
ABSTRACT
A distributed software system’s deployment architecture can have a
significant impact on the system’s properties, which depend on vari-
ous system parameters, such as network bandwidth, frequencies of
software component interactions, and so on. Recent studies have
shown that the quality of deployment architectures can be improved
significantly via active system monitoring, efficient estimation of the
improved deployment architecture, and system redeployment. How-
ever, the lack of a common framework for improving a system’s
deployment architecture has resulted in ad hoc solutions. In this
paper, we present an extensible framework that guides the design and
development of solutions to this problem, enables the extension and
reuse of the solutions, and facilitates autonomic analysis and rede-
ployment of a system’s deployment architecture.

1 INTRODUCTION
Consider the following scenario, representative of a large number of
modern distributed software applications. The scenario addresses dis-
tributed deployment of personnel in cases of natural disasters, search-
and-rescue efforts, and military crises. A computer at “Headquarters”
gathers information from the field and displays the current status: the
locations and status of the personnel, vehicles, and obstacles. The
headquarters computer is networked to a set of PDAs used by “Com-
manders” in the field. The commander PDAs are connected directly
to each other and to a large number of “troop” PDAs. These devices
communicate and help to coordinate the actions of their distributed
users. Such an application is frequently challenged by network dis-
connections during system execution. Even when the hosts are con-
nected, the bandwidth fluctuations and the unreliability of network
links affect the system’s properties such as availability and latency.

For any such large, distributed system many deployment architec-
tures (i.e., distributions of the system’s software components onto its
hardware hosts) will be typically possible. Some of those deployment
architectures will be more effective than others in terms of the
desired system characteristics such as scalability, evolvability, mobil-
ity, latency, security, and availability. For example, a distributed sys-
tem’s availability can be improved if the system is deployed such that
the most critical, frequent, and voluminous interactions occur either

locally or over reliable and capacious network links.

Finding a deployment architecture that exhibits desirable system
characteristics (e.g., low latency, high availability) or satisfies a
given set of constraints (e.g., processing requirements of components
deployed onto a host do not exceed that host’s CPU capacity) is a
challenging problem: (1) many system parameters (e.g. network
bandwidth, reliability, frequencies of component interactions, etc.)
influence the selection of an appropriate deployment architecture; (2)
these parameters are typically not known at system design time and
may fluctuate at run time; and (3) the space of possible deployment
architectures is extremely large, thus finding the optimal deployment
is rarely feasible [6]. Furthermore, different desired system character-
istics may be conflicting. For example, a deployment architecture
that satisfies a given set of constraints and results in specific avail-
ability may at the same time exhibit high latency.

The above problem is further complicated in the context of emerging
class of decentralized systems, which are characterized by the limited
system-wide knowledge and lack of a known, single point of control.
Selection of a globally appropriate deployment architecture has to be
made in a decentralized fashion, using partial, local information.

In our previous work [4,6,7,8] we have identified and addressed a
subset of the above challenges in the context of disconnected opera-
tion. We have developed a methodology for improving a distributed
system’s availability via (1) active system monitoring, (2) estimation
of the improved deployment architecture, and (3) redeployment of
(parts of) the system to effect the improved deployment architecture.
Although effective in improving system availability in the context of
disconnected operation, our methodology was not directly extensible
to include system characteristics other than availability.

The work described in this paper builds on our previous experience to
address the above challenges. We have developed an extensible
framework for analyzing and improving distributed deployment
architectures via run time redeployment. The framework is extensible
along several dimensions: (1) inclusion of arbitrary system parame-
ters (hardware host properties, network link properties, software
component properties, software interaction properties); (2) inclusion
of appropriate monitors to extract these parameters from a running
system; (3) specification of desirable system characteristics (e.g.,
high availability, low latency, desired level of security); (4) plugga-
bility of different algorithms targeted at improving the desired char-
acteristics; and (5) flexible support for both centralized and
decentralized systems. The framework’s objective is to provide a
library of pluggable, reusable, and customizable components that can
be leveraged in addressing a variety of distributed system deploy-
ment scenarios. Although this work is still in progress, our experi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSS'04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

An Extensible Framework for Autonomic Analysis and
Improvement of Distributed Deployment Architectures

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{malek,marija,neno}@usc.edu

Sam Malek Marija Mikic-Rakic Nenad Medvidovic

ence with the framework has been promising. We illustrate the design
and implementation of two different instances of the framework.

The remainder of the paper is organized as follows. Section 2 briefly
outlines the related work. Section 3 presents the deployment
improvement framework. Sections 4 discusses our supporting tools
that facilitate the realization of the framework. Section 5 discusses
some of our experience with the framework to date. The paper con-
cludes with an outline of the future work.

2 RELATED WORK
The problem of improving a system’s deployment architecture has
been studied by several researchers, including I5 [1], Coign [2],
Sekitei [3], and our own prior work [4,6]. While all of these projects
propose novel solutions for improving a system’s properties through
the redeployment of software components, the implementation and
evaluation of these solutions is done in an ad hoc way, making it hard
to adopt and reuse these results.

Related to our work is the research on architecture based adaptation
frameworks, examples of which are [9,10]. As opposed to general
purpose architecture-based adaptation frameworks, we are only con-
sidering a specific kind of architecture-based adaptation (i.e. rede-
ployment of components). Therefore, we are able to create a more
detailed, and hopefully more practical framework that guides the
developers in the design of their solutions.

3 THE FRAMEWORK
In this section we describe our deployment improvement frame-
work’s components, the associated functionality of each component,
and the dependency relationships that guide their interaction. We will
also describe the framework’s instantiation for two classes of solu-
tions developed with the goal of improving deployment architectures.

3.1 Framework Design
Figure 1 shows the framework’s overall structure and the relation-
ships among its components. Note that each of the framework’s com-
ponents can have an internal architecture that is composed of one or
more lower-level components. Furthermore, the internal architecture
of each component can be distributed (i.e., different internal low-
level components may communicate across address spaces). The
arrows represent the flow of data among the framework components.

Model. This component maintains the representation of the system’s
deployment architecture. The model is composed of four parts: hosts,
components, physical links between hosts, and logical links between
components. Each of these parts of the model could be associated
with an arbitrary set of parameters. For example, each host can be
characterized by the amount of available memory, processing speed,
battery power (in case a mobile device is used), installed software,
and so on. The selection of a set of parameters to be modeled
depends on the set of criteria (i.e., objectives) that a system’s deploy-
ment architecture should satisfy. For example, if minimizing latency
is one of the objectives, the model should include parameters such as
physical network link delays and bandwidth. However, if the objec-
tive is to improve a distributed system’s security, other parameters,
such as security of each network link, need to be modeled.

Algorithm. Each objective is formally specified and can either be an
optimization problem (e.g., maximize availability, minimize latency)
or constraint satisfaction problem (e.g., total memory of components
deployed onto a host cannot exceed that host’s available memory).
Given an objective and the relevant subset of the system’s model, an
algorithm searches for a deployment architecture that satisfies the
objective. An algorithm may also search for a deployment architec-
ture that simultaneously satisfies multiple objectives (e.g., maximize
availability while satisfying the memory constraints).

In terms of precision and computational complexity, there are two
general categories of algorithms: exact and approximative. Exact
algorithms produce optimal results (e.g., deployments with minimal
overall latency), but are exponentially complex, which limits their
applicability only to systems with very small numbers of components
and hosts. On the other hand, approximative algorithms in general
produce suboptimal solutions, but have polynomial time complexity,
which makes them more usable.

In terms of centralization, there are also two classes of algorithms:
centralized, which are executed in a single physical location, or
decentralized, which are executed on multiple, synchronized hosts. In
Section 5, we describe examples of both centralized and decentral-
ized algorithms in more detail.

Analyzer. Analyzers are meta-level algorithms that leverage the
results obtained from the algorithm(s) and the model to determine a
course of action for satisfying the system’s overall objective. In situa-
tions where several objective functions need to be satisfied, an ana-
lyzer resolves the results from the corresponding algorithms to
determine the best deployment architecture. However, note that an
analyzer cannot always guarantee satisfaction of all the objectives.
Analyzers are also capable of modifying the framework’s behavior
by adding or removing low-level components from the framework’s
high-level components. For example, once an analyzer determines
that the system’s parameters have changed significantly, it may
choose to add a new low-level algorithm component that computes
better results for the new operational scenario. Analyzers may also
hold the history of the system’s execution by logging fluctuations of
the desired objectives and the parameters of interest. System’s execu-
tion profile allows the analyzer to fine-tune the framework’s behavior
by providing information such as system’s stability, work load pat-
terns, and the results of previous redeployments.

Monitor. To determine the run time values of the parameters in the
model, a monitor is associated with each parameter. Each monitor
contains an implementation platform-dependent part that hooks intoFigure 1. Deployment improvement framework.

Deployment Improvement Framework

Analyzer

Model

Effector

User InputMonitor

Algorithm

Implementation
Platform

System Architect

the platform and performs the actual monitoring of the system. The
monitored data is passed to an implementation platform-independent
part that determines if the data is stable enough [8] to be passed onto
the model. The monitor provides a threshold variable that is set to
determine the level of fluctuation acceptable for the monitored data
to be considered stable.

Effector. Just like monitors, effectors are also composed of two
parts: (1) an implementation platform-dependent part that hooks into
the platform to perform the redeployment of software components;
(2) and an implementation platform-independent part that receives
the redeployment instructions from the analyzer and coordinates the
redeployment process. Depending on the implementation platform’s
support for redeployment, effectors may also need to perform tasks
such as buffering, hoarding, or relaying of the exchanged events dur-
ing component redeployment.

User Input. Some system parameters may not be easily monitored
(e.g., security of a network link). Also, some parameters may be sta-
ble throughout the system’s execution (e.g., CPU speed on a given
host). The values for such parameters are provided by the system’s
architect at design time. We are assuming that the architect is able to

provide a reasonable bound on the values of system parameters that
cannot easily be monitored. Furthermore, the architect is also capable
of providing constraints on the allowable deployment architectures.
Examples of these types of constraints are location and collocation
constraints. Location constraints specify a subset of hosts on which a
given component may be legally deployed. Collocation constraints
specify a subset of components that either must be or may not be
deployed on the same host.

3.2 Instantiating the Framework
Figure 2 shows our framework’s instantiation for a centralized sys-
tem. Centralized systems have a Master Host (i.e. central host) that
has complete knowledge of the distributed system parameters. Mas-
ter Host contains a Centralized Model, which maintains the global
model of the distributed system. The Centralized Model is populated
by the data it receives from Master Monitor and Centralized User
Input. The Master Monitor receives all of the monitoring data from
the Slave Monitors on other hosts. Once all monitoring data from all
slave Hosts is received, the Master Monitor forwards the monitoring
data to the Centralized Model. Each Slave Host contains a Slave
Effector, which receives redeployment instructions from the Master
Effector, and a Slave Monitor, which monitors the Slave Host’s
Implementation Platform and sends the monitoring data back to the
Master Monitor. Finally, the Master Effector receives a sequence of
command instructions from the Centralized Analyzer and distributes
the redeployment commands to all the Slave Effectors.

Figure 3 shows our framework’s instantiation for a decentralized sys-
tem. Unlike a centralized software system, a decentralized system
does not have a single host with the global knowledge of system
parameters. Each host has a Local Monitor and a Local Effector that
are only responsible for the monitoring and redeployment on the host
on which they are located. Each host has a Decentralized Model that
contains a subset of the system’s overall model, populated by the data
received from the Local Monitor and the Decentralized Model of the
hosts to which this host is connected. Therefore, if there are two hosts
in the system that are not aware of (i.e., connected to) each other,
then the respective models maintained by the two hosts do not con-
tain each other’s system parameters. Each host also has a Decentral-
ized Algorithm that synchronizes with its remote counterparts to find

Figure 2. Framework’s centralized instantiation.

Master HostSlave Host

Framework Framework

Centralized Analyzer

Centralized Model

Master Effector

Centralized User
InputMaster Monitor

Centralized Algorithm

Master Host
Implementation

Platform System Architect

Slave Effector

Slave Monitor

Slave Host
Implementation

Platform

Host 2

Framework

Decentralized
Analyzer 2

Decentralized Model
2

Local Effector 2

Local User Input 1Local Monitor 2

Decentralized
Algorithm 2

Host 2
Implementation

Platform

Host 1

Framework

Decentralized
Analyzer 1

Decentralized Model
1

Local Effector 1

Local User Input 1Local Monitor 1

Decentralized
Algorithm 1

Host 1
Implementation

Platform System Architect 1 System Architect 2

Figure 3. Framework’s decentralized instantiation.

a common solution. Finally, in a simi-
lar way, the Decentralized Analyzer on
each host synchronizes with its remote
counterparts to determine an improved
deployment architecture and effect it.

4 SUPPORTING TOOLS
While the framework’s design is inde-
pendent of any specific tool or envi-
ronment, appropriate tool support
facilitates the implementation, and
automation, of specific deployment
improvement solutions using the
framework. In this section we briefly
outline two supporting tools that we
have leveraged in our work to date.

4.1 Implementation Platform
While the implementation platform is
not an integral part of the framework,

the framework depends on such a platform to provide support for
monitoring the system and redeploying the components. Some of the
requirements for the implementation platform are support for compo-
nent-based development, event-based interaction, ability to migrate
components, and ability to unintrusively monitor the system.

An example of an implementation platform that satisfies the above
requirements is Prism-MW [5]. Prism-MW is a middleware platform
that enables efficient implementation, deployment, and execution of
distributed software systems in terms of their architectural elements:
components, connectors, configurations, and events. It also provides
extensible support for both monitoring and redeployment of
resources at the architectural level. We have leveraged Prism-MW in
implementing the above described monitor and effector components
of the framework.

4.2 User Interface
DeSi [7] is a visual deployment exploration environment that sup-
ports specification, manipulation, and visualization of system param-
eters for large-scale and highly distributed systems. By leveraging
DeSi, an architect is able to enter desired system parameters into the
model, and also to manipulate those parameters and study their
effects. For example, the architect is able to use a graphical environ-
ment to enter location and collocation constraints into the frame-
work’s model. DeSi also provides a visualization environment for
graphically displaying the system’s monitored data, deployment
architecture, and the results of analyses. We have leveraged DeSi in
implementing the User Input component of our framework.

5 EXPERIENCE TO DATE
In this section, we describe our experience with the implementation
of both the centralized and the decentralized instantiation of the
framework for: (1) maximizing a distributed system’s overall avail-
ability; and (2) minimizing the system’s overall latency.

5.1 Centralized Improvement of Deployment
Architecture
In order to improve the objective of maximizing a system’s availabil-
ity and minimizing the latency we first created the appropriate model.
The model is composed of a hierarchical structure of components and
hosts that includes the following properties:
• Each component has a required memory size property.
• Each hosts has an available memory size property.
• Each logical link among components has a frequency of

interaction and an average event size property.
• Each physical link among hosts has a network reliability, a

network bandwidth, and a network transmission delay property.
• The system’s model contains the location and collocation

constraints, discussed in Section 3, that restrict the space of valid
deployments.

The values for the host’s available memory, component’s required
size, location and collocation constraints are all entered into the
model by the user using the DeSi tool. All the modeled properties
that are not entered by the user are monitored at run time and added
to the model automatically. In the development of the implementa-
tion platform-dependent part of the monitor, we relied on Prism-
MW’s support for monitoring.

We have used three centralized algorithms, called Exact, Stochastic,
and Avala [6]. The objective of all these algorithms is to maximize

the system’s availability by finding a deployment architecture such
that the most critical, frequent, and voluminous interactions occur
either locally or over reliable and capacious network links. Below we
provide a high-level overview of these algorithms.

The exact algorithm tries every possible deployment, and selects the
one that results in maximum availability and satisfies the constraints
posed by the memory, bandwidth, and restrictions on software com-
ponent locations. The exact algorithm guarantees at least one optimal
deployment (assuming that at least one deployment is possible). The
complexity of this algorithm in the general case (i.e., with no restric-
tions on component locations) is O(kn), where k is the number of
hardware hosts, and n the number of software components. By fixing
a subset of m components to selected hosts, the complexity reduces to
O(kn-m).

The stochastic algorithm randomly orders all the hosts and all the
components. Then, going in order, it assigns as many components to
a given host as can fit on that host, ensuring that all of the constraints
are satisfied. Once the host is full, the algorithm proceeds with the
same process for the next host in the ordered list of hosts, and the
remaining unassigned components in the ordered list of components,
until all components have been deployed. This process is repeated a
desired number of times, and the best obtained deployment is
selected. Since it needs to calculate the availability for every deploy-
ment, the complexity of this algorithm is O(n2).

Avala is a greedy algorithm that incrementally assigns software com-
ponents to the hardware hosts. At each step of the algorithm, the goal
is to select the assignment that will maximally contribute to the avail-
ability function, by selecting the “best” host and “best” software
component. Selecting the best hardware host is performed by choos-
ing a host with the highest sum of network reliabilities and band-
widths with other hosts in the system, and the highest memory
capacity. Similarly, selecting the best software component is per-
formed by choosing the component with the highest frequency of
interaction with other components in the system, and the lowest
required memory. Once found, the best component is assigned to the
best host, making certain that the locational and collocational con-
straints are satisfied. The algorithm proceeds with searching for the
next best component among the remaining components, until the best
host is full. Next, the algorithm selects the best host among the
remaining hosts. This process repeats until every component is
assigned to a host. The complexity of this algorithm is O(n3).

Our framework’s analyzer component automatically decides which
one of the algorithms to run based on the following factors:
• The size of the architecture — For example, the exact algorithm

finds the optimal solution, but due to its complexity it can only be
used for architectures with very small numbers of hosts (on the
order of 5) and components (on the order of 15). Therefore, for
large architectures either Avala or stochastic is used.

• The system’s availability profile — Analyzer holds a record of the
fluctuations in the system’s availability (caused by changes in
system parameters) that is used to determine when the system
should be redeployed and what algorithm should be invoked. For
example, the analyzer selects a more expensive algorithm to run if
the system is stable (i.e., the system’s availability does not
fluctuate significantly). On the other hand, if the system is
unstable, the analyzer runs a less expensive algorithm that could
produce faster results for the immediate improvement of the

system’s availability.
• The system’s overall latency — The algorithms used in this

example also typically decrease the system’s overall latency [6].
However, in rare situations where this is not the case, the analyzer
either disallows the results of the algorithms to take effect or
modifies the solution such that it does not significantly increase the
system’s overall latency.

Once the analyzer selects the most appropriate deployment architec-
ture, it creates the appropriate set of redeployment instructions and
sends it to the Master Effector. The Master Effector then forwards the
instructions to the appropriate Slave Effectors, which leverage Prism-
MW’s support for the redeployment of software components in the
manner described in [8].

5.2 Decentralized Improvement of Deployment
Architecture
In the development of the decentralized solution, we were able to
reuse the centralized model by extending it to include the notion of
“awareness”. By “awareness” we denote the extent of each host’s
knowledge about the global system parameters. The Decentralized
Model on each hosts synchronizes its local model with the remote
hosts that it is aware of (i.e., directly connected to), by sending
streams of data whenever the model is modified.

Unlike the centralized solution, getting the user input and monitoring
is done separately and independently on each host. Similarly to the
centralized solution, we leverage DeSi and Prism-MW in gathering
data about the system parameters.

We have used a decentralized algorithm, called DecAp [4], that is
based on an auction-based protocol to find a solution that maximize
the system’s overall availability. In DecAp, each Decentralized Algo-
rithm component acts as an agent and may conduct or participate in
auctions. Each host’s agent initiates an auction for the redeployment
of its local components, assuming none of its neighboring (i.e., con-
nected) hosts is already conducting an auction. The auction initiation
is done by sending to all the neighboring hosts a message that carries
information about a component to be redeployed (e.g., name, size,
and so on). The agents receiving this message have a limited time to
enter a bid on the component before the auction closes. The bidding
agent on a given host calculates an initial bid for the auctioned com-
ponent, by considering the frequency and volume of interaction
between components on its host and the auctioned component. Once
the auctioneer has received all the bids, it calculates the final bid
based on the received information. The host with the highest bid is
selected as the winner and the component is redeployed to it. The
complexity of this algorithm is O(k*n3).

The functionality of the decentralized analyzer remains very similar
to the centralized version, except that the analyzer uses either the vot-
ing or the polling protocol to decide on the appropriate course of
action. Once a redeployment decision is made by the analyzers, the
redeployment instructions are sent out to the Local Effectors, which
collaborate in performing the redeployment by leveraging Prism-
MW’s support for redeployment, described in [8].

6 CONCLUSION AND FUTURE WORK
A distributed software system’s deployment architecture can have a
significant impact on the system’s properties. Finding a deployment
architecture that exhibits desirable system characteristics is a chal-

lenging problem. The lack of a common design framework for
improving the system’s deployment architecture exacerbates the
complexity of this problem. In this paper we have presented a design
framework for analyzing and improving distributed deployment
architectures, and our experience to date with the implementation of
the framework for improving system availability and latency in both
centralized and decentralized environments. Our initial evaluations
indicate that by leveraging the framework we are able to increase the
potential for creating pluggable, extensible, and reusable components
that could be used to improve deployment architectures in many dif-
ferent scenarios. In our future work we will focus on implementing
and evaluating solutions for improving system characteristics beyond
availability and latency. We also plan to devise mitigating techniques
for situations where different desired system characteristics may be
conflicting. These tasks will provide a basis for further assessment
and evaluation of our framework.

7 Acknowledgements
This material is based upon work supported by the National Science
Foundation under Grant Numbers CCR-9985441 and ITR-0312780.
Effort also partially supported by the Jet Propulsion Laboratory.

8 REFERENCES
[1] M. C. Bastarrica, et al. A Binary Integer Programming Model for

Optimal Object Distribution. 2nd Int’l. Conf. on Principles of
Distributed Systems, Amiens, France, Dec. 1998.

[2] G. Hunt and M. Scott. The Coign Automatic Distributed Parti-
tioning System. 3rd Symposium on Operating System Design and
Implementation, New Orleans, LA, Feb. 1999.

[3] T. Kichkaylo et al. Constrained Component Deployment in
Wide-Area Networks Using AI Planning Techniques. Int’l. Par-
allel and Distributed Processing Symposium, April 2003.

[4] S. Malek et. al. A Decentralized Redeployment Algorithm for
Improving the Availability of Distributed Systems. Technical
Report USC-CSE-2004-506, 2004.

[5] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural
Middleware for Programming-in-the-Small-and-Many. ACM/
IFIP/USENIX International Middleware Conference (Middle-
ware 2003), Rio de Janeiro, Brazil, June 2003.

[6] M. Mikic-Rakic, et. al. Improving Availability in Large, Distrib-
uted, Component-Based Systems via Redeployment. Technical
Report USC-CSE-2003-515, 2003.

[7] M. Mikic-Rakic et. al. A Tailorable Environment for Assessing
the Quality of Deployment Architectures in Highly Distributed
Settings. 2nd Int’l Working Conf. on Component Deployment
(CD 2004), Edinburgh, Scotland, May 2004.

[8] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected
Operation via Architectural Self-Reconfiguration. Int’l Conf. on
Autonomic Computing (ICAC'04), New York, May 2004.

[9] Oreizy, P., Medvidovic, N., and Taylor, R.N. Architecture Based
run time Software Evolution. International Conference on Soft-
ware Engineering (ICSE’98). Kyoto, Japan, April 1998.

[10]S. W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, N. Hu. Soft-
ware Architecture-Based Adaptation for Grid Computing. 11th
IEEE International Symposium on High Performance Distrib-
uted Computing (HPDC'02), Edinburgh, Scotland, July 2002.

