
A Decentral ized Redeployment Algorithm for
Improving the Availabi l i ty of Distributed

Systems

Sam Malek1,3, Marija Mikic-Rakic2, and Nenad Medvidovic1

1University of Southern California, Computer Science Department, Los Angeles, CA, 90089,
USA. {malek, neno}@usc.edu

2Google Inc., Santa Monica, CA, 90405, USA. marija@google.com
3The Boeing Company, 5301 Bolsa Avenue, Huntington Beach, CA, 92647, USA.

sam.malek2@boeing.com

Abstract. In distributed and mobile environments, the connections among
the hosts on which a software system is running are often unstable. As a result
of connectivity losses, the overall availability of the system decreases. The
distribution of software components onto hardware nodes (i.e., the system’s
deployment architecture) may be ill-suited for the given target hardware en-
vironment and may need to be altered to improve the software system’s avail-
ability. Determining a software system’s deployment that will maximize its
availability is an exponentially complex problem. Although several polyno-
mial-time approximative techniques have been developed recently, these
techniques rely on the assumption that the system’s deployment architecture
and its properties are accessible from a central location. For these reasons, the
existing techniques are not applicable to an emerging class of decentralized
systems marked by the limited system wide knowledge and lack of central-
ized control. In this paper we present an approximative solution for the rede-
ployment problem that is suitable for decentralized systems and assess its
performance.

1 Introduction

Highly distributed and mobile systems are challenged by the problem of disconnected
operation [25], where the system must continue functioning in the temporary absence
of the network. Disconnected operation forces systems executing on each network host
to temporarily operate independently from other hosts. This presents a major challenge
for software systems that are highly dependent on network connectivity because each
local subsystem is usually dependent on the availability of non-local resources. Lack of
access to a remote resource can make a particular subsystem, or even the entire system
unusable.

A software system’s availability is commonly defined as the degree to which a sys-
tem is operational and accessible when required for use [8]. In the context of highly dis-
tributed, mobile environments, where the most common cause of (partial) system inac-
cessibility is network failure [24], we quantify availability as the ratio of the number of
successfully completed inter-component interactions in the system to the total number
of attempted interactions over a period of time.

The distribution of software components onto
hardware nodes (i.e., a system’s software deployment
architecture, illustrated in Figure 1.) greatly influenc-
es the system’s availability in the face of connectivity
losses. For example, in such cases it is desirable to
collocate components that interact frequently. How-
ever, the parameters that influence the optimal distri-
bution of a system (e.g., network reliability) may not
be known before the system’s deployment. For this
reason, the (initial) software deployment architecture
may be ill-suited for the given target hardware envi-
ronment. This means that a redeployment of the soft-
ware system may be necessary to improve its availa-
bility.

There are several existing techniques that can support various subtasks of redeploy-
ment, such as monitoring [4] to assess hardware and software properties of interest,
component migration [2] to facilitate redeployment, and dynamic system manipulation
[20] to effect the redeployment once the components are migrated to the appropriate
hosts. However, one of the critical difficulties in achieving this task lies in the fact that
determining a software system’s deployment that will maximize its availability (i.e., the
optimal deployment) is an exponentially complex problem: in the most general case the
complexity is kn, where k is the number of hardware hosts and n the number of software
components.

This paper accompanies our work on providing a centralized solution, which is
complementary to this paper and requires global knowledge of system parameters and
global control of the system’s redeployment [18]. Therefore, the centralized solution as-
sumes the existence of a central host that has reliable access to every other host in the
system. This assumption has made the centralized solution inapplicable to a wide range
of distributed systems (e.g., ad-hoc mobile networks) where such a reliable centralized
host does not exist.

In this paper we present an approximative algorithm for increasing a system’s avail-
ability that scales to the exponentially complex nature of this problem. The algorithm,
called DecAp, is decentralized and does not require global knowledge of system prop-
erties. We provide a detailed assessment of DecAp’s performance through its compar-
ison against several centralized algorithms. We leverage our deployment exploration
environment, called DeSi [17], in performing DecAp’s performance assessment. DeSi
supports quantitative assessment and comparison of different redeployment algorithms
as well as active visualization of a system’s deployment architecture.

The remainder of the paper is organized as follows. Section 2 defines the problem
our work is addressing and discusses a set of assumptions in our approach. Section 3
presents an overview of the related work. Section 4 describes the DecAp algorithm and
discusses its complexity. Section 5 discusses DecAp’s behavior. Section 6 presents our
approach for evaluating DecAp and the results of its assessment. The paper concludes
with a discussion of future work.

Figure 1. A sample deployment
architecture with five hosts and 40
components.

Host 2Host 1

Host 3 Host 4

3
4

8
7

9

5

1 2

6

22

19

24
25

21

23 33

26

32

3029
31

28

10

20 27

18

11

17

1514
16

13

12

Host 5

37

34

39
4038

36
35

2 The Redeployment Problem

2.1 Problem Definition
We describe a distributed
system as (1) a set of n com-
ponents with their proper-
ties, (2) a set of k hosts with
their properties, (3) a set of
constraints that a valid de-
ployment architecture must
satisfy, (4) the system’s ini-
tial deployment as a map-
ping of components to
hosts, and (5) a set of sys-
tem properties that are “vis-
ible” from a given host. Fig-
ure 2. shows a formal model
that captures the above sys-
tem properties and con-
straints.

The memcomp function
captures the required mem-
ory for each component.
The frequency of interac-
tion between any pair of
components is captured via
the freq function. Each
host’s available memory is
captured via the memhost
function. The reliability of
the link between any pair of
hosts is captured via the rel
function. Using the loc
function, deployment of
any component can be re-
stricted to a subset of hosts,
thus denoting a set of allowed hosts for that component. Using the colloc function, con-
straints on collocation of components can be specified. The relation dep denotes the cur-
rent deployment of the system’s components on hosts.

The function aware and the relation dom model the system’s decentralized nature.
Function aware denotes whether two hosts have access to each other’s properties and
the properties of components that reside on them. Relation dom denotes the “domain”
of a host hi, which is the set of all hosts of which hi is aware. A host’s domain corre-
sponds to the host’s extent of knowledge about the overall system’s parameters. For ex-
ample, in the centralized approach to the redeployment problem discussed above, the
assumption is that at least one host’s domain is the entire set of hosts H.

Figure 2. Formal redeployment model.

(1) A set C of n components (Cn =) and two functions

ℜ→×CCfreq : and ℜ→Cmemcomp :

≠
=

=
jiji

ji
ji ccifcandcbetweencommunicoffrequency

ccif
ccfreq

.
0

),(

cformemoryrequiredcmemcomp =)(

(2) A set H of k hardware nodes (Hk =) and two functions

ℜ→×HHrel : and ℜ→Hmemhost :

≠

=
=

jiji

ji

ji

ji

hhifhandhbetweenlinktheofyreliabilit
htoconnectednotishif

hhif
hhrel 0

1
),(

hhostonmemoryavailablehmemhost =)(

(3) Two functions that restrict locations of software components

}1,0{: →×HCloc and }1,0,1{: −→×CCcolloc

=
ji

ji
ji hontodeployedbecannotcif

hontodeployedbecancif
hcloc

0
1

),(

−
=

ji

ji

ji

ji

candcofncollocatioonnsrestrictionoarethereif
cashostsametheonbetohascif
cashostsametheonbecannotcif

cccolloc
0
1
1

),(

(4) A relation →Hdep : P (C) where)(ik hdepc ∈ iff kc is deployed on ih

(5) A function }1,0{: →× HHaware

∈∀∈∀∈∀∈∀

=

othereach ofn informatio no have h and h if 0

).,(),,(
),,(),,(),,(

),,freq(c),(),(mem),,(

),(),(),(mem),(
,c),(c ,)(

:ninformatio following thehave 1

),(

ji

icomp

host

kj

kjki

kjkikj

kjcompiji

jijihost

kjii

ji

ji

cccolloccccolloc
hclochclocccfreq

ccmemchhrel

hdephdephhmem
HhChdephdepc

handhif

hhaware

and a relation →Hdom : P (H), where 1),aware(h iff)(k =∈ iik hhdomh

Figure 3. shows a formal
definition of the problem we
are solving. The criterion
function A describes a sys-
tem’s availability as the ratio
of the number of successfully
completed interactions in the
system to the total number of
attempted interactions. Func-
tion f represents the exponen-
tial number of the system’s
candidate deployments. To be
considered valid, each candi-
date deployment must satisfy
the three stated conditions: (1)
the sum of memories of the
components that are deployed
onto a given host may not ex-
ceed the available memory on
that host; (2) a component
may only be deployed onto a host that belongs to the set of allowed hosts for that com-
ponent, specified via the loc function; and (3) two components must be deployed onto
the same host (or on different hosts) if required by the colloc function.

2.2 Assumptions
The problem defined in Figure 3. is an instance of the more general redeployment prob-
lem, described in [18]. In this paper, we consider a subset of all possible constraints, and
a specific criterion function, which is to maximize the system’s availability. Through
the loc and colloc functions, one can include other constraints (e.g., security, CPU,
bandwidth), not directly captured in our problem description. However, if multiple re-
sources, such as bandwidth and CPU, are as restrictive as memory in a given system,
then capturing them only via the loc and colloc functions will not be sufficient. In [18]
we describe how such cases could be addressed, by introducing additional system pa-
rameters into the model and introducing additional constraints that a valid deployment
should satisfy.

Our definition of availability considers all inter-component interactions equally im-
portant. For systems in which this may not be the case, the same model and algorithm
can still be used: the freq function can be changed to correspond to the product of inter-
action frequency and importance, and the remainder of the model and problem defini-
tion would remain unchanged.

The problem presented in section 2.1 is also based on the assumption that system
parameters are reasonably stable over a given period of time T, during which we want
to improve the system’s availability.1 It also relies on the assumption that the time re-
quired to perform the system’s redeployment is negligible with respect to T. Otherwise,

1. We do not require that system parameters be constant during T, but assume that each parameter
can be approximated with its average over the period T, with an error no greater than a given
threshold ε [19].

Figure 3. Formal statement of problem definition

Find a function HCf →: such that the system’s overall availability

A defined as

∑∑

∑∑

= =

= =

∗
= n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq
A

1 1

1 1

),(

)))(),((),((

is maximized, and the following three conditions are satisfied:

(1)

≤=∈∀∈∀ ∑
j

ihostjcompij hmemcmemhcfnjki)())()(],1[],1[

(2) 1))(,(],1[=∈∀ jj cfclocnj

(3)],1[],1[nlnk ∈∀∈∀

))()(()1),((lklk cfcfcccollocif =⇒=

))()(()1),((lklk cfcfcccollocif ≠⇒−=

In the most general case, the number of possible functions f is
nk .

However, note that some of these deployments may not satisfy
one or more of the above three conditions.

the system’s parameters would be changing too frequently and the system would under-
go continuous redeployments to improve its availability.

Finally, our approach is based on the assumption that two hosts that are aware of
each other will be able to reliably exchange the “meta-level” information (detailed in
Section 4) required for the correct functioning of the redeployment algorithm. This can
be ensured by employing existing techniques, e.g., delivery guarantee mechanisms
[14], or gossip-based protocols [3]. While such techniques may also be used to improve
the availability of the system itself, employing them for all application-level informa-
tion exchange will typically be too expensive.

3 Related work

In this section we present a brief overview of centralized redeployment approaches. We
also provide an overview of most commonly used decentralized cooperative algo-
rithms.

3.1 Centralized Deployment Approaches
I5 [1] proposes the use of the binary integer programming model for generating an op-
timal deployment of a software application over a given network. I5 is applicable only
to systems with very small numbers of software components and target hosts, and to
systems whose characteristics, such as frequencies of component interactions, are
known at design time and are stable throughout the system’s execution.

Coign [7] provides a framework for distributed partitioning of COM applications
across the network. Coign employs the lift-to-front minimum-cut graph cutting algo-
rithm to choose a deployment architecture that will result in minimal overall communi-
cation time. However, Coign can only handle situations with two-host, client-server ap-
plications. Coign recognizes that the problem of distributing an application across three
or more hosts is NP hard and does not provide solutions for such cases.

Kichkaylo et al. [11], provide a model, called component placement problem
(CPP), for describing a distributed system in terms of network and application proper-
ties and constraints, and an AI planning algorithm, called Sekitei, for solving the CPP
model. CPP does not provide facilities for specifying the goal, i.e., a criterion function
that should be maximized or minimized. Therefore, Sekitei only searches for any valid
deployment that satisfies the specified constraints, without considering the quality of a
found deployment.

Finally, we have developed several algorithms for the centralized version of the re-
deployment problem [18]. In section 6.2, we briefly describe these algorithms, as they
will be used to assess the performance of DecAp.

3.2 Decentralized Cooperative Algorithms
Decentralized cooperative algorithms have been used in distributed systems to achieve
higher degrees of fault-tolerance, load balancing, and performance. The emergence of
decentralized environments, such as mobile ad-hoc networks and peer-to-peer sensor
networks has required decentralized algorithms to enable autonomous agents to coordi-
nate their interactions, make local decisions based on limited information, and cooper-
ate with other agents to achieve the overall system goals. We discuss some of the most
common decentralized cooperative approaches.

Voting [12] is a method for coordinating distributed systems. A set of distributed
processors works independently on the same task, and then votes on their results to se-
lect one correct answer. Decentralized voting [6,10] increases the fault-tolerance in a
distributed system by using replicated voters to independently determine the majority
result, rather than relying on a central server to tally the results. In the context of the
redeployment problem, if each host independently calculates the system’s redeploy-
ment based on limited information, voting techniques could be employed to decide
which one of the redeployments should be effected.

Token Ring [9] is a classic solution to distributed mutual exclusion problems. All
hosts are arranged into a set of logical structures called rings. All communication occurs
along the channels that define a ring. One or more tokens circulate around the ring. To
use a shared resource, a host needs to acquire a token. When the host is finished, it pass-
es the token to the next host. The token ring technique can be used in the context of the
decentralized redeployment problem to control the simultaneous component migrations
in the system.

Market-Based [13,23] approaches are derived from economics concepts such as
trading and auctioning. The most popular market-based solution is the auction algo-
rithm, in which each auctioneer agent conducts auctions to sell some items (i.e., provid-
ed services or resources) by broadcasting an auction initiation message. A bidding agent
interested in an auctioned item sends a bid to the auctioneer agent. The bid is typically
calculated using a utility function that determines the bidding agent’s interest in the auc-
tioned item. The auctioneer agent determines the winner (typically the highest bidder)
and awards it the item. As will be detailed in section 4, DecAp leverages the market-
based approach for improving the system’s availability.

4 The DecAp Algorithm

DecAp is a decentralized, collaborative auctioning algorithm for improving system-
wide availability. Each host in DecAp contains a single autonomous agent. These
agents collaborate to improve the overall system’s availability. Each agent has access
to the monitoring data within its domain of awareness (recall Figure 2.). An agent ex-
changes messages with other agents that are members of its host domain.

The auctioned items in DecAp are software components. For a component to be
ready for auctioning, its relevant parameters must be stable [19]. An agent plays two
roles during the redeployment process: (1) auctioneer, in which the agent conducts the
auction of its local components, and (2) bidder, in which the agent bids on components
auctioned by a remote agent. DecAp extends the classic auction algorithm in two ways:
(1) an auctioneer is allowed to participate in auctions it conducts, by setting the mini-
mum bid for the auctioned component; and (2) the auctioneer may adjust the received
bids.

To participate in an auction conducted on host ha, a bidder agent has to reside on
one of the hosts that are members of ha’s domain. Each agent can be in one of the fol-
lowing three states: auctioning, bidding, or free. The auctioning process for a single
component is as follows. First, the auctioneer announces an auction of a local compo-
nent ca. It then receives all the bids from bidders within its domain. Finally, the auction-
eer determines the “winner”, i.e., the location for ca within dom(ha) that results in high-
est availability. To ensure that the winner is correctly determined, agents participating
in this auction cannot participate in other auctions at the same time.

As a result of a single auction, a component can move only to one of the hosts that
are inside the domain of the component’s auctioneer host. For this reason, multiple auc-
tions of a single component may be required before the “sweet spot” for that component
in the given distributed system is found. A component’s sweet spot is its deployment
location that does not change as a result of future auctions for that component. This is
known as the Nash Equilibrium State in market-based literature [13].

DecAp’s auctioneer and bidder algorithms use the following two functions:
1. the contribution of component cx to the overall availability of the domain of host hx

when cx is deployed on hx, defined as follows:

2. the available memory, (i.e., freeMemory) on a given host hx, defined as follows:

Below we describe both the auctioneer’s and the bidder’s algorithms and how they
are coordinated.

4.1 Auctioneer’s Algorithm
The auctioneer’s algorithm, performed on auctioneer’s host ha for one of its software
components ca (i.e.,), consists of the following eight steps, repeating the
steps for each component on ha:
1. If ca is ready to be auctioned, calculate the minimum bid for ca as fol-

lows:
2. If ha’s state is free, change it to auctioning, send the AUCTION INTENT message to all

hosts in dom(ha), and proceed to step 3. Otherwise, wait for a given time interval and
repeat step 2.

3. If all hosts in dom(ha) respond with an AUCTION ACCEPT message before the speci-
fied time-out, continue to step 4. Otherwise, send AUCTION CANCEL message to all
hosts in dom(ha), set ha’s state to free, wait for random time interval, and go back to
step 2.

4. Broadcast an AUCTION START message to every host in dom(ha). Include the minBid
in the message. The minBid sets up a threshold for an acceptable bid. It is used by
the bidders to determine whether they qualify to participate in the auction or not.

5. When the bids from all the hosts in dom(ha) are received, or a time-out occurs, adjust
the bids from the hosts that do not have enough memory for the auctioned compo-
nent. When a bidding host does not have enough memory for component ca, it needs
to trade ca with one of its local components. As will be detailed in section 4.2, each
host hb for which freeMemory(hb) < memcomp(ca), in addition to the bid, sends a set
of “tradable” components’ identifiers and their contributions (i.e.,

). For each host hb, the auctioneer determines the
best candidate component for trade ct, as a component whose migration from hb to
ha will have the smallest negative impact on the availability, as follows:

Then, the auctioneer recalculates the bid from host hb to adjust for the effect of the

∑ ∑
∈ ∈

=
)()(

)),(*),((),(
xi ijhdomh hdepc

jxixxx ccfreqhhrelhconcontributi

∑
∈

−=
)(

)()()(
xi hdepc

icompxhostx cmemhmemhfreeMemory

)(aa hdepc ∈

),()(aaa hconcontributicminBid =

)(bhdepT ⊆
),(bxx hconcontributiTc ∈∀

),(),(min axbxxt hconcontributihconcontributiTcc −∈∀=

trade, as follows:

When adjusting the bids for all the hosts that do not have enough memory is com-
plete, go to step 6.

6. Find the winner host hw by selecting the highest bidder. If bid(ca,hw)>minBid, con-
tinue to step 7. Otherwise, ca remains deployed on ha; skip to step 8.

7. If hw has enough memory (i.e. freeMemory (hw) > memcomp(ca)), migrate ca to hw.
Otherwise, perform the trade by migrating ca to hw and migrating ct to ha.

8. Broadcast an AUCTION TERMINATION message to every host in dom(ha) to denote the
completion of this auction. Set ha’s state to free.

4.2 Bidder’s Algorithm
The bidder’s algorithm, where is the bidder host, consists of the follow-
ing eight steps:
1. When an AUCTION INTENT message arrives, if hb’s state is free, send the AUCTION

ACCEPT message to ha, set the state to bidding, and continue to step 2. Otherwise,
send the AUCTION REJECT message to ha.

2. If an AUCTION CANCEL message arrives, set the state to free, and go back to step 1.
If the AUCTION START message arrives from ha, calculate the bid for ca as the contri-
bution of ca to the availability of dom(hb) if ca were to be deployed on
hb:

3. If bid(ca,hb) < minBid, hb does not qualify to place a bid on ca, skip to step 8. Oth-
erwise create the bid message by including the bid(ca,hb). Proceed to step 4.

4. If hb has enough free memory for ca (i.e. freeMemory (hb) > memcomp(ca)), proceed
to step 7.

5. Since hb does not have enough memory for ca, find the set of “trada-
ble” components. A component is tradable when it has the adequate memory size for
the trade as follows:

6. If T is not empty, append to the bid message both the identifiers of all components
 and their contributions, contribution(cx,hb), and proceed to step 7. Otherwise,

when T is empty, a tradable component does not exist and component ca cannot be
deployed onto hb; skip to step 8.

7. Place the bid by sending the bid reply message to ha.
8. Upon arrival of the AUCTION TERMINATION message, set hb’s state to free.

4.3 Analysis of the Two Algorithms
To ensure that an agent participates in a single auction at a time, we employed a distrib-
uted locking mechanism using the state variable for each agent as described in steps 2,
3, and 8 of the auctioneer’s algorithm, and steps 1, 2, and 8 of the bidder’s algorithm.
To avoid deadlocks and starvation, each auctioneer waits a random interval of time be-
fore the next attempt at starting an auction.

)),(),(()),(*),(),((),(
),(

atbtatbaatba

ba

hconcontributihconcontributiccfreqhhrelccfreqhcbid
hcbid

−−−−
=

)(ab hdomh ∈

),(),(baba hconcontributihcbid =

)(bhdepT ⊆

))}h()(()())(h)((

)()({

ab freeMemorycmemcmemfreeMemorycmem

cmemhdepcT

acompxcompxcomp

acompbx

+≤∧+

≤∈∀=

Tcx ∈

The worst-case time complexity analysis for each of the two algorithms is given be-
low (where k is the number of hosts and n is the number of components). Note that the
analysis of agent synchronization time complexity is not provided, since we adopted a
well-known distributed locking technique, whose complexity analysis is provided in
[22]. We also do not analyze the time complexity of performing the migration of com-
ponents between hosts, since a detailed analysis is provided in [19].
O(auctioneer) = O(step 1) + O(step 5) + O(step 6) = O(k*n) + O(n*k*n) + O(k)
=O(k*n2)
O(bidder) = O(step 2) + O(step 5) = O(k*n) + O(n) = O(k*n)

Finally, the auctioneer’s algorithm will be executed several times for each software
component. Some of these auctions may occur simultaneously within the entire system,
depending on the number of components on each host and the number of hosts within
each host’s domain. In the worst case (e.g., domain of each host is the entire set of hosts
H), the auctioneer’s algorithm executes in a sequential manner for each component, re-
sulting in the total complexity of DecAp to be n*O(auctioneer) = O(k*n3).

5 Discussion

Below we discuss the salient aspects of DecAp’s behavior and performance in more de-
tail.

Algorithm’s Guarantee to Find a Solution. In [18] we identified situations
where the centralized algorithms do not always find a solution (e.g., if the total number
of deployments that satisfy all the constraints from Figure 3. is very small). In such sit-
uations, DecAp can still find an improved deployment, since it focuses on localized, in-
cremental improvement to the overall availability.

Algorithm’s Convergence. DecAp performs a redeployment of components only if
it results in the overall system’s availability increase. For this reason, each auction guar-
antees that the system’s availability will either increase or remain the same (if the auc-
tioned component remains on the auctioneer host). As will be illustrated in section 6,
the algorithm typically converges after only a few auctions for each component, i.e.,
subsequent auctions do not change the deployment architecture of the system. As soon
as the given host becomes the “sweet spot” for all of its components, the auctioneer al-
gorithm on that host assumes the algorithm’s convergence with a certain degree of con-
fidence, and extends the period of time before attempting a new auction (i.e., the host’s
dormant time). If during subsequent auctions the host remains the “sweet spot” for its
components, its degree of confidence, and thus the period of dormancy, increase.

Algorithm’s Sensitivity to the Level of Awareness. DecAp provides a flexible
approach for capturing the level of awareness present at each node, through careful def-
inition of the aware function and dom relation in our model. DecAp’s model does not
make any assumptions about what constitutes awareness among two hosts (i.e., when
aware(hi,hj)=1). We simply set a given host’s domain (i.e., the dom relation) to the set
of all the hosts of which it is aware. The model can then be instantiated with an imple-
mentation-level definition of awareness. Some commonly used policies in determining
aware hosts are: directly connected hosts, proximity of hosts, number of node hops,
bandwidth or signal strength, and reliability of links. Figure 4. illustrates the effect of
using different policies for determining host awareness. While our algorithm is inde-

pendent of the policy that constitutes host awareness, the performance of the algorithm
is significantly affected by the level of awareness present at each host. We will demon-
strate the sensitivity of our algorithm to the level of awareness in the next section.

Location Constraints. In section 2.2 we discussed how using the loc and colloc
functions can be leveraged to capture constraints other than memory. For clarity the al-
gorithm presented in section 4 did not explicitly describe how the location constraints
remain satisfied throughout the algorithm’s execution. The constraint imposed by the
loc function is enforced by inviting the hosts to participate in an auction only if they sat-
isfy the loc constraint.The constraint imposed by the colloc function is enforced as fol-
lows: (1) when a component cannot be on the same host as the auctioned component,
the auctioneer simply does not invite the host that contains that component to the auc-
tion, and (2) when two component have to be on the same host, the components are
merged into a single virtual component and therefore always auctioned at the same
time. Also note that through the use of loc and colloc, the complexity of the algorithm
is reduced proportionally to the extent of the constraints imposed by the two functions
in the given system [18].

Consideration of Additional System Properties. For certain distributed sys-
tems, availability may not be the only, or the most crucial property. For example, tradi-
tional networked systems have extensively focused on minimizing communication la-
tencies. While minimizing latency was not our primary goal in developing DecAp, we
should point out that the algorithm’s objective (deploying frequently interacting com-
ponents on the same host or on hosts with reliable network links) does naturally result
in significant reductions of component communication latencies. We are currently try-
ing to quantify the exact impact of DecAp on latency. Another relevant issue is the in-
clusion of network bandwidth in the system model, and the resulting algorithm. As dis-
cussed in section 2.2, in certain situations the location and collocation constraints can
be leveraged to capture additional system parameters, including network bandwidth.
However, if bandwidth becomes a scarce resource in the system, it will need to be con-
sidered separately. Our experience with the centralized redeployment algorithms (see
section 6.2) indicates that this parameter can be easily added to the system model and
that the resulting change to the algorithms themselves is straightforward.

Figure 4. Domain of host A with different policies for
determining host awareness.

E

C

D

F

G

A

B

E

C

D

F

G

A

B

E

C

D

F

G

A

B

A) proximity based
awareness

B) Direct link based
awareness

C) Two hop link based
awareness

6 Evaluation

In this section we provide a description of our approach in evaluating the performance
of DecAp. We also provide a detailed comparison of DecAp’s performance against sev-
eral centralized algorithms. Note that since DecAp is the first decentralized solution to
the redeployment problem of which we are aware, we can only compare its performance
against the existing centralized solutions.

6.1 DecAp’s Implementation
In order to quickly assess the performance of DecAp on large numbers of redeployment
problems, involving large numbers of software components and hardware hosts, we im-
plemented a simulated version of DecAp that runs on a single physical host. The distri-
bution aspect of DecAp is simulated through the use of multiple, autonomous agents.
We simulated the decentralization aspect of DecAp through the use of multiple threads
and limited visibility among agents. DecAp was implemented in Java and integrated
with our deployment exploration environment DeSi. When DeSi’s user interface in-
vokes DecAp, a bootstrap thread instantiates an agent object for each host. Each agent
class is composed of two inner classes: auctioneer class and bidder class. Both auction-
eer and bidder classes have their own threads of execution, which are started once the
corresponding agent class is instantiated. Agents in the same domain are given access
to each other’s class variables. In our implementation of DecAp, we used direct links to
denote the awareness level of 1 (recall Figure 4.B). Subsequent levels of awareness cor-
respond to the number of intermediate hosts between a pair of hosts (recall Figure 4.C).
Auctioneer and bidder threads synchronize their interactions through message passing.
A shared data structure that holds the current deployment of the system is updated as a
result of each auction. DeSi’s bootstrap class calculates the overall availability of the
shared data structure in pre-specified time intervals. The algorithm terminates when the
availabilities at two consecutive time intervals are the same, which indicates that the al-
gorithm has converged to a solution.

6.2 Evaluation Criteria
In this section, we briefly describe three centralized algorithms we have developed pre-
viously for increasing a system’s availability by calculating a new deployment architec-
ture. A detailed explanation and evaluation of these algorithms is given in [18]. These
algorithms provide the basis for evaluating DecAp.

Exact Algorithm. This algorithm tries every possible deployment, and selects the
one that has maximum availability and satisfies the constraints posed by the memory
and restrictions on software component locations (exact maximum). This algorithm also
finds the average availability of all system deployments (exact average). The exact al-
gorithm guarantees at least one optimal deployment (assuming that at least one deploy-
ment is possible). The complexity of this algorithm in the general case (i.e., with no re-
strictions on component locations) is O(kn), where k is the number of hardware hosts,
and n the number of software components. For this reason, executing the exact algo-
rithm is only feasible for very small systems.

Unbiased Stochastic Algorithm. This algorithm generates different deployments
by randomly assigning each component to a single host from a set of component’s al-
lowable hosts. If the generated deployment satisfies all the constraints, the availability

of the produced deployment architecture is calculated. This process repeats a given
number of times and the deployment with the best availability is selected (unbiased
maximum). The average availability of all valid deployments is also calculated (unbi-
ased average). The complexity of this algorithm is O(n2). In [18] we have experimen-
tally shown that unbiased average does not significantly deviate from the exact average
and thus signifies the system’s “most likely” availability.

Greedy Algorithm. This algorithm incrementally assigns software components to
the hardware hosts. At each step of the algorithm, the goal is to select the assignment
that will maximally contribute to the availability function, by selecting the “best” host
and “best” software component. Selecting the best hardware host is performed by
choosing a host with the highest sum of network reliabilities with other hosts in the sys-
tem, and the highest memory capacity. Similarly, selecting the best software component
is performed by choosing the component with the highest frequency of interaction with
other components in the system, and the lowest required memory. Once found, the best
component is assigned to the best host, making certain that all the constraints are satis-
fied. The algorithm proceeds with searching for the next best component among the re-
maining components, until the best host is full. Next, the algorithm selects the best host
among the remaining hosts. This process repeats until every component is assigned to
a host. The availability of the resulting deployment (greedy maximum) is calculated.
The complexity of this algorithm is O(n3) [18].

6.3 Evaluation Results
Table 1 provides
the comparison of
DecAp with the
three centralized al-
gorithms, in cases
where the graph of
hosts is fully con-
nected (possibly
via unreliable
links). Columns 4
and 5 show the re-
sults of running the
algorithms for 25
different redeploy-
ment problems and
averaging the re-
sults using the
benchmarking op-
tion of DeSi. De-
cAp provided at least 40% improvement over the system’s “most likely” deployment.
On average, DecAp produced results that were better than the centralized algorithms’
results. However, in certain situations the performance of DecAp could suffer, due to
its reliance on the initial deployment. For example, in situations where some of the
“best” hosts (recall the above description of the greedy algorithm) in the system do not

Table 1: Comparison of DecAp’s performance in deployment
architectures with fully connected graph of hosts.

1 2 3 4 5

10
 c

om
ps

4

ho
st

s
1

pr
ob

le
m

50
 c

om
ps

15
 h

os
ts

1

pr
ob

le
m

25
0

co
m

ps
50

 h
os

ts
1p

ro
bl

em

10
 c

om
ps

4

ho
st

s
25

 p
ro

bl
em

s

50
 c

om
ps

15

 h
os

ts

25
 p

ro
bl

em
s

1 Exact maximum 0.816 infeasible infeasible 0.792 infeasible

2 Exact average 0.553 infeasible infeasible 0.525 infeasible

3 Unbiased maximum 0.756 0.611 0.512 0.699 0.544

4 Unbiased average 0.550 0.558 0.469 0.525 0.508

5 Greedy maximum 0.807 0.734 0.641 0.720 0.729

6 DecAp
Awareness level = 1

0.790 0.759 0.653 0.756 0.764

7 % improvement over the
unbiased averagea

a. calculated as 100% * (DecAp – unbiased average) / unbiased average

43 36 39 44 50

have any components initially deployed on them, they may not ever be selected as the
winners of any of the auctions.

Table 2 provides anoth-
er comparison of DecAp
with centralized algorithms
in cases where the graph of
hosts is not fully connected
(each column is labelled
with the percentage of
missing host-to-host links).
For each problem, the De-
cAp algorithm was execut-
ed three times with differ-
ent levels of awareness. As
the table indicates, the algo-
rithm’s performance is neg-
atively affected by the de-
crease in host inter-connec-
tivity. However, as long as
the graph of hosts is con-
nected, increasing the level of awareness improves DecAp’s performance significantly.
Columns 1-5 show such a scenario, where as a result of increasing the level of aware-
ness, the algorithm outperforms even the centralized algorithms. Column 6 shows an-
other scenario, where as a result of a very high percentage of missing links, “islands” of
hosts (i.e. subsets of hosts that are not connected to each other) are created and DecAp
is not able to outperform the greedy algorithm. Finally, row 8 shows that DecAp was
able to improve the availability by at least 60% over the original availability in the case
of a fairly connected architecture, and by at most 335% in the case of a fairly discon-
nected architecture.

Table 3 shows DecAp’s convergence to a solution. Each iteration corresponds to the
resulting availability of the overall system after auctioning each one of the components

Table 2: .Comparison of DecAp’s performance in deployment
architectures with varying levels of disconnected links among hosts.

1 2 3 4 5 6

50
 c

om
ps

15
 h

os
ts

20
%

 o
f l

in
ks

m
is

si
ng

50
 c

om
ps

15
 h

os
ts

50
%

 o
f l

in
ks

m
is

si
ng

50
 c

om
ps

15
 h

os
ts

80
%

 o
f l

in
ks

m
is

si
ng

10
0

co
m

ps
25

 h
os

ts
30

%
 o

f l
in

ks
m

is
si

ng
10

0
co

m
ps

25
 h

os
ts

60
%

 o
f l

in
ks

m
is

si
ng

10
0

co
m

ps
25

 h
os

ts
90

%
 o

f l
in

ks
m

is
si

ng

1 Original availability 0.427 0.265 0.176 0.385 0.227 0.06

2 Unbiased maximum 0.442 0.319 0.184 0.407 0.258 0.105

3 Unbiased average 0.442 0.284 0.146 0.375 0.219 0.084

4 Greedy maximum 0.604 0.530 0.339 0.590 0.411 0.283

5 DecAp
Awareness level = 1

0.644 0.479 0.301 0.613 0.445 0.194

6 DecAp
Awareness level = 2

0.747 0.582 0.349 0.618 0.455 0.250

7 DecAp
Awareness level = 3

0.747 0.582 0.367 0.618 0.460 0.261

8 % improvement over
original availability

74 119 108 60 102 335

Table 3: Demonstration of DecAp’s convergence.
Iteration
Number

10
 c

om
ps

4
ho

st
s

20
%

 o
f l

in
ks

m
is

si
ng

1
le

ve
l o

f
aw

ar
en

es
s

50
 c

om
ps

15
 h

os
ts

50
%

 o
f l

in
ks

m
is

si
ng

1
le

ve
l o

f
aw

ar
en

es
s

10
0

co
m

ps
25

 h
os

ts
70

%
 o

f l
in

ks
m

is
si

ng
1

le
ve

l o
f

aw
ar

en
es

s
25

0
co

m
ps

50
 h

os
ts

80
%

 o
f l

in
ks

m
is

si
ng

2
le

ve
ls

 o
f

aw
ar

en
es

s

Initial
Availability

0.450 0.254 0.174 0.099

1 0.776 0.423 0.312 0.219

2 0.881 0.483 0.334 0.231

3 0.910 0.500 0.342 0.243

4 0.933 0.503 0.350 0.248

5 0.974 0.519 0.354 0.250

6 0.974 0.529 0.360 0.253

7 0.974 0.529 0.360 0.253

% first itera-
tion / final
solution

79% 79% 86% 86%

exactly once. Note that the largest gain is achieved in the first iteration of the algorithm,
which shows that by just auctioning each component once, we can get a solution that is
at least 79% of the final solution. Also note that after the first iteration of the algorithm,
most components have found a “sweet spot”, which results in no further redeployment
of those components. This contributes to the quick convergence of the algorithm, typi-
cally around the fifth or sixth iteration. For the largest problem (shown in the last col-
umn of Table 3), DecAp’s execution time was 9.4s with the maximum auctioneer thread
wait of 10ms. However, a variation of DecAp that used thread notification executed the
same problem in 0.3s on a mid-range PC.1

7 Conclusions and Future Work

As the distribution, decentralization, and mobility of computing environments grow, so
does the probability that (parts of) those environments will need to operate in the face
of network disconnections. Our research is guided by the observation that, in these en-
vironments, a key determinant of the system’s ability to effectively deal with network
disconnections is finding the appropriate deployment architecture. While the redeploy-
ment problem addressed by our work has been identified in the existing literature, its
inherent complexity has either been ignored [1], thus making it infeasible for any real-
istic system, or highly restricted [7], thus reducing the solution’s usefulness. Further-
more, the existing solutions are not applicable to an emerging class of decentralized sys-
tems marked by the limited system knowledge and lack of centralized control.

This paper has presented an efficient decentralized algorithm for improving a dis-
tributed, mobile, component-based system’s availability via redeployment. The algo-
rithm is currently being integrated into an existing middleware platform [15] with built-
in capabilities for system monitoring and redeployment [19]. The algorithm has been
thoroughly assessed via a series of benchmarks. While our experience thus far has been
very positive, a number of pertinent questions remain unexplored. In addition to assess-
ing the performance of DecAp in a truly distributed environment, our future work will
span issues such as (1) extending the algorithm to identify “good” hosts in the system
even when they initially do not have any deployed components, (2) expanding our so-
lution to include additional system parameters (e.g., battery power, display size, system
software available on a given host, and so on), and (3) leveraging techniques such as
simulated annealing [21] to further improve the algorithm’s performance. These issues
represent but a small subset of related concerns that are emerging in the domain of dis-
tributed, mobile computation and that will increasingly shape the software development
of the future.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant Numbers CCR-9985441 and ITR-0312780. Effort also partially supported by the
Jet Propulsion Laboratory.

1. Since we only wanted to illustrate the execution time of the algorithm’s logic, and not that of
agents’ synchronization, to obtain this result we leveraged the thread notification technique in-
stead of the random thread wait times described in Section 4. Note that employing thread notifi-
cation is possible only in a single-processor simulation of the algorithm.

9 References

1. M. C. Bastarrica, et al. A Binary Integer Programming Model for Optimal Object Distribu-
tion. 2nd Int’l. Conf. on Principles of Distributed Systems, Amiens, France, Dec. 1998.

2. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans. on Soft-
ware Engineering, May 1998.

3. A. J. Ganesh, A. Kermarrec, L. Massoulie. Peer-to-Peer Membership Management for Gos-
sip-Based Protocols, IEEE Transactions on Computers, Vol. 52, pp. 139-149, Feb. 2003.

4. D. Garlan, et al. Using Gauges for Architecture-Based Monitoring and Adaptation. Work-
ing Conf. on Complex and Dynamic Systems Arch., Brisbane, Australia, Dec. 2001.

5. D. K. Gifford, Weighted Voting for Replicated Data. In Proceedings of the 7th Symposium
on Operating System Principles, New York, 1979, pp. 150-162.

6. B. Hardekopf, et. al. A Decentralized Voting Algorithm for Increasing Dependability in
Distributed Systems. 5th World Multi- Conference on Systemic, Cybernetics and Informat-
ics (SCI2001), 2001.

7. G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. 3rd Sympo-
sium on Operating System Design and Implementation, New Orleans, LA, Feb. 1999.

8. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossa-
ries. New York, NY: 1990.

9. W. Jia, J. Kaiser, E. Nett. An Efficient and Reliable Group Multicast Protocol. Second
International Symposium on Autonomous Decentralized Systems. Phoenix, Arizona., April
1995.

10. B. Johnson. Design and Analysis of Fault Tolerant Digital Systems, Addison-Wesley, 1989.
11. T. Kichkaylo et al. Constrained Component Deployment in Wide-Area Networks Using AI

Planning Techniques. Int’l. Parallel and Distributed Processing Symposium. April 2003.
12. R. Kieckhafer, C. Walter, A. Finn, P. Thambidurai. The MAFT Architecture for Distributed

Fault Tolerance. IEEE Transactions On Computers, Vol. 37, No. 4, April 1988, pp. 398-
405.

13. D. Kreps. Game Theory and Economic Modeling. Clarendon Press, Oxford, 1990.
14. E. A. Lee. Embedded software. Advances in Computers, 56, 2002.
15. S. Malek, M. Mikic-Rakic and N. Medvidovic. Prism-MW: A Style-Aware Architectural

Middleware for Resource Constrained, Distributed Systems. IEEE Trans. on Software
Engineering. Vol. 31, No. 3, March 2005.

16. N. Medvidovic, et. al. Software Architectural Support for Handheld Computing. IEEE
Computer, September 2003.

17. M. Mikic-Rakic et. al. A Tailorable Environment for Assessing the Quality of Deployment
Architectures in Highly Distributed Settings. 2nd International Working Conference on
Component Deployment (CD 2004), Edinburgh, UK, May 2004.

18. M. Mikic-Rakic, et. al. Improving Availability in Large, Distributed, Component-Based
Systems via Redeployment. In Proceeding of the 3rd International Working Conference on
Component Deployment (CD 2005), Grenoble, France, Nov. 2005.

19. M. Mikic-Rakic and N. Medvidovic. Software Architectural Support for Disconnected
Operation in Highly Distributed Environments. International Symposium on Component-
based Software Engineering (CBSE7), Edinburgh, UK, May 2003.

20. P. Oreizy et al. Architecture-Based run-time Software Evolution. ICSE’98, Kyoto, Japan,
April 1998.

21. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Engle-
wood Cliffs, NJ, 1995.

22. A. Tanenbaum. Computer Networks. Prentice Hall, Englewood Cliffs, New Jersey.
23. C. A. Waldpurger, et. al. Spawn. A Distributed Computational Economy. IEEE Trans. on

Software Engineering, February 1992
24. J. Weissman. Fault-Tolerant Wide-Area Parallel Computing. IPDPS 2000 Workshop, Can-

cun, Mexico, May 2000.
25. Y. Weinsberg, and I. Ben-Shaul. A Programming Model and System Support for Discon-

nected-Aware Applications on Resource-Constrained Devices. ICSE 2002, Orlando, FL.

