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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Software 
Architectural 
Support for 
Handheld Computing

S oftware engineers and practitioners tra-
ditionally have focused on programming
in the large (PitL),1 the development of
large-scale software systems. However,
the increasing speed and capacity and

decreasing costs of hardware, emergence of the
Internet, and proliferation of handheld devices such
as cell phones and PDAs have fueled demand for
new technologies that support highly distributed
computation on small, mobile platforms.

Employing handheld mobile devices in complex
scenarios such as sea exploration, environmental
monitoring, freeway-traffic management, fire fight-
ing, and natural disaster damage assessment will
require addressing a number of daunting challenges.
This new set of challenges is more appropriately
characterized as programming in the small and
many (Prism)—software development for highly
distributed, dynamic, mobile, heterogenous com-
putation on large numbers of small, resource-con-
strained platforms.

Recent studies2,3 indicate that a promising
approach is to apply software architecture princi-
ples to the development of software systems in the
Prism setting. These principles provide abstractions
for representing the system’s structure, behavior,
and key properties.4,5

Architectures are generally described in terms of
components (computational elements), connectors
(interaction elements), and their configurations. An

architectural style further defines a vocabulary of
component and connector types as well as a set of
constraints on combining instances of those types in
a software system. Examples of styles include black-
board, C2, client-server, pipe and filter, and push-
based.5,6 Selecting an appropriate architectural style
is a key determinant of a software system’s success. 

Software architectures provide design-level mod-
els and guidelines for composing software systems.
However, to be useful in a development setting,
these models and guidelines require support for
implementation and evolution.5,7 As the “Prism
Challenges” sidebar describes, Prism’s highly dis-
tributed, heterogenous, and mobile nature ampli-
fies the software development demands that
permeate the entire software engineering life cycle.
Therefore, during the past four years we have
focused on the design, implementation, and empir-
ical evaluation of techniques for supporting archi-
tecture-based software development in the Prism
setting. 

Several aspects of architecture-based develop-
ment—component-based system composition,
explicit software connectors, architectural styles,
upstream system analysis and simulation, and sup-
port for dynamism5—make it a good fit for Prism’s
demands. Our solutions for adaptable system
design, efficient implementation, and tailorable exe-
cution all leverage the approach’s architectural basis
and were guided by four research objectives:

The authors present a software-architecture-based approach to support
computing on distributed, handheld, mobile, resource-constrained devices. 
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• native support for programming the architec-
tural concepts;

• efficiency to execute on small, resource-
constrained platforms;

• scalability to many devices, components, con-
nectors, and communication events; and

• extensibility and configurability to acccom-
modate varying development concerns across
the Prism domain.

Our goal has been to adapt PitL techniques
whenever applicable, but to support Prism’s unique
characteristics we have developed novel solutions
in three areas: explicit architectural idioms suit-
able for Prism software system design; a light-
weight, tailorable middleware for transferring
architectural decisions to effective system imple-
mentations; and runtime techniques that support
continuous system evolution, redeployment, and
mobility.

EXAMPLE PRISM APPLICATION
To understand the concepts underlying our

approach, consider an application for distributed
military troop deployment and battle simulations
(TDS). A computer at headquarters gathers infor-
mation from the battlefield and displays the cur-
rent locations of friendly and enemy troops,
vehicles, and obstacles such as mine fields. As
Figure 1 shows, the headquarters computer is net-
worked via secure links to a set of commander
PDAs, which are connected directly to one another
and to a large number of soldier PDAs.

Commanders control their own part of the bat-
tlefield by deploying troops, analyzing the deploy-
ment strategy, transferring troops, and so on. If the
headquarters device goes out of range, a designated
commander assumes the HQ role. Soldiers can only
view the segment of the battlefield in which they
are located, receive direct orders from the com-
manders, and report their status.

TDS illustrates the concept of multiplicity inher-
ent in Prism. In designing the application, we used
a combination of four architectural styles: client-
server, push-based, peer-to-peer, and C2. In addi-
tion, we implemented TDS in three dialects of two
programming languages—Sun Microsystems’ Java
JVM and KVM, and Microsoft’s Embedded Visual
C++. Finally, we deployed TDS on several types of
mobile devices—Palm Pilot Vx and VIIx, Compaq
iPAQ, HP Jornada, NEC MobilePro, Sun Ultra,
and PC—running four different operating sys-
tems: PalmOS, WindowsCE, Windows 2000, and
Solaris. 

TDS utilizes 105 mobile devices and mobile
device emulators running on PCs, with a total of
245 software components interacting via 222 soft-
ware connectors. The dynamic size of the applica-
tion is approximately 1 Mbyte for the headquarters
subsystem, 600 Kbytes for each commander sub-
system, and 90 Kbytes for each soldier subsystem.

Prism Challenges

Software engineers and practitioners have been working actively on
application modeling, analysis, simulation, and semiautomated system
implementation for several decades. The highly distributed, heteroge-
neous, and mobile nature of programming in the small and many only
amplifies these problems. In addition, Prism presents a number of unique
software development challenges that permeate the entire software engi-
neering life cycle.

Resource constraints
Devices on which applications reside may have limited power, net-

work bandwidth, processor speed, memory, and display size and reso-
lution. Constraints such as these demand highly efficient software
systems in terms of computation, communication, and memory foot-
print. They also demand more unorthodox solutions such as “off-load-
ing” nonessential parts of a system to other devices.

Heterogeneity
Programming in the large is characterized by extensive standardiza-

tion—for example, Java, Linux, and XML. In contrast, Prism must rec-
oncile proprietary operating systems such as PalmOS and Symbion,
specialized dialects of existing programming languages such as Sun
Microsystems’ Java KVM and Microsoft’s Embedded Visual C++, and
device-specific data formats such as prc for PalmOS and efs for
Qualcomm’s Brew.

Computing infrastructure
Software developers must make tradeoffs to address the computing

constraints that mobile platforms impose. The infrastructures of such
technologies may thus lack certain services for reasons of efficiency or
through accidental omission. For example, Java KVM does not support
noninteger numerical data types or server-side sockets. Likewise, typi-
cally employed techniques for code mobility, such as Java XML encod-
ing, may be computationally too expensive to support.

Figure 1. Troop
deployment and 
battle simulations
(TDS) application
distributed across
multiple devices.
The headquarters
computer is
networked via
secure links to a set
of commander PDAs,
which are connected
directly to one
another and to a
large number of 
soldier PDAs.
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DESIGN SUPPORT
We have developed a set of software design

idioms to effectively capture the characteris-
tics of Prism application architectures. Ideally,
these idioms would comprise a software
architectural style,5 but, as recent studies8

have recognized, it is unclear which styles are
most suitable for this setting. We have there-
fore developed Prism-SF, an architectural style
framework that inherits many characteristics
from previous work5-7 but is unique because
it is configurable—developers can instantiate
multiple specific architectural styles from it,
possibly even in a single application.

Architectural elements and 
composition rules

Prism-SF directly provides concepts for model-
ing an application’s architecture. Its components
maintain state and perform computations. To sup-
port scalability and extensibility, Prism-SF compo-
nents cannot assume a shared address space;
instead, they interact by exchanging events via mas-
ter, slave, and peer communication ports. 

Events. An event consists of a name and payload.
An event’s payload includes a set of typed parame-
ters for carrying data and miscellaneous metalevel
information—sender, real-time deadline, and so on.
A Prism event is either a request for a recipient com-
ponent to perform an operation, a notification that
a sender component has performed an operation,
or a peer event enabling symmetric communication
between components. Prism-SF components send
requests through master ports and receive them
through slave ports, send notifications through
slave ports and receive them through master ports,
and send and receive peer events through peer
ports.

Connectors. To further support scalability, Prism-
SF connectors mediate interactions among com-
ponents by controlling the distribution of all events.
An asymmetric connector supports request-notifi-
cation interactions, while a symmetric connector
supports peer event interactions. Components
attach to asymmetric connectors via master and
slave ports and to symmetric connectors via peer
ports. Prism-SF connectors can support event uni-
cast, multicast, and broadcast semantics. 

The distributed connectors that span device
boundaries play a key role in scalability by sup-
porting interaction among components residing on
different devices. A distributed connector marshals
and unmarshals application data or mobile code;
it dispatches and receives events across the net-

work; and it may perform data compression for
efficiency and encryption for security.

Hierarchical composition. Prism-SF supports hier-
archical composition of both components and con-
nectors. This provides an effective mechanism for
supporting multiple levels of abstraction of the sys-
tem’s architecture, which in turn aids the system’s
extensibility. Hierarchically composed compo-
nents and connectors encapsulate their constituent
subarchitectures. When performing hierarchical
composition, a designer maps each composite
component’s external port to one port of the inter-
nal component or connector in its subarchitecture.

Instantiating Prism-SF
It is easy to instantiate Prism-SF into a number of

distributed systems styles that are likely to be use-
ful in the Prism setting.6

Client-server. In this type of system, client and server
components communicate via synchronous asym-
metric connectors—typically remote procedure
calls—using request and notification (response)
events. A client component usually has a single mas-
ter port through which it sends requests to and
receives responses from the server, while the server
has multiple slave ports, one for each client.

Peer-to-peer. The peer-to-peer style defines only
one component type that uses logical call-return
pairs as events to communicate via symmetric,
event-based connectors. A peer component can
have numerous peer ports through which it sends
and receives events, depending on the number of
its peer relationships with other components. Peer
components typically do not have master or slave
ports, although it is possible to combine client-
server and peer-to-peer architectural styles in a sin-
gle application. Prism-SF supports such a combi-
nation naturally.

C2. The C2 style7 is a layered network of concur-
rent components that communicate via neighbor-
ing connectors. C2 supports one component type
similar to the peer-to-peer style, but, unlike peer-to-
peer components, C2 components exchange request
and notification events to communicate via asyn-
chronous asymmetric connectors. A C2 component
has single master (top) and slave (bottom) ports.

TDS architecture
Figure 2 shows a subset of the TDS architecture

designed using an instance of Prism-SF. In this con-
figuration, each component has single master, slave,
and peer ports; components interact solely via con-
nectors; the design includes both symmetric and
asymmetric connectors; and symmetric and asym-
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aids the system’s 
extensibility.
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metric connectors cannot be connected to one
another.

This architecture consists of single Headquarters,
Commander, and Soldier subsystems. Data-
Repository maintains a model of the system’s over-
all resources: terrain, personnel, tank units, and
mine fields. StrategyAnalyzer and Deployment-
Advisor analyze and suggest deployments of
friendly troops, respectively. SimulationAgent incre-
mentally simulates battle outcomes based on the
current situation. DeploymentStrategiesRepository
stores the strategy and deployment rules.
C_TroopsManager and S_Troops-Manager allocate
and transfer resources and periodically update the
state of resources. Finally, DisplayManager provides
the application’s user interface.

IMPLEMENTATION SUPPORT
Prism-SF provides design guidelines for com-

posing large, distributed, decentralized, mobile sys-
tems. Prism-MW, a lightweight architectural
middleware, supports implementation of these
guidelines. Although related to several existing
middleware platforms,2 Prism-MW has character-
istics specifically geared to the Prism domain.

Implementing architectures in Prism-MW
Prism-MW comprises an extensible framework

of implementation-level classes representing an
application’s architectural elements, their proper-
ties, and their composition rules. It is easily con-
figurable to support style-specific characteristics in
applications. Programmers construct Prism appli-
cation architectures by reusing the appropriate
Prism-MW classes or extending them with appli-
cation-specific details.

Prism-MW supports architectural abstractions
by providing classes for representing each archi-
tectural element, with methods for creating, manip-
ulating, and destroying the element. Figure 3 shows
the Unified Modeling Language class design view
of Prism-MW. The green-colored classes constitute
the middleware core, which, to ensure compact-
ness, contains only eight classes and six interfaces.
To use Prism-MW’s basic features, an application
developer only needs to be familiar with four of the
classes, shaded dark green. 

Brick is an abstract class that encapsulates com-
mon features of its subclasses—Architecture,
Component, and Connector. Architecture records
the configuration of its constituent components and
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connectors and provides facilities for adding, remov-
ing, and reconnecting them, possibly at system run-
time. In Prism-MW, a programmer implements a
distributed application as a set of interacting
Architecture objects. Components communicate by
exchanging Events, which are routed by Connectors.
To support extensibility to different architectural
styles, the programmer can attach each component
to an arbitrary number of connectors.

To further support extensibility, each Brick sub-
class has an associated interface. IArchitecture
exposes a weld method with different implemen-
tations to accommodate style-specific composition
rules. IComponent exposes send and handle meth-
ods for exchanging events with different imple-
mentations that support both asynchronous and
synchronous unicast, multicast, and broadcast of
events. IConnector provides a handle method for
event routing; we have implemented two versions
of this interface to support symmetric and asym-
metric interaction. Each Architecture object imple-
ments both IConnector and IComponent, thereby
allowing construction of components and connec-
tors with internal architectures.

Prism-MW associates IScaffold with every Brick.
Scaffolds schedule events for delivery via IScheduler
and pool threads via IDispatch in a decoupled man-
ner. IScaffold also directly aids architectural aware-
ness9 by allowing a programmer to probe a Brick’s
runtime behavior. Prism-MW’s core provides a
default FIFO implementation of IScheduler and a
default round-robin implementation of IDispatch.
This separation makes it possible to select the most

suitable event-scheduling policy independently of
the dispatching policy. In addition, decoupling dis-
patching and scheduling from Architecture makes
it easy to compose many subarchitectures in a sin-
gle application.

Extending Prism-MW
To support extensibility and configurability,

Prism-MW provides explicit constructs and inter-
faces that accommodate different architectural
styles. The extensions to the Prism-MW shown in
Figure 3 provide support for numerous properties
identified as relevant in Prism and other settings
including architectural awareness, real-time com-
putation, distribution, security, heterogeneity, data
compression, delivery guarantees, and mobil-
ity.2,8,10

Prism-MW’s core does not change. The core con-
structs Component, Connector, and Event are sub-
classed via specialized classes—ExtensibleCompo-
nent, ExtensibleConnector, and ExtensibleEvent,
respectively—each of which composes a number of
interfaces, shaded in blue in Figure 3. Each interface
can have multiple implementations, shown as
unshaded classes, to facilitate selecting the desired
functionality inside each instance of a given
Extensible class. 

If an interface is installed in a given class instance,
that instance will exhibit the inherent behavior in
the interface’s implementation. A programmer can
install multiple interfaces in a single Extensible class
instance. In that case, the instance will exhibit the
installed interfaces’ combined behavior. Each new
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interface implementation requires a minimal change
to the corresponding Extensible class, averaging
three new lines of code.

Assessing Prism-MW 
Prism applications frequently run on resource-

constrained devices that have low amounts of mem-
ory and slow processing speeds. Techniques for
ensuring efficient implementations of distributed sys-
tems are available, but Prism-MW presents unique
challenges because it is designed to directly support
architectural abstractions in highly resource-con-
strained settings. 

Prism-MW incorporates several optimization
techniques10 including event routing based on the
architectural topology and a centralized event queue
with an adjustable thread pool per each address
space (Prism-MW Architecture object). The result is
an efficient architectural middleware that introduces
minimal overhead in dynamic memory usage, is
highly scalable, and exhibits good performance. 

RUNTIME SUPPORT
Prism-MW provides the foundation for building

a number of advanced capabilities needed for Prism
applications. We have focused on automated deploy-
ment, dynamic reconfigurability, and mobility by
directly leveraging Prism-MW’s support for incre-
mental system composition. Connectors can dynam-
ically add and remove communication ports as the
programmer invokes the weld and unweld methods
on their container Architecture object to attach and
detach components. To implement this support, the
connectors leverage programming language or OS
facilities—for example, Java’s dynamic class load-
ing or Windows’ dynamically linked libraries.

Automated deployment
Our support for deployment directly leverages

Prism-MW’s incremental system composition.
Prism-MW’s light weight is critical for resource-
constrained devices. Therefore, we have developed
a custom solution for deploying applications
instead of trying to reuse existing capabilities such
as the software dock.11 To deploy a desired config-
uration on a set of hosts, Prism-MW uploads a
skeleton configuration on each host consisting of
an Architecture object. This object contains an
ExtensibleConnector that implements mechanisms
for communicating across the network. 

As Figure 3 shows, Prism-MW uses sockets and
infrared ports to implement these connectors. In
addition, the skeleton configuration contains
AdminComponent, a special-purpose, metalevel

ExtensibleComponent tasked with effecting
runtime changes on the Architecture. The
skeleton configuration, which is less than 20
Kbytes, can directly exploit the Architecture
object’s API and dynamic connector interfaces
to instantiate a local subsystem architecture.
With the help of ExtensibleEvent’s serializable
interface, Prism-MW migrates components
across hosts for deployment as (usually large)
events.

Dynamic reconfigurability and mobility
Dynamic reconfigurability encompasses

runtime changes to a system’s configuration
by adding and removing components and connec-
tors. If a subsystem needs components and connec-
tors that are not available locally, it must be able to
migrate them from remote hosts. To support code
mobility at runtime, Prism-MW uses the same basic
technique as for deployment: AdminComponents
exchange events that contain mobile code. For
example, if a Commander device needs to assume
the role of Headquarters in the TDS application, it
can use Prism-MW’s support for mobility to migrate
the HQ-specific components and then use the local
Architecture object’s weld method to attach the
components to the appropriate connectors in the
Commander subsystem. 

Prism-DE12 is an architectural deployment and
mobility environment that integrates Microsoft
Visio with Prism-MW. The environment contains
several toolboxes for specifying a configuration of
hardware devices, OS processes, and software com-
ponents and connectors for deployment. A simple
button click deploys a Prism-DE software configu-
ration onto the depicted hardware configuration.
Likewise, dragging a component from one depicted
process to another initiates Prism-DE component
mobility.

OTHER APPLICATIONS
To date, we have developed more than a dozen

applications designed using various instances of
Prism-SF, implemented on top of Prism-MW, and
dynamically reconfigured and redeployed using
Prism-DE. These applications involve traditional
desktop platforms, PalmOS and WindowsCE
devices, digital cameras, and motion sensors. In addi-
tion to several variants of TDS, they include distrib-
uted digital image processing, map visualization and
navigation, location tracking, and instant messag-
ing for handheld devices. 

For example, the Attention System with Multiple
Cameras (ASMC) detects changes in different phys-
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ical locations and executes follow-on actions such
as activating an alarm in a surveillance system. As
Figure 4a shows, each LocalAttentionModule
observes a given location periodically and sends 
the obtained image to the CentralProcessing-
Module, which resides on a desktop device. A Timer
triggers ImageAcquisition at each site. The Central-
ProcessingModule performs grayscale conversion,
detects changes, labels the regions, and creates a
saliency map. The GlobalDecisionComponent,
which can reside on either a desktop or a handheld
device, reports significant changes to any number of
Display&ActionComponents, each of which also
can reside on a desktop or handheld device. 

Figure 4b shows two consecutive images captured
by a single LocalAttentionModule camera. ASMC
sends the selected feature map—an image contain-
ing the changes processed by the CentralProcessing-
Module—to the GlobalDecisionModule, which in
turn forwards the most significant change to the
Display&ActionComponent—in this case, the PDA
shown in Figure 4c. 

We used a combination of three architectural
styles to design and implement ASMC: push-based
inside each LocalAttentionModule, pipe and filter
inside the CentralProcessingModule, and peer-to-

peer between the GlobalDecisionComponent and
Display&ActionComponent. 

I n concert, the Prism architectural style framework,
Prism-MW, and Prism’s runtime support provide
efficient, scalable, and extensible capabilities for

handheld computing. In collaboration with two
major industrial organizations, we have successfully
tested and evaluated our approach on several appli-
cations. We have also used it as an educational tool
in courses on software architectures and embedded
systems at the University of Southern California. 

Our experience thus far has been very positive,
but many pertinent research questions remain.
Future work will span issues such as evaluating the
applicability of different Prism styles to various
problem domains, adding pluggable architectural-
style constraint checking into Prism-MW, and
extending runtime support for Prism to include dif-
ferent aspects of application self-healing—for
example, in the face of network disconnections. ■
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