
Abstract
A distributed software system’s deployment architecture
can have a significant impact on the system’s availability,
which depends on various system parameters, such as net-
work bandwidth, frequencies of software component inter-
actions, and so on. Existing system deployment tools lack
support for monitoring, visualizing, and analyzing different
factors that influence availability. They also lack support
for modifying a running system’s deployment to improve its
availability. In this paper, we present an approach for runt-
ime assessment of relevant system parameters, their visual-
ization, and estimation and effecting of deployment
architectures for large-scale, highly distributed systems.

1 Introduction
For any large, distributed system, many deployment

architectures (i.e., distributions of the system’s software
components onto its hardware hosts) will be typically pos-
sible. Some of those deployment architectures will be more
effective than others in terms of the desired system charac-
teristics such as scalability, evolvability, mobility, and
dependability. Availability is an aspect of dependability,
defined as the degree to which the system is operational
and accessible when required for use [4]. In the context of
distributed environments, where a most common cause of
(partial) system inaccessibility is network failure, we quan-
tify availability as the ratio of the number of successfully
completed inter-component interactions in the system to
the total number of attempted interactions over a period of
time. In other words, availability in distributed systems is
greatly affected by the properties of the network, including
its reliability and bandwidth.

Maximizing the availability of a given system may thus
require the system to be redeployed such that the most crit-
ical, frequent, and voluminous interactions occur either
locally or over reliable and capacious network links. How-
ever, finding the actual deployment architecture that maxi-
mizes a system’s availability is an exponentially complex
problem that may take years to resolve for any but very
small systems [8]. Also, even a deployment architecture
that increases the system’s current availability by a desired
amount cannot be easily found because of the many param-
eters that influence this task: number of hardware hosts,
available memory and CPU power on each host, network
topology, capacity and reliability of network links, number
of software components, memory and processing require-

ments of each component, their configuration (i.e., soft-
ware topology), frequency and volume of interaction
among the components, and so forth. For these reasons,
support for monitoring and visualizing relevant system
parameters, estimating the deployment architecture based
on these parameters in a manner that produces the desired
(increase in) availability, and automatic effecting of the
estimated deployment architecture is required.

In this paper we describe a three-stage approach to
addressing the redeployment problem: (1) capturing and
displaying the monitoring data from a running distributed
system; (2) visualizing and exploring the system’s deploy-
ment architecture; and (3) automatically updating the sys-
tem’s deployment architecture. To this end, we have
combined capabilities of a visual exploration tool, DeSi [6]
and an architectural middleware, Prism-MW [7]. DeSi sup-
ports specification, manipulation, visualization, and
(re)estimation of deployment architectures for large-scale,
highly distributed systems, while Prism-MW provides runt-
ime facilities for monitoring a distributed system to assess
the relevant system parameters, as well as support for
effecting the desired redeployment architecture. Our sup-
port has been successfully evaluated on several examples.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem of increasing the availability of
distributed systems, and outlines our approach. Section 3
presents an overview of DeSi and Prism-MW. Sections 4,
5, and 6 present the three stages of the redeployment pro-
cess outlined above. The paper concludes with overviews
of related and future work.

2 Problem and Approach
We describe a distributed system as:

• a set of n components with their properties: memory of
each component and its frequencies of interaction with
other components,

• a set of k hosts with their properties: available memory
on each host, and its reliability of connectivity with other
hosts, and

• a set of constraints that a valid deployment architecture
must satisfy (e.g., the sum of memories of the compo-
nents that are deployed onto a given host may not exceed
the available memory on that host).

We define a system’s availability A as the ratio of the
number of successfully completed interactions in the sys-
tem to the total number of attempted interactions, as fol-

Improving Availability of Distributed Event-Based Systems
via Run-Time Monitoring and Analysis

Marija Mikic-Rakic, Sam Malek, Nels Beckman, and Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

{marija,malek,nbeckman,neno}@usc.edu

lows:

where function f denotes the system’s deployment architec-
ture (i.e., f(ci)= hj denotes that component ci is deployed on
host hj). Function freq captures the frequency of interaction
among a pair of components, and function rel captures net-
work reliability between a pair of hosts. The goal is to find
a valid deployment f such that the system’s availability is
maximized.1 In the most general case, the number of possi-
ble deployments is kn. However, some of these deploy-
ments may be invalid (i.e., they may not satisfy the
required constraints).

Our approach, illustrated in Figure 2, employs runtime
redeployment to increase a system’s availability by (1)
monitoring the system, (2) visualizing, estimating, and ana-
lyzing its redeployment architecture, and (3) effecting the
selected redeployment architecture. We leverage an archi-
tectural middleware, Prism-MW, to support runtime system
monitoring. The monitoring information is then provided
to our DeSi tool for system visualization and analysis. We
have developed several algorithms that analyze and esti-
mate improvements in deployment architectures [5,8].
Finally, after using DeSi to select the desired deployment
architecture, Prism-MW facilities are leveraged to effect
the selected deployment architecture.

3 Foundation
DeSi [6] is a visual deployment exploration environ-

ment that supports specification, manipulation, visualiza-
tion, and (re)estimation of deployment architectures for
large-scale, highly distributed systems. DeSi allows an
engineer to rapidly explore the space of possible deploy-
ments for a given system (real or postulated), determine the
deployments that will result in greatest improvements in
availability (while, perhaps, requiring the smallest changes
to the current deployment architecture), and assess a sys-
tem’s sensitivity to and visualize changes in specific
parameters (e.g., the reliability of a network link) and
deployment constraints (e.g., two components must be
located on different hosts). DeSi allows one to easily inte-
grate, evaluate, and compare different algorithms targeted
at improving system availability [8] in terms of their feasi-
bility, efficiency, and precision. As will be detailed in the
remainder of this section, we have extended DeSi to allow
its integration with any distributed middleware platform
that supports system monitoring and runtime component
deployment.

Prism-MW [7] is an extensible middleware platform,
that enables efficient implementation, deployment, and
execution of distributed software systems in terms of their
architectural elements: components, connectors, configura-
tions, and events [10]. For brevity, Figure 1 shows the sim-

plified class design view of Prism-MW. Brick is an abstract
class that encapsulates common features of its subclasses
(Architecture, Component, and Connector). The Architec-
ture class records the configuration of its components and
connectors, and provides facilities for their addition,
removal, and reconnection, possibly at system runtime. A
distributed application is implemented as a set of interact-
ing Architecture objects, communicating via Distribution-
Connectors across process or machine boundaries.
Components in an architecture communicate by exchang-
ing Events, which are routed by Connectors. Finally,
Prism-MW associates the IScaffold interface with every
Brick. Scaffolds are used to schedule and dispatch events
using a pool of threads in a decoupled manner. IScaffold
also directly aids architectural self-awareness by allowing
the runtime probing of a Brick’s behavior, via different
implementations of the IMonitor interface.

To support various aspects of architectural self-aware-
ness, we have provided the ExtensibleComponent class,
which contains a reference to Architecture. This allows an
instance of ExtensibleComponent to access all architectural
elements in its local configuration, acting as a meta-level
component that can automatically effect runtime changes
to the system’s architecture.

In support of monitoring and redeployment, the Extensi-
bleComponent is augmented with the IAdmin interface. We
provide two implementations of the IAdmin interface:
Admin, which supports system monitoring and redeploy-
ment effecting, and Admin’s subclass Deployer, which also
provides facilities for interfacing with DeSi. We refer to the
ExtensibleComponent with the Admin implementation of
the IAdmin interface as AdminComponent; analogously, we
refer to the ExtensibleComponent with the Deployer imple-
mentation of the IAdmin interface as DeployerComponent.

As indicated in Figure 1, both AdminComponent and
DeployerComponent contain a reference to Architecture
and are thus able to effect runtime changes to their local
subsystem’s architecture: instantiation, addition, removal,
connection, and disconnection of components and connec-
tors. With the help of DistributionConnectors, AdminCom-
ponent and DeployerComponent are able to send and
receive from any device to which they are connected the
events that contain application-level components (sent

1. A detailed description of the redeployment problem is given in [8].

∑∑

∑∑

= =

= =

∗
=

n

i

n

j
ji

n

i

n

j
jiji

ccfreq

cfcfrelccfreq

A

1 1

1 1

),(

)))(),((),((

Figure 1. Simplified
UML class design
view of Prism-MW.
The four dark gray
classes are used by
the application
developer. Only the
relevant middleware
classes are shown.

Architecture

Scaffold

Brick
Connector

Component

DeployerAdmin

IMonitor

IAdmin

IScaffold

Serializable

Event

Extensible Component

Distribution
Connector

Evt Frequency
Monitor

Network Reliability
Monitor

between address spaces using the Serializable interface).

In order to perform runtime redeployment of the desired
architecture on a set of target hosts, we assume that a skele-
ton configuration is preloaded on each host. The skeleton
configuration consists of Prism-MW’s Architecture object
that contains a DistributionConnector and an AdminCom-
ponent attached to the connector (see Figure 2). One of the
hosts contains the DeployerComponent (instead of the
AdminComponent), which maintains a complete model of
the system’s current deployment architecture and interacts
with DeSi.

To integrate DeSi with Prism-MW, we have wrapped
DeSi as a Prism-MW component that is capable of receiv-

ing Events with the monitoring data from Prism-MW’s
DeployerComponent, and issuing events to the Deployer-
Component to enact a new deployment architecture. Once
the monitoring data is received, DeSi updates its own sys-
tem model. This results in the visualization of an actual sys-
tem, which can now be analyzed and its deployment
improved by employing different algorithms. Once the out-
come of an algorithm is selected, DeSi issues a series of
events to Prism-MW’s DeployerComponent to update the
system’s deployment architecture.

The approach described in this paper assumes a central-
ized organization, i.e., that the device containing the
DeployerComponent will have direct connections with all
the remaining devices. As a part of our on-going work we

Legend:

Event frequency
monitor

Architecture

Network reliability
monitor

Skeleton
Configuration

Deployer
/Admin

Pointer to
Architecture

i Component

DeSi

c)

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0
Admin

22
26

13

27

10

33

7

24

25

32

19

23

11

Deployer

Distributed System

M
onitoring data

Redeploym
ent data

a) b)

c) d)

5

Figure 2. Illustration of the approach. A distributed system running on
top of Prism-MW is monitored. Once the monitoring data is stable, the
DeSi environment is invoked to visualize the system’s deployment
architecture. DeSi’s windows provide a) tabular view of the system’s
deployment data, (b) visualization of the system’s deployment
architecture, (c) a detailed view of a single host’s deployment
architecture, and (d) a detailed view of a single component. DeSi’s
algorithms are executed to determine the desired redeployment
architecture. Once a new deployment architecture is selected in DeSi,
DeSi informs the Deployer component, which in turn initiates the
system’s redeployment in Prism-MW.

are extending Prism-MW to support decentralized system
redeployment [5].

4 System Monitoring
Prism-MW provides the IMonitor interface associated

through the Scaffold class with every Brick. This allows for
autonomous, active monitoring of a Brick’s run-time
behavior. We have provided two implementations of the
IMonitor interface: EvtFrequencyMonitor records the fre-
quencies of different events the associated Brick sends,
while NetworkReliabilityMonitor records the reliability of
connectivity between its associated DistributionConnector
and other, remote DistributionConnectors using a common

“pinging” technique. 2

An AdminComponent on any device is capable of
accessing the monitoring data of its local components and
connectors (recorded in their associated implementations
of the IMonitor interface) via its reference to Architecture.
The AdminComponent can also determine the memory size
of the local architecture, which denotes the available mem-
ory on the corresponding host, via the reference to the
Architecture. Through the same reference, the AdminCom-
ponent can record the memory size of each component
within the architecture (e.g., by serializing the component
into a byte array and determining the size of that array).
The AdminComponent then sends the description of its
local deployment architecture (i.e., local configuration) and
the monitoring data (i.e., memory, event frequency, and
network reliability) in the form of serialized Events to the
DeployerComponent. In order to minimize the time
required to monitor the system, monitoring is performed in
short intervals of adjustable duration. The AdminCompo-
nent compares the results from consecutive intervals. As
soon as the difference in the monitoring data between a
desired number of consecutive intervals becomes small
(i.e., less than an adjustable value ε), the AdminComponent
assumes that the monitoring data is stable, and informs the
DeployerComponent.

An issue we have considered deals with cases when
most, but not all system parameters are stable. As described
above, the monitoring data is not considered stable until all
the parameters satisfy their ε constraint. There are at least
two ways of addressing this situation. The first is to
increase the ε for the “troublesome” parameters. Alterna-
tively, a single, global εg may be used to assume stability,
as soon as the average difference of the monitoring data for
all the parameters in a single, local Architecture becomes
smaller than εg. We support both these options and are cur-
rently assessing their respective strengths and weaknesses.

Our assessment of Prism-MW’s monitoring support
suggests that continuous monitoring on each host will

induce less than 10% computational overhead and 5%
memory overhead on a system. The actual monitoring
overhead caused by our solution depends on the duration
and frequency of monitoring intervals, and can be negligi-
ble (as little as 0.1%) for systems whose rate of change in
the monitored parameters is reasonably uniform.

5 System Visualization and Analysis
The DeployerComponent accesses its local monitoring

data; it also receives all the monitoring data and local con-
figuration data from the remote AdminComponents. Once
the monitoring data is gathered from all the hosts, the
DeployerComponent invokes the DeSi environment to
visualize the system’s deployment architecture and its rele-
vant parameters.

Figure 2a shows DeSi’s main window, which displays a
distributed system’s parameters (in the Tables of parame-
ters panel). In the Constraints panel, the user can specify
different constraints on component locations (e.g., fixing a
component to a selected host). Using the set of buttons in
the Algorithms panel, different algorithms [5,8] can be
invoked and the results displayed in the Results panel.
Finally, the user can modify the desired system parameters
(by editing the appropriate tables in Tables of parameters
panel) to assess the sensitivity of a deployment architecture
to parameter changes.

Figure 2b shows the graphical display of the deploy-
ment architecture of a system with 35 components and 5
hosts in DeSi (i.e., the visualization of the architecture as
extracted by Prism-MW’s AdminComponents and
DeployerComponent). Network connections between hosts
are depicted as solid lines, while dotted lines between pairs
of hosts denote that some of the components on the two
respective hosts need to communicate, but that there is no
network link between them. In order to support effective
visualizations of large distributed deployment architec-
tures, DeSi supports zooming in and out, and provides the
ability to “drag” hosts and components on-screen, in which
case all relevant links will follow them. Detailed informa-
tion about a host or component can be displayed by double-
clicking on the corresponding graphical object. The
detailed information for a host, shown in Figure 2c, dis-
plays the host’s properties in the status bar, the components
deployed on the host, the host’s connections to other hosts,
and the reliabilities of those connections. Similarly, the
detailed information for a component, shown in Figure 2d,
displays the component’s properties and its connections to
other components.

DeSi’s combination of different system visualizations,
redeployment algorithms, and exploration capabilities
results in a rich and intuitive environment for analyzing
and improving a system’s deployment. After performing
the analysis, the user selects an algorithm’s result, i.e., a
desired deployment architecture (recall function f in Sec-
tion 2), which now needs to be effected.

2. Note that Prism-MW’s extensibility [7] can be easily leveraged to sup-
port monitoring of other system properties (e.g., network bandwidth,
volume of exchanged data, network latency).

6 Effecting Redeployment
DeSi environment informs the DeployerComponent of

the desired deployment architecture (via a Prism-MW
Event containing unique component-host identifier pairs),
which now needs to be effected. The DeployerComponent
controls the redeployment process as follows:
1. The DeployerComponent sends events to inform Admin-

Components of their new local configurations, and of the
remote locations of software components required for
performing changes to each local configuration.

2. Each AdminComponent determines the difference
between its current and new configurations, and issues a
series of events to remote AdminComponents requesting
the components that are to be deployed locally. If some
of the devices containing the desired components are not
directly reachable from the requesting device, the rele-
vant request events are sent to the DeployerComponent.
The DeployerComponent then forwards those events to
the appropriate destinations, and forwards the responses
containing the migrant components to the requesting
AdminComponent. Therefore, the DeployerComponent
serves as a router for devices that are not directly con-
nected.

3. Each AdminComponent that receives an event requesting
its local component(s) to be deployed remotely, detaches
the required component(s) from its local configuration,
serializes them, and sends them as a series of events via
its local DistributionConnector to the requesting device.

4. The recipient AdminComponents reconstitute the migrant
components from the received events.

5. Each AdminComponent invokes the appropriate methods
on its Architecture object to attach the received compo-
nents to the local configuration.

7 Related Work
We have performed an extensive survey of existing

approaches aimed at improving system’s availability in
face of network failures, and provided a framework for
their classification and comparison [9]. One of the tech-
niques for improving system availability is (re)deployment,
which is a process of installing, updating, and/or relocating
a distributed software system.

Carzaniga et. al. [1] provide an extensive comparison of
existing software deployment approaches. They identify
several issues lacking in the existing deployment tools,
including integrated support for the entire deployment life-
cycle. An exception is Software Dock [2], which is a sys-
tem of loosely coupled, cooperating, distributed
components. It provides software deployment agents that
travel among hosts to perform software deployment tasks.
Unlike our approach, however, Software Dock does not
focus on extracting system parameters, visualizing, or eval-
uating a system’s deployment architecture.

Finally, Haas et. al. [3] provide a scalable framework for
autonomic service deployment in networks. This approach
does not address the inherent exponential complexity in the
selection of the most appropriate deployment, or that prop-

erties of services and hosts may change during the system’s
execution.

8 Conclusion
A distributed software system’s deployment architecture

can have a significant impact on the system’s availability,
and will depend on various system parameters (e.g., reli-
ability of connectivity among hosts, security of links
between hosts, and so on). Existing deployment approaches
focus on providing support for installing and updating the
software system but lack support for extracting, visualiz-
ing, and analyzing different parameters that influence the
quality of deployment.

This paper has presented an integration of Prism-MW, a
lightweight architectural middleware that supports system
monitoring and runtime reconfiguration, and DeSi, an envi-
ronment that supports manipulation, visualization, and
(re)estimation of deployment architectures for large-scale,
highly distributed systems. In concert, Prism-MW and
DeSi provide a rich capability for improving the availabil-
ity of distributed systems. Although our experience to date
has been very positive, it has suggested a number of possi-
ble avenues for further work. We plan to address issues
such as supporting decentralized redeployment, and
addressing the issue of trust in performing distributed rede-
ployment. Finally, we plan to extend DeSi’s analysis capa-
bilities to automatically determine the sensitivity of a
deployment architecture to variations of system parame-
ters. The results of this analysis would be used to inform
Prism-MW’s monitoring of what constitutes a significant
change in system parameters (i.e., the values of ε for each
parameter).

9 References
[1] A. Carzaniga et. al. A Characterization Framework for Soft-

ware Deployment Technologies. Technical Report, Dept. of
Computer Science, University of Colorado, 1998.

[2] R. S. Hall, D. Heimbigner, and A. L. Wolf. A Cooperative
Approach to Support Software Deployment Using the Software
Dock. ICSE’99, Los Angeles, CA, May 1999.

[3] R. Haas et. al. Autonomic Service Deployment in Networks.
IBM Systems Journal, Vol. 42, No. 1, 2003.

[4] IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York, NY: 1990.

[5] S. Malek et. al. A Decentralized Redeployment Algorithm for
Improving the Availability of Distributed Systems. Technical
Report USC-CSE-2004-506, 2004.

[6] M. Mikic-Rakic et. al. A Tailorable Environment for Assessing
the Quality of Deployment Architectures in Highly Distributed
Settings. To Appear in 2nd Int’l Working Conf. on Component
Deployment (CD 2004), Edinburgh, Scotland, May 2004.

[7] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural
Middleware for Programming-in-the-Small-and-Many. Middle-
ware 2003, Rio De Janeiro, June 2003.

[8] M. Mikic-Rakic and N. Medvidovic. Support for Disconnected
Operation via Architectural Self-Reconfiguration. Int’l Conf.
on Autonomic Computing (ICAC'04), New York, May 2004.

[9] M. Mikic-Rakic and N. Medvidovic. Toward a Framework for
Classifying Disconnected Operation Techniques. ICSE
WADS’03, Portland, Oregon, May 2003.

[10]D.E. Perry, and A.L. Wolf. Foundations for the Study of Soft-
ware Architectures. Software Engineering Notes, Oct. 1992.

