
Abstract
A distributed system's deployment architecture can have a
significant impact on its QoS. Furthermore, the deployment
architecture will influence users’ satisfaction, as users typi-
cally have varying QoS preferences for the system services
they access. Finding a deployment architecture that will
maximize the users' overall satisfaction is a challenging,
multi-faceted problem. We propose to develop a framework
that can be tailored and instantiated to address this problem
in its many variations. The framework is accompanied with
tool support, which allows it to be used in practice and
evaluated in many representative scenarios.

1. Research Problem and Importance
A growing class of mobile and distributed systems are fre-

quently challenged by the fluctuations in the system parameters:
network connectivity, bandwidth, reliability of hosts, availability
of battery power, etc. Furthermore, the different users’ usage of the
functionality (i.e., services) provided by the system and the users’
quality of service (QoS) preferences for those services will differ,
and may change over time. We define a service as a separately
identifiable functionality provided by a system that is accessed via
a specific access point (i.e., a human-user or software interface)
and realized via a collaboration of a subset of the system’s compo-
nents.

For any such large, distributed system, many deployment archi-
tectures (i.e., mappings of software components onto hardware
hosts) will be typically possible. Some of those deployment archi-
tectures will be more effective than others in delivering the desired
level of service quality to the user. For example, a service’s latency
can be improved if the system is deployed such that the most fre-
quent and voluminous interactions among the components
involved in delivering the service occur either locally or over reli-
able and capacious network links. However, the problem of find-
ing the optimal (or even reasonable) physical locations for
software components becomes quickly intractable for a human
engineer if multiple QoS dimensions (e.g., latency, security, avail-
ability, power usage) and multiple users’ preferences must be con-
sidered simultaneously, while taking into account any additional
constraints (e.g., component X may not be deployed on hosts Y
and Z). Figure 1 shows an overview of the problem, its inherent
complexity, and the relationships among its elements.

In this research, we consider the problem of finding a deploy-
ment architecture such that the QoS preferences accrued by a col-
lection of distributed end-users are addressed, i.e., that the utility

of the system to all of its users is maximized. We would like our
solution to be applicable to a wide range of application scenarios
(i.e., differing numbers of users, hardware hosts, software compo-
nents, application services, QoS dimensions, etc.). However, a
widely applicable solution to this problem is challenged by the fol-
lowing: (1) A very large number of system parameters influence
QoS dimensions (e.g., security, availability) of a software system;
while it may be possible to identify a subset of system parameters
(e.g., network bandwidth, frequencies of interactions) that influ-
ence the majority of QoS dimensions, it may not be possible to
identify all of them. (2) Many services and their corresponding
QoS influence the users’ satisfaction. (3) Different QoS dimen-
sions may be conflicting (i.e., improving one may degrade
another), and users with different priorities may have conflicting
QoS preferences. Fine-grain trade-off analysis without relying on
simplifying assumptions (e.g., a particular definition of a QoS
objective, predetermined constraints) is challenging. (4) Different
application scenarios require different algorithmic approaches. For
example, system’s size, users’ usage of the system, stability of the
system’s parameters, and its degree of (de)centralization will likely
determine the best algorithm for finding the best deployment. (5)
Traditional software engineering tools are not applicable to this
problem. Therefore, engineers have to spend a significant amount
of time adapting tools intended for different purposes to the prob-
lem of improving system deployment. In turn, this limits the
potential for reuse and cross-evaluation of the solutions.

A User-Centric Framework for Improving a Distributed 
Software System’s Deployment Architecture

Sam Malek
Computer Science Department 

University of Southern California
Los Angeles, CA 90089-0781 U.S.A.

malek@usc.edu

Figure 1. Problem Overview.



2. Prior Research
Several researchers have considered modifying a software sys-

tem’s deployment architecture to improve a specific QoS dimen-
sion of the system. I5 [1], proposes the use of the binary integer
programming model for generating an optimal deployment of a
software application over a given network that minimizes the over-
all remote communication. Coign [2] provides a framework for
distributed partitioning of COM applications across the network.
Kichkaylo et al. [3], provide a model, called Component Place-
ment Problem (CPP), for describing a distributed system in terms
of the constraints on its deployment, and an AI planning algorithm,
called Sekitei, for solving the CPP model. However, while all of
the above works recognize that the problem of distributing an
application is NP hard, none provide approximative solutions for
such cases.

In our prior work [5,7], we devised a set of algorithms for
improving system’s availability by finding an improved deploy-
ment architecture. The novelty of our approach was a set of
approximative algorithms that scaled well to large distributed soft-
ware systems with many components and hosts. However, our
approach was limited to a predetermined set of system parameters,
and a predetermined definition of availability. 

None of the above approaches (including our previous work)
considers the system users and their QoS preferences. Further-
more, none of these approaches attempt to improve more than one
QoS dimension of interest. Finally, no previous work has consid-
ered users’ QoS preferences at the granularity of the application-
level services. Instead, the entire distributed software system is
treated as one service with one user, and a particular QoS dimen-
sion serves as the only QoS objective.

3. Research Hypotheses
Our research is based on the following hypotheses.

Optimization Algorithms. Finding the optimal deployment
architecture is an exponentially complex problem: there are hc pos-
sible deployment architectures, where h is the number of hosts,
and c is the number of components. Therefore, it may be impossi-
ble to invest the necessary time to find the optimal solution. We
hypothesize that an algorithm of at most polynomial complexity in
the number of components and hosts, and linear in the numbers of
QoS dimensions, users, and services can be devised with the abil-
ity to find a deployment architecture such that (1) the overall util-
ity to system users will be very close to a target (e.g., known
optimal) architecture's utility, or (2) when a known optimal archi-
tecture does not exist, the overall utility will improve significantly
more than the statistical average utility, which is the average util-
ity of a set of randomly selected deployment architectures. 
Sensitivity to Users and Services. Some users of the system
may be more important than others. Similarly, some services may
be more critical than others. We hypothesize that an optimization
algorithm can be devised that performs fine-grain trade-off analy-
sis, such that given two identical application scenarios X and Y:
(1) if they only differ in the priority of a user U such that he has a
higher priority in X than in Y, then after executing the algorithms
on both X and Y, the overall utility gain for U in X is greater than
or equal to his utility gain in Y; or (2) if they only differ in the crit-
icality of service S such that it is more critical in X than in Y, then
after executing the algorithm on both X and Y, the overall QoS

improvement for S in X is greater than or equal to its improvement
in Y. 
Decentralization. Centralized algorithms depend on the exist-
ence of a host with the global knowledge of the system. However,
this is not feasible in a growing class of decentralized systems,
where each host has only partial knowledge of the system. We
hypothesize that a decentralized optimization algorithm can be
devised such that (1) when there is a modest lack of knowledge
(defined as the situation where each host on average does not
know about 20% or less of the hosts in the system) the algorithm
finds solutions that on average come very close to the best solution
produced by the centralized optimization algorithms, and (2) while
there are no completely disconnected hosts, the solution accuracy
degrades gracefully as the lack of knowledge increases on each
host, such that the decrease rate in the solution accuracy is signifi-
cantly lower than the increase rate in the lack of knowledge.
Algorithmic Trade-Offs. There exist inherent trade-offs
among the deployment improvement algorithms. Each algorithm
has its own unique properties that make it more suitable to a class
of systems. We hypothesize that it is possible to determine the best
algorithm for execution in terms of the accuracy of the solution
and the performance of the algorithm given the system’s architec-
tural style (e.g., client-server vs. peer-to-peer), its stability
(amount of fluctuation in system parameters, which impacts the
available time for estimation), centralization, the number of sys-
tem parameter constraints (highly vs. lightly constrained), and the
complexity of the application scenario (which includes number of
hosts, components, logical links, physical links, users, services,
and QoS dimensions). We also hypothesize that an autonomic
solution can be devised that given the monitored characteristics of
an application scenario determines the best deployment improve-
ment algorithm for execution at runtime.

4. Approach
In support of evaluating the hypotheses, we have developed a

framework for improving a distributed system’s deployment that
relies on the notion of QoS utility function, which indicates a user’s
(desired) degree of satisfaction with improvements in a given QoS
dimension. We leverage each user’s utility functions and employ a
common strategy of transforming the multidimensional objective
(i.e., the vector of QoS dimensions) to a single scalar value. This
transformation allows us to resolve trade-offs inherent in our
multi-dimensional optimization problem. The framework’s ideal
objective is to maximize the overall utility, i.e., the cumulative sat-
isfaction with the system by all its users. Given an application sce-
nario, the engineer instantiates (configures) the framework by
defining the appropriate system parameters and the QoS of inter-
est. The framework is then populated with the actual data from a
distributed application and users’ preferences for the QoS dimen-
sions of each application service. Each user’s preferences are
adjusted based on his priorities and importance. Afterwards, one of
the algorithms supplied by the framework is used to find an
improved deployment. Finally, the solution is effected by
(re)deploying the system.

We demonstrate some aspects of our approach on a simple
application scenario that consists of two hosts, two components,
two QoS dimensions, one user, and one service. In this scenario,
there are four possible deployment architectures. Figure 2a shows
the quantification of each deployment in terms of the two QoS



dimensions of latency and durability. Each QoS dimension is
quantified based on the various system properties. For example,
latency of a service can be quantified as the product of the number
of messages exchanged between software components and the net-
work transmission delays. Similarly, durability of the service can
be quantified as the ratio of available battery power on each device
to the average energy consumption of software component on each
device. Due to space constraints we cannot present our complete
analytical model for quantifying latency and durability, which can
be found in [6]. However, note that the framework’s algorithms are
independent of the analytical model used for quantifying the QoS
dimensions. As will be discussed below, this is because the frame-
work relies on the rate of change in QoS dimensions, as opposed to
actual quantitative values produced by the analytical model.

In this scenario, since the objective is to maximize durability
and minimize latency, with the exception of deployment 4, which
has both a higher latency and a lower durability than deployment
3, all the other three deployments present some kind of a trade-off.
Therefore, it is not possible to determine the optimal deployment.
This is a frequently encountered phenomenon in multi-dimen-
sional optimization problems, and is known as Pareto Optimal. As
mentioned earlier we can solve this problem by considering users’
preferences. Figure 2b shows the user’s utility functions for the
two QoS dimensions. For example, it shows that for 25% increases
in latency and durability, the user has specified utilities of -1 and 2,
respectively. The shown utility functions are linear, but the frame-
work places no restrictions on the type of functions that represent
users’ preferences. In fact, since typically users may not be able to
express their preferences in terms of complex mathematical func-
tions, we first need to elicit and express users’ preferences in terms
of a set of discrete data points (e.g., 50% decrease in latency has a
utility of 2 and so on), and then use one of the numerous curve fit-
ting techniques (e.g., Regression, Interpolation) to determine a
function that approximates the data points most accurately. 

To determine the utility of changing the initial deployment, we
first determine the rate of change for each QoS dimension (i.e.,
amount of change in a QoS dimension if we were to modify the
current deployment) from Figure 2a, then look up the utility asso-
ciated with each rate of change from Figure 2b, and finally aggre-
gate the utilities. Optimal deployment for the system is the one that
has the highest total utility. Figure 2c shows the total utility of
changing the system’s deployment in our example based on the
assumption that deployment 2 is the initial deployment of the sys-
tem. As shown in Figure 2c, deployment 3 achieves a total utility
of 2, which is the optimal deployment for this system. 

While an engineer can apply this approach to larger problems
as well, doing this manually becomes infeasible very fast. In fact,

since the number of possible deployments grows exponentially in
the number of hosts and components, and the number of utility
functions that would need to be considered grows polynomially in
the number of users, services, and QoS dimensions, finding the
optimal solution algorithmically also becomes infeasible very fast.
As will be discussed in the next section, a significant contribution
of this research is the development of the appropriate algorithms
and tool support to assist the engineers in exploring and improving
system’s deployment architecture.

5. Preliminary Work
The theoretical underpinnings of the work, which includes an

extensible formal model of a distributed system’s deployment
architecture and the accompanying generic algorithms, are inde-
pendent of any implementation platform. Our preliminary work
[5,6] on the theoretical aspects of the framework has resulted in
the development of several algorithmic solutions to this problem:
Mixed Linear and Non-Linear Integer Programming, Genetic,
Greedy, and Market-based. Our initial results indicate that there
are significant trade-offs between these algorithmic solutions,
which make each algorithm suitable for a particular application
scenario. For example Mixed Linear Integer Programming is the
only algorithm that finds the optimal solution. However, since it is
an exponentially complex algorithm, it is applicable to systems
that are either relatively small, stable, or have highly constrained
architectural styles that impose strict locational constraints on the
deployment of components (e.g., Client-Server). On the other
hand, optimization algorithms such as Greedy and Genetic are
suitable for systems that are large, unstable, or have flexible archi-
tectural styles that do not impose any locational constraints (e.g.,
Peer-to-Peer).

We are in the process of profiling each algorithm and determin-
ing its unique characteristics. This will help us to develop heuris-
tics that could aid the engineer in the selection of the best
algorithm for execution. We also plan to leverage the above results
to devise an autonomous agent that selects the best algorithm for
execution and effects the improved deployment architecture by
redeploying (part of) the system at runtime. 

The theoretical results discussed above will be realized on top
of an integrated tool suite, which allows the engineer to create a
deployment model, instantiate the model for an application sce-
nario, and use one of the provided algorithms for improving its
architecture. For constructing the tool suite we will leverage our
previous work on a customizable deployment analysis environ-
ment (DeSi [8]) and an extensible architectural middleware
(Prism-MW [4]). Prism-MW provides the ability to implement,
(re)deploy, execute, and monitor a distributed system in terms of
its architectural components. DeSi provides the ability to model

-10

-5

0

5

Deployment Architecture

U
til

ity
   

  

Latency Utility 2 0 -2 -4
Durability Utility -6 0 4 -2
Total Utility -4 0 2 -6

Dep 1 Dep 2 Dep 3 Dep 4

1, 1

2, 4

3, 6

4, 3

0

1

2
3

4

5

6
7

0 2 4 6

Latency (ms)

D
ur

ab
ili

ty
 (h

ou
rs

) 

Dep 1
Dep 2
Dep 3
Dep 4

-10

-5

0

5

10

QoS Change Rate

U
til

ity
   

   
   

   
   

   
   

 

Latency 3 2 1 0 -1 -2 -3 -4
Durability -6 -4 -2 0 2 4 6 8

-75% -50% -25% 0% 25% 50% 75% 100%

Figure 2. Simple example: a) quality of four possible deployments, b) utility functions, and c) utility achieved assuming system’s 
initial deployment is deployment 2.

a) b) c)



nents in Figure 3b correspond to meta-level components provided
by Prism-MW for coordinating the monitoring and (re)deployment
of software components. DeSi’s Monitor and Effector components
(shown in Figure 3b) provide the interface between Prism-MW
and DeSi, which is wrapped via a Prism-MW Adapter. Once the
Deployer component determines that the monitoring data is stable,
it sends the data to DeSi, which populates its model. One of the
algorithms is then selected and executed for improving the sys-
tem’s deployment architecture. The results is reported back to the
Deployer, which coordinates the redeployment of the system with
the help of the Admin components.

6. Evaluation
The approach will be evaluate on a large number of real and

simulated distributed systems. In fact, it is currently being applied
and evaluated on MIDAS, which is a distributed sensor network
application developed on top of Prism-MW as part of a joint
research project with Bosch Research and Technology Center. The
work will be evaluated on application scenarios with: 1) multiple
QoS dimensions (e.g., availability, latency, communication secu-
rity, and durability), 2) multiple real and simulated users with
varying QoS preferences, and 3) systems with different character-
istics (small vs. large, stable vs. unstable, centralized vs. decentral-
ized). The algorithms will be evaluated on their ability to improve
user’s QoS preferences. The tool suite will be evaluated on its abil-
ity to promote reusability and cross-evaluation.

7. Research Contribution
As mentioned earlier, the related approaches have relied either

on simplifying assumptions (e.g., single QoS dimension) or char-
acteristics of specific application scenarios (e.g., a prespecified
model of the system), which has restricted their applicability.
Unlike previous works, we have addressed this problem as a multi-
dimensional optimization problem, and by leveraging users’ pref-
erences, we have been able to resolve inherent trade-offs in

conflicting QoS dimensions. We have provided an extensible sys-
tem modeling approach that can be leveraged across different
application scenarios and a suite of generic multidimensional opti-
mization algorithms that can be leveraged to improve arbitrary
QoS dimensions. Furthermore, we have developed a customizable
tool suite that can be leveraged for visually assessing hypothetical
or real systems, and performing actual monitoring and (re)deploy-
ment of software components.

8. References
[1] M. C. Bastarrica, et. al. A Binary Integer Programming Model

for Optimal Object Distribution. Int’l. Conf. on Principles of
Distributed Systems, France, Dec. 1998. 

[2] G. Hunt, et. al. The Coign Automatic Distributed Partitioning
System. Symposium on Operating System Design and Imple-
mentation, New Orleans, Feb. 1999.

[3] T. Kichkaylo et. al. Constrained Component Deployment in
Wide-Area Networks Using AI Planning Techniques. Int’l.
Parallel and Distributed Processing Symposium. April 2003.

[4] S. Malek, et. al. A Style-Aware Architectural Middleware for
Resource-Constrained, Distributed Systems. IEEE Trans. on
Software Engineering, March 2005.

[5] S. Malek, et. al. A Decentralized Redeployment Algorithm for
Improving the Availability of Distributed Systems. Int’l Conf.
on Component Deployment, Grenoble, France, Nov. 2005. 

[6] S. Malek, et. al. A User-Centric Approach for Improving a
Distributed Software System’s Deployment Architecture.
Tech. Report USC-CSE-2006-602, 2006.

[7] M. Mikic-Rakic, et. al. Improving Availability in Large, Dis-
tributed, Component-Based Systems via Redeployment. Int’l.
Conf. on Component Deployment, Grenoble, France, 2005

[8] M. Mikic-Rakic, et. al. A Tailorable Environment for Assess-
ing the Quality of Deployment Architectures in Highly Dis-
tributed Settings. Int’l. Conf. on Component Deployment,
Edinburgh, UK, May 2004.

Figure 3. Illustration of the approach: a) DeSi’s tabular view of system’s deployment 
data, b) a system running on top of Prism-MW that is monitored and managed by meta-

level components.

a) b)

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10
33

7

24

25

32

19

23

11

Deployer

Distributed System

5

Prism-MW
Adapter
DeSi

Monitor

DeSi
Effector

Monitoring Data

Redeployment Data

Event  freq.
monitorPlatform

Architecture

Network 
reliability
monitorConfig.

Pointer to
Architecture

i

Comp

Legend:

Skeleton

Deployer
/Admin

the system’s deployment architecture,
visualize and assess its architecture, and
improve it via one of the deployment
improving algorithms (shown in Figure
3a).

We will enhance DeSi to model multi-
ple users, arbitrary QoS dimensions, user
preferences, and services provisioned by
the system. We will also incorporate our
algorithms into DeSi. Furthermore, we
will integrate DeSi with Prism-MW, such
that: (1) DeSi’s deployment models are
populated by the runtime monitoring data
from Prism-MW, and (2) once an
improved deployment is selected for
effecting, DeSi can send the appropriate
(re)deployment commands to Prism-MW. 

A prototype of this functionality has
already been constructed. As an illustra-
tion, Figure 3b depicts a distributed sys-
tem of 5 hosts and 35 components that is
monitored and deployed on top of Prism-
MW. The Deployer and Admin compo-


