be too 
expensive to be used in TDS. Therefore, we adapted Prism-MW to 
use a fixed-sized, circular array for storing all events in a single 
address space (depicted in Figure 4). This allowed us to optimize 
event processing by introducing a pool of shepherd threads 
(implemented in Prism-MW’s RoundRobinDispatcher class) to 
handle events sent by any component in a given address space. The 
size of the thread pool and event queue are parameterized and, 
hence, adjustable. 

By default, Prism-MW processes events asynchronously. A 
shepherd thread removes the event from the head of the queue. The 
shepherd thread is run through the connector attached to the 
sending component; the connector dispatches the event to relevant 
components using the same thread. If a recipient component 
generates further events, they are added to the tail of the event 
queue; different threads are used for dispatching those events to 
their intended recipients. The new approach to routing events had a 
number of advantages: (1) By leveraging the explicit architectural 
topology, an event can be routed to multiple destinations. This 
minimizes resource consumption, since events need not be tagged 
with their recipients, nor do the recipients need to explicitly 
subscribe to events. (2) We further optimize resource consumption 
by using a single event queue for storing both locally and remotely 
generated events. (3) Since Prism-MW processes local and remote 
events uniformly, and all routing is accomplished via the multiple 
and explicit ports and/or connectors, Prism-MW allows for 
seamless redeployment and redistribution of existing applications 
onto different hardware topologies. 

TDS was deployed onto 105 mobile devices and mobile 
device emulators running on PCs, where a total of 245 software 
components interact via 217 software connectors. The dynamic 
size of the application is approximately 1 MB for the Headquarters 
subsystem, 600 KB for each Commander, and 90 KB for each 
Soldier subsystem, resulting in the total application size of 12.5 
MB. In this scenario, the total overhead induced by the middleware 
on all of the devices was measured to be around 511.5 KB, or 4%. 



Figure 5. MIDAS System. 

4.1.3 Deployment 
As mentioned earlier, deploying applications in the pervasive 
environments is a challenging task. Prism-MW components 
communicate by exchanging application-level events. Prism-MW 
also allows components to exchange ExtensibleEvents, which may 
contain architectural elements (components and connectors) as 
opposed to data. Additionally, ExtensibleEvents implement the 
Serializable interface (as shown in Figure 2), thus allowing their 
dispatching across address spaces.  

In order to migrate the desired set of architectural elements 
onto a set of target hosts, we assume that a skeleton configuration 
is preloaded on each host. The skeleton configuration consists of 
Prism-MW’s Architecture object that contains an Admin Compo-
nent with a DistributionEnabledPort (i.e., an ExtensiblePort with 
the appropriate implementation of AbstractDistribution installed on 
it) attached to it. An Admin Component is an ExtensibleComponent 
with the Admin implementation of AbstractDeployment installed on 
it (shown in Figure 2). Since the Admin Component on each device 
contains a pointer to its Architecture object, it is able to effect 
runtime changes to its local subsystem’s architecture: instantiation, 
addition, removal, connection, and disconnection of components 
and connectors. Admin Components are able to send and receive 
from any device to which they are connected the ExtensibleEvents 
that contain application components and connectors.  

4.2 C++ Based Pervasive Systems 
In this section, we describe our experience with developing a 
distributed software system family, called MIDAS, on top of the 
C++ version of Prism-MW. MIDAS is composed of a large number 
of sensors, gateways, hubs, and PDAs that are connected wirelessly 
in the manner shown in Figure 5. The sensors, which are used to 
monitor the environment around them, communicate their status to 
one another and to the gateways. The gateway computers are 
responsible for managing the sensors. The gateways translate, 
aggregate, and fuse the data received from the sensors, and 
propagate the appropriate data (e.g., event) to the hubs. Hubs are 
used to evaluate and visualize the sensor data for the users, as well 
as provide an interface through which the user can send control 
commands to the various sensors and gateways in the system. Hubs 
may also be configured to propagate the appropriate sensor data to 
PDAs, which are then used by the mobile users of the system. This 
application scenario helps to illustrate a number of concepts, 
several of which are different from those discussed earlier. 
4.2.1 Heterogeneity 
As mentioned before, the abstractions provided by JVM insulated 
the Java version of Prism-MW from the underlying heterogeneity 
of the target platforms. However, since MIDAS was a C++ 
application, we had to resolve the heterogeneity issue at a much 
lower-lever than before. In turn, this required us to rethink our 
view of what an architectural middleware entails and of its overall 
architecture. This process actually resulted in the view of the 
architecture of Prism-MW depicted in Figure 1. Initially we set out 
to develop, compile, and maintain several version of Prism-MW, 
one per each hardware platform and operating system. However, 
this approach soon proved to be infeasible: as the number of 
different versions of Prism-MW kept growing we were faced with 
developing and exhaustively testing the same feature(s) repeatedly. 
Instead, we opted to develop a domain specific virtual machine 
called Modular Virtual Machine (MVM). MVM provided an 
abstraction layer on top of various operating systems (Linux, 
Windows, eCos) and hardware platforms (Intel x86, KwikByte, 
and several other proprietary sensor platforms). Figure 1 shows 
some of the resource abstractions and factories that we have 
developed, which are in turn leveraged by the middleware’s 

architectural constructs. This 
approach proved to be more 
flexible and convenient, as 
supporting a new OS or 
hardware platform would 
require only the addition of 
simple abstraction facilities to 
the virtual machine layer. This 
design also allowed for a clear 
separation of architectural 
constructs from the system-
level constructs (as shown in 
Figure 1). Also note that the 
design of the middleware’s architectural support (shown in Figure 
2) remained intact as we ported it from Java to C++. This was due 
to the extensive separation of concerns built into Prism-MW that 
allowed for a natural layering of the architectural constructs on top 
of the lower-level system constructs. 
4.2.2 Resource Discovery and Fault Tolerance 
MIDAS platforms could become unavailable for many reasons: 
network disconnection, hardware and software failures, and so on. 
Therefore, there was a need for a facility that supports recovery 
from such scenarios by (re)discovering the orphan sensors (i.e., 
sensors that have lost their connection to a gateway) or 
(re)discovering services that resided on a gateway. As shown in the 
top layer of Figure 1 and discussed below, we leveraged Prism-
MW’s architectural constructs to implement resource discovery.  In 
the context of MIDAS a service corresponds roughly to a 
component interface. We developed an implementation of 
AbstractServiceDiscovery that provides the support for recording 
and retrieval of services (as shown in Figure 2). An 
ExtensibleComponent with an implementation of 
AbstractServiceDiscovery installed on it acts as a service discovery 
agent on the host on which it resides. The service discovery 
component can leverage ExtensibleComponent’s pointer to the 
architecture to determine the services installed on the local host. 
Service discovery components leverage DistributionEnabledPorts 
to communicate with other service discovery components (e.g., 
send service query or update events). Supporting service discovery 
via Prism-MW’s architectural constructs thus provides location 
transparency at the level of architecture.  
4.2.3 Efficiency and Scalability 
In the Java version of Prism-MW, we relied on the JVM to manage 
the creation and removal of Java objects. While this approach 
incurred an overhead of creating objects dynamically in the heap at 
runtime, we were able to ignore this overhead in applications 
without strict real-time requirements such as TDS. However, 
MIDAS had stringent latency requirements of transmitting an 
alarm from a sensor to a hub and receiving an acknowledgement 
back in less than two seconds. Therefore, in this application, we 
were not able to ignore such inefficiencies. To solve this problem 
we enhanced MVM by developing a memory management facility 
based on a memory pooling technique, which pre-allocates various 
C++ objects (e.g., event, mutex, semaphore, etc.) from the heap 
when the middleware starts up. This allowed us to efficiently 
access the pool when an object with a particular type was required, 
and release it back to the pool when it was not needed any longer. 
We were thereby able to reduce the overhead of memory allocation 
to a simple pointer operation.  

To insulate the architectural layer from the idiosyncrasies of 
the underlying memory management facility, we created a number 
of factory facilities that manage the (de)allocation of the 
architectural constructs. For example, a Component generates an 



a)     b) 

Figure 6. Runtime analysis and adaptation approach: a) DeSi’s view of system, b) a system 
running on top of Prism-MW that is monitored and managed by meta-level components. 

Event via an API exported by the event 
factory facility (shown in Figure 1) in the 
virtual machine layer, irrespective of 
whether the Event is allocated from the 
heap or from a memory pool. The total 
memory footprint of the application 
running on a gateway was 3.1 MB, while 
Prism-MW’s overhead was measured to 
be 189 KB, or 6%.  

4.2.4 Runtime Analysis and 
Dynamic Adaptation 

As mentioned earlier, engineers may 
not know a priori the properties of the 
target hardware platforms, and early on 
make decisions that may not be 
appropriate for the actual running system. 
We came across this in the case of 
MIDAS. It became evident that different 
deployments of MIDAS had a significant 
impact on the resulting quality of service 
provided by the system. However, the engineers did not have 
sufficient knowledge of runtime properties that could be used to 
determine a good deployment of the system. To solve this problem 
we leveraged Prism-MW as well as our interactive deployment 
analysis environment called DeSi [5] (shown in Figure 6a). DeSi 
provides the ability to model the system’s deployment, visualize 
and assess its architecture, and improve it via one of the 
deployment improving algorithms.  

Figure 6b depicts an example distributed system that is 
monitored and deployed on top of Prism-MW. We have already 
discussed Admin’s role in the deployment and adaptation of TDS. 
To support deployment in the C++ version of Prism-MW, we took 
the same approach as that described in Section 4.1.3. To monitor 
the various system properties, we leveraged Prism-MW’s 
AbstractMonitor class, which is associated through the Scaffold 
with every Brick (shown in Figure 2). This allows for autonomous, 
active monitoring of a Brick’s runtime behavior. Once the 
monitoring data on each device becomes stable, the corresponding 
Admin forwards the data to a centralized Admin, which is called 
Deployer, for aggregating the monitored data. As shown in Figure 
6b, we integrated DeSi with Prism-MW, by wrapping DeSi’s 
Monitor and Effector components via a Prism-MW Adapter.  Once 
the Deployer component determines that the monitoring data is 
stable, it sends the data to DeSi, which populates its model. 
Afterwards, one of the algorithms provided by DeSi is executed for 
improving the system’s deployment. Finally, the result is reported 
back to the Deployer, which coordinates the redeployment of the 
system with the help of the Admin components. 

5. Conclusion 
In this paper, we presented the design of Prism-MW, an 
architectural middleware geared to the pervasive computing 
domain. We discussed our experiences in the development of two 
families of applications on top of Prism-MW, and provided an 
overview of the middleware’s evolution as we adapted it to address 
the challenges we came across. In the process our experiences 
strongly suggest that it is possible to design a middleware that is 
applicable to the pervasive computing domain, while preserving its 
inherent support for architecture-based software development. We 
realized that for these architectural facilities to be truly useful in a 
highly heterogeneous and resource constrained environment, they 
would need to be complemented with the appropriate low-level 
system support. Furthermore, it became clear that to fully reap the 

benefits of developing a software system using the architectural 
facilities provided by Prism-MW, the middleware should be 
accompanied with advanced facilities that are targeted at the 
specific challenges posed by the pervasive computing domain.  

While our experience has been positive, there are a number of 
open issues. We are developing several new advanced facilities, 
including “live update” of software components, fault-tolerance 
support by maintaining backups of data, and dynamic adaptation to 
decrease a system’s energy consumption. We expect this to further 
enrich our understanding of architectural middleware as well as our 
appreciation of its appropriate role in pervasive environments.   
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