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ABSTRACT
The rising popularity of Android and the GUI-driven nature of its
apps have motivated the need for applicable automated GUI testing
techniques. Although exhaustive testing of all possible combina-
tions is the ideal upper bound in combinatorial testing, it is often
infeasible, due to the combinatorial explosion of test cases. This
paper presents TrimDroid, a framework for GUI testing of Android
apps that uses a novel strategy to generate tests in a combinatorial,
yet scalable, fashion. It is backed with automated program analy-
sis and formally rigorous test generation engines. TrimDroid relies
on program analysis to extract formal specifications. These speci-
fications express the app’s behavior (i.e., control flow between the
various app screens) as well as the GUI elements and their depen-
dencies. The dependencies among the GUI elements comprising
the app are used to reduce the number of combinations with the
help of a solver. Our experiments have corroborated TrimDroid’s
ability to achieve a comparable coverage as that possible under ex-
haustive GUI testing using significantly fewer test cases.
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1. INTRODUCTION
With well over a million apps, Android has become one of the

dominant mobile platforms [16]. Android app markets, such as
Google Play, have created a fundamental shift in the way software
is delivered to consumers, with thousands of apps added and up-
dated on a daily basis. The majority of these apps are developed
at a nominal cost by entrepreneurs that do not have the resources
for properly testing their software. Hence, there is an increasing
demand for applicable automated testing techniques. One key ob-
stacle towards achieving test automation for GUI-driven Android
apps is the lack of effective techniques for test input generation.

A recent study of existing tools by Choudhary et al. [15] claims
Android Monkey [1], a random-testing program for Android, to be
the winner among the existing test input generation tools. Android
Monkey provides a random mechanism that often achieves shallow
code coverage. Several recent research efforts [8, 9, 11, 21, 27, 38],
including our own [28–31], have aimed to improve Android testing
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practices. However, to the best of our knowledge, no prior research
has explored a fully automated combinatorial GUI testing approach
in the context of Android.

This is mainly because exhaustive combinatorial GUI testing is
often viewed to be impractical due to the explosion of possible
combinations for even the smallest applications [19]. A more prac-
tical alternative is t-way combinatorial testing [33], where all com-
binations for only a subset of GUI widgets (i.e., t) are consid-
ered [20]. But even under t-way testing, the number of generated
test cases could grow rapidly. Moreover, without a systematic ap-
proach to determine the interactions, arbitrary selection of t wid-
gets to be combinatorily tested is bound to be less effective than
an exhaustive approach in terms of both code coverage and fault
detection.

An opportunity to automate the testing activities in Android is
presented by the fact that apps are developed on top of an Appli-
cation Development Framework (ADF). The Android ADF ensures
apps developed by a variety of suppliers can interoperate and coex-
ist together in a single system (a phone), as long as they conform
to the rules and constraints imposed by the framework. The An-
droid ADF constrains the life cycle of components comprising an
app, the styles of communication among its software components,
and the ways in which GUI widgets (e.g., buttons, check-boxes)
and other commonly needed functionalities (e.g., GPS coordinates,
camera) can be accessed. An underlying insight in our research
is that the knowledge of these constraints along with the metadata
associated with each app can be used to automate many software
testing activities, specifically combinatorial testing of apps.

In this paper, we present TrimDroid (Testing Reduced GUI
CoMbinations for AndDROID), a fully-automated combinatorial
testing approach for Android apps. Given an Android APK file,
TrimDroid employs static analysis techniques that are informed by
the rules and constraints imposed by the Android ADF to identify
GUI widgets that interact with one another.1 Thus, the set of inter-
acting widgets become candidates for t-way combinatorial testing.
By avoiding the generation of tests for widgets that do not inter-
act, TrimDroid is able to significantly reduce the number of tests.
For identifying the interactions, TrimDroid statically analyzes the
control- and data-flow dependencies among the widgets and actions
available on an app. Finally, TrimDroid uses an efficient constraint
solver to enumerate the test cases covering all possible combina-
tions of GUI widgets and actions.

Our evaluation of TrimDroid shows that it achieves the same
coverage as exhaustive combinatorial testing, but reduces the num-
ber of test cases by 57.86% on average and by as much as 99.9%.
This reduction is important, as it not only reduces the time it takes
to execute the test cases, but also significantly decreases the effort
required to inspect the test results.

1An APK file is a Java bytecode package used to install Android
apps.
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The paper is organized as follows. Section 2 presents an illustra-
tive app to motivate and describe the research. Section 3 provides
an overview of TrimDroid. Sections 4 and 5 describe the extraction
of required models and dependencies from apps. Sections 6 and 7
describe enumeration of execution scenarios and generation of test
cases, respectively. Section 8 presents our experimental evaluation
of TrimDroid. The paper concludes with an overview of the related
research, and a discussion of our future work.

2. ILLUSTRATIVE EXAMPLE
We use a simple Android app, called Expense Reporting System

(ERS), to illustrate our research. This app allows a user to maintain
a log of meal expenses incurred during a trip. Figure 1 depicts two
of ERS’s Activities: NewReportActivity and ItemizedReportActiv-
ity. 2

NewReportActivity is the main Activity, i.e., it is the first screen
presented to the user when an app is invoked. From NewRepor-
tActivity, the user can select the Destination, enter an allowable ex-
pense Amount, the Currency, and initiate the creation of two types
of reports: Itemized Report and Quick Report. ItemizedReportAc-
tivity allows the user to enter an itemized list of meal expenses,
including (1) the total days of the trip, and (2) the number of meals
purchased on the trip’s first and last day. When Total Days is 1 (i.e.,
the first and last days are the same), the check-boxes correspond-
ing to the last day meals are disabled (see Figure 1a). On the other
hand, QuickReportActivity (not shown in Figure 1 for brevity) al-
lows the user to provide an aggregate number for the meal expenses
incurred on a trip.

Regardless of the approach used for entering the expenses, the
user is led to a confirmation page, where she can submit the ex-
penses, and is presented with a summary report that she can save.
An overview of the relationships among the Activities comprising
the ERS are depicted in Figure 3.

Testing of GUI-driven apps, such as ERS, requires utilizing a
large number of event sequences. These sequences are often gener-
ated by GUI interactions involving radio-boxes, check-boxes, drop-
down lists, etc. Exhaustive combinatorial testing [20], i.e., a brute-
force approach that tries all possible GUI combinations, is often
computationally prohibitive.

An alternative approach to exhaustive testing is t-way combina-
torial testing [26]. Consider a GUI screen under test that has a total
of n widgets. t-way combinatorial testing requires that all possi-
ble t-way combinations of widget values are selected, where t < n.
The most common type of t-way testing is pairwise testing, where
t = 2 [33]. Although t-way testing produces a smaller number of
tests, it is less effective than exhaustive testing in terms of both code
coverage and fault detection. For instance, when pairwise testing
is used, code that depends on the interaction of three or more GUI
widgets may remain uncovered.

To illustrate the challenges of combinatorial testing, consider
a situation in which the user clicks on the ItemizedReport but-
ton of NewReportActivity and subsequently on the Next button of
ItemizedReportActivity (see Figure 1). NewReportActivity contains
the Destination drop-down list with 10 choices, and the Currency
check-box with 3 exclusive choices. Let us also assume two val-
ues of 100 and 0 have been identified as proper input classes for the
Amount field. This would result in a total of 10×3×2 = 60 unique
combinations for NewReportActivity. Similarly, ItemizedReportAc-
tivity contains the Total Days drop-down list with 6 choices, the
First Day Meals and Last Day Meals, each of which has 3 inclusive
choices, resulting in a total of 6× 23× 23 = 384 unique combina-
tions.

2An Activity is a type of Android component that represents a GUI
screen.

Figure 1: Screenshots for a part of ERS app: (a) when total days is
1, the check-boxes for Last Day Meals are disabled, and (b) when
the total days is greater than 1, the check-boxes for Last Day Meals
are enabled.

Since the widget values selected on one Activity could impact
the behavior that is manifested in subsequent Activities, for GUI
system testing, we also need to consider the interaction of widgets
across Activities. Thus, the number of all unique tests for the above
use case is 60×384 = 23,040. The number of tests would continue
to grow if we consider the other Activities comprising this app.
This approach is infeasible in practice, in terms of both the effort
required to execute the tests and the effort required in assessing the
results.

TrimDroid drastically reduces the number of tests for achieving a
comparable coverage as exhaustive GUI testing. The insight guid-
ing our research is that not all GUI widgets and actions interact
with one another.

To that end, TrimDroid statically extracts the control- and data-
flow dependencies among the GUI widgets, event handlers, and
Activities of an app, and it does so without access to source code,
rather from the app’s APK file.

An example of GUI widget interaction can be gleaned from Fig-
ure 1a. Here, we can see that when Total Days obtains a value of 1,
Last Day Meals check-boxes are disabled, thus indicating a depen-
dency between these two widgets, implying that their combinations
should be tested. On the other hand, if our analysis indicates that
Total Days and First Day Meals are indeed independent of one an-
other, we can safely conclude that their combinations do not need
to be tested. TrimDroid detects such dependencies, which provide
the basis for combinatorial generation of tests.

To appreciate the significant reductions possible this way, con-
sider the use case of ERS described earlier. TrimDroid gener-
ates only max{(6×23),23}= 48 tests for ItemizedReportActivity
when the Next button is clicked. That represents a reduction of
336 combinations compared to the exhaustive approach. Trim-
Droid realizes that the (6×23) = 48 possible combinations for To-
tal Days and Last Day Meals are independent of the 23 = 8 pos-
sible combinations for First Day Meals. Since we can use com-
binations of independent widgets in the same test, the dependent
widgets with the biggest number of unique combinations determine
the number of generated tests. Here, the 48 combinations for To-
tal Days and Last Day Meals are merged with the 8 combinations
for First Day Meals to produce 48 widget combinations for Item-
izedReportActivity. For testing both activities together, TrimDroid
produces 60×48 = 2,880 tests, representing a reduction of 20,160
tests compared to the exhaustive approach.

Assuming an accurate extraction of dependencies through static
analysis, the reduced set of tests generated using TrimDroid would



be as effective as exhaustively generated tests in terms of their cov-
erage and fault detection power.

3. APPROACH OVERVIEW
Figure 2 depicts a high-level overview of TrimDroid, which is

comprised of four major components: Model Extraction, Depen-
dency Extraction, Sequence Generation, and Test-Case Generation.
Together, these components produce a significantly smaller num-
ber of test cases than an exhaustive combinatorial technique, yet
achieve a comparable coverage.

Similar to our previous work [29], Model Extraction produces
two types of models by statically analyzing an Android app:

• Interface Model (IM) provides a representation of all the GUI
inputs of an app, including the input widgets and events (ac-
tions) for each Activity. TrimDroid uses the IM to determine
how a GUI screen can be exercised in order to generate the
tests for it.

• Activity Transition Model (ATM) is a finite state machine
representing the event-driven behavior of an Android app, in-
cluding the relationships among its Activities and their event
handlers (transitions). Since our research targets GUI testing,
we only extract information that is related to Activities, not
other Android components (e.g., Services). Figure 3 depicts
the ATM for the entire ERS app.

These models are represented in Alloy [22], a formal specifica-
tion language based on first order relational logic. Alloy specifica-
tions can be analyzed using Alloy Analyzer, thereby allowing us to
systematically explore the combinatorial space with the help of a
constraint solver.

In a step parallel to Model Extraction, Dependency Extraction
identifies GUI-induced dependencies among app elements using a
combination of control- and data-flow analysis techniques. Depen-
dency Extraction identifies three types of dependencies (1) when
one GUI widget depends on the value of another widget, e.g., a
drop-down menu is disabled, because a check-box is not selected,
(2) when a GUI event handler depends on a widget value, e.g., a
button handler method uses the selected value of a check-box, and
(3) when an Activity depends on the widget values from a preced-
ing Activity, e.g., the widget values from a preceding Activity are
included in the payload of an Intent starting a new Activity.3 These
dependencies are also represented in the form of Alloy specifica-
tions and used by Test-Case Generation in a later step for pruning
the combinatorial space of tests.

Sequence Generation uses the Alloy Analyzer to synthesize se-
quences of events that cover the paths in the ATM. Each path in the
ATM represents a sequence of events in a possible use case. A good
coverage of the ATM is essential for achieving high code coverage.
TrimDroid covers the paths using the prime path coverage criterion,
known to subsume most other graph coverage criteria [10].

Finally, Test-Case Generation constructs system tests by per-
forming three key steps. First, it traverses the sequences of events
representing the paths produced by Sequence Generation. Second,
for each step in a given sequence, it uses Alloy Analyzer to gener-
ate value combinations for different GUI widgets. To that end, Test-
Case Generation utilizes (1) the sets of dependent widgets gener-
ated by Dependency Extraction and (2) the specification of each
widget in the IM. Lastly, Test-Case Generation merges the value
combinations to create tests that cover the entire sequence of events
in each path of the ATM. The generated tests can then be executed
using Robotium [6], an Android test-automation framework.
3All Android components are activated via Intent messages. An
Intent message is an event for an action to be performed along with
the data that supports that action.

Figure 2: A high-level overview of TrimDroid

The next four sections describe the four components of Trim-
Droid in more detail.

4. MODEL EXTRACTION
TrimDroid extracts two types of Alloy models for each app: In-

terface Model (IM) and Activity Transition Model (ATM). We de-
fine each model and describe the extraction process for each in the
remainder of this section.

4.1 Interface Model
The IM provides information about all of the GUI inputs of an

app, such as the widgets and input fields belonging to an Activity.
More formally, the IM is defined as follows:

Definition 1. The IM of an app is a tuple 〈A,E,W, I〉, where

• A is a finite, non-empty set of Activities of the app.
• E is a finite set of event handlers of the app (e.g., onClick()

is the handler for a button click). Each Activity a ∈ A has a
set of event handlers eHandlers(a)⊆ E.
• W is a finite set of GUI widgets of the app (e.g., a check-

box, radio-button). Each Activity a has a set of widgets
widgets(a)⊆W .
• I is a finite set of input classes for widgets of the app. Each

widget w has a set of input classes ic(w) ⊆ I. Each in-
put class is a partition of the input domain of each widget.
For instance, input classes of a check-box are checked and
unchecked, while input classes of a drop-down menu are its
choices.

Model Extraction obtains the IM by analyzing the informa-
tion contained in the meta-data included in an Android APK file,
namely its XML-based manifest and layout files. More specifically,
Model Extraction determines all the Activities within an app from
its manifest file. Subsequently, for each Activity, Model Extrac-
tion parses the corresponding layout file to obtain all information
for each widget, such as its name, id, input type, etc. Our current
implementation extracts the input classes for widgets that provide
users with a list of options, such as check-boxes and drop-down
menus, directly from the layout files. We use the same layout files
to divide the domain space of text-boxes into different classes based
on the limits imposed on the text box values (e.g., max length). For
unbounded text boxes, and other unbounded widgets, we use a con-
figurable set of input classes that can be defined by the user.

4.2 Activity Transition Model
An ATM represents the high-level behavior of an app’s GUI in

terms of its Activities and the transitions resulting from invocations
of its event handlers. More formally, the ATM is defined as follows:

Definition 2. The ATM of an app is a finite state machine repre-
sented as a tuple 〈A,a0,E,F〉, where

• A is a finite, non-empty set of Activities.
• a0 is the starting Activity (i.e., main Activity), defined in an

app’s manifest file.



• E is a finite set of directed transitions from the starting Ac-
tivity to final Activities, labeled by event-handler names.
Each transition represents an event handler and denoted as
ai

ek−→ a j, where ai,a j ∈ A and ek is an event handler.
• F is a finite, non-empty set of final Activities in the ATM.

Figure 3 shows the ATM for the ERS app. To obtain an
ATM such as this, Model Extraction first determines the Activi-
ties A = {a0,a1,a2,a3,a4} comprising the app from its manifest
file. To determine the transitions between the Activities, Model
Extraction performs a depth-first traversal of main Activity’s call
graph starting from its onCreate() method, which we know from
Android’s ADF specification to be the starting point of all apps. In
the context of ERS, this corresponds to NewReportActivity’s onCre-
ate() method. For each encountered node in the call graph, Model
Extraction checks whether it would result in an activity transition,
and if so, adds it to set E.

A call may result in a transition in two ways:
1. Inter-component transition: these are implicit calls that

result in the transfer of control from one Activity to another
Activity. For instance, in the example of ERS in Figure 1,
when the Itemized Report button is clicked, the corresponding
handler calls Android’s startActivity method, which sends an
Intent message resulting in the transfer of control to Itemize-
dReportActivity’s onCreate() method. In this case, we extract
the destination from the Intent, and add the following transition

E = E ∪{a0
onClick(ItemizedReport)−−−−−−−−−−−−−−→ a2}.

2. Intra-component transition: these are implicit calls to GUI
event handlers in an Activity that result in a transition back to the
same Activity. For instance, the ItemizedReportActivity has a Click
event associated with its Reset button. This event is handled by
the Activity’s onClick() method that is registered with that button.
In this case, we add the following transition to the model: E =

E ∪{a2
onClick(Reset)−−−−−−−−→ a2}.

Upon traversing the call graph of a0, the above process repeats
for all of the Activities remaining in A. Finally, we populate the set
F with the Activities that do not have any outgoing inter-component
transitions, and if they do, it is only to nodes that precede them.

We implemented the Model Extraction component on top of
Soot, a static-analysis framework for Java [37]. To analyze an
Android app, TrimDroid utilizes the Dexpler transformer [13] to
translate Android’s Dalvik bytecode to Jimple, Soot’s intermediate
representation. By leveraging Soot and Dexpler, TrimDroid works
with an app’s source code as well as its APK file.

5. DEPENDENCY EXTRACTION
TrimDroid uses the dependencies among the app elements to de-

termine the combinations that should be tested, and those that can
be safely pruned. To that end, Dependency Extraction determines
three types of dependencies as described further below.

Figure 3: Activity Transition Model for the ERS app

Algorithm 1: wDep
Input: a ∈ A
Output: WD⊂ P (widgets(a))

1 WD← /0;
2 depPairs← /0;
3 foreach meth ∈ a.Methods do
4 foreach w used in a conditional statement stmt1 of meth do
5 if isAWidget(w) then
6 foreach w1a used along either branch of stmt1 do
7 if isAWidget(w1a) then
8 depPairs← depPairs∪{{w1a,w}};

9 foreach rv defined along either branch of stmt1 do
10 foreach w2 ∈ widgetsWhoseValueAffects(rv) do
11 depPairs← depPairs∪{{w2,w}};
12 foreach conditional statement stmt2 that uses rv do
13 foreach w1b used along either branch of stmt2 do
14 if isAWidget(w1b) then
15 depPairs← depPairs∪{{w1b,w}};

16 WD← merge(depPairs);
17 WD←WD∪ isolateRemainingWidgets(WD,widgets(a));

5.1 Widget Dependency
Two widgets w1 and w2 are dependent if combinations of their

values affect an app’s control- or data-flow. Widget combinations
that affect the control-flow impact the code coverage of generated
tests; widget combinations that affect the data-flow determine the
state of the system under test. Here are two possible dependencies
between w1 and w2 that our approach detects:

(Case 1) w2’s use depends on the value of w1. This can occur in
two situations. First, a widget w1 is used in a conditional statement,
and widget w2 is used along either branch of that statement. An
example of the first case is shown below, where lastBreakFast is
dependent on totalDays:

if((String.valueOf(totalDays.getSelectedItem()))
.equals("1")) {
lastBreakFast.setEnabled(false); }

The second situation occurs when the value of widget w1 af-
fects a reference r, and w2’s use depends on the value of r. An
example of this case is shown below, where the use of totalDays
is indirectly dependent on firstBreakfast based on the variable
mealsCount:

if(firstBreakFast.isChecked())
mealsCount++;

if(mealsCount > 0)
totalMeals = totalDays.getValue()*3 + mealsCount;

(Case 2) In a conditional statement, widget w1 is used and
reference r is defined in its block, and r is later used in the
block of another conditional statement, where w2 is used. An
example of this case is shown below, where the value combina-
tions of firstBreakfast and firstLunch impact the value of
mealsCount:

if(firstBreakFast.isChecked())
mealsCount++;

if(firstLunch.isChecked())
mealsCount++;

Algorithm 1 defines wDep, which partitions widgets(a) based
on the two cases above. The algorithm takes an Activity a as
input and produces WD, a partition for widgets(a) where WD ⊂
P (widgets(a)).

For each method, wDep iterates over each reference w that is
used in a conditional statement and determines if w refers to a
widget (lines 3–5 of Algorithm 1). To make that determination,
isAWidget(w) traverses the definition-use chain of w to determine



Algorithm 2: hDep
Input: a ∈ A,e ∈ eHandlers(a)
Output: HD⊂ P (widgets(a))

1 HD← /0;
2 foreach r is used in e do
3 if isAWidget(r) then
4 foreach wd ∈ wDep(a) do
5 if r ∈ wd then
6 HD← HD∪{wd};
7 break;

if any of its definitions refers to a widget. At this point, wDep dis-
tinguishes the two cases that result in widget dependencies.

To determine the first situation of Case 1, wDep checks if any
other variable w1a is used and references a widget (lines 6–7 of
Algorithm 1). If so, wDep creates a widget dependency {w1a,w}
(line 8 of Algorithm 1).

To obtain widget dependencies for Case 2, wDep identifies any
variable rv defined after the conditional statement where w is ref-
erenced (line 9 of Algorithm 1). For any rv whose value is af-
fected by widget w2 (line 10 of Algorithm 1), wDep creates the
widget dependency {w2,w} (lines 11 of Algorithm 1). Here,
widgetsWhoseValueAffects(rv) returns the widgets used in a con-
ditional statement whose value affects a reference rv by traversing
rv’s definition-use chain.

To identify the second situation of Case 1, wDep further checks
if reference rv is used in a second conditional statement (line 12 of
Algorithm 1). If a reference to a widget w1b is used along either
branch, then wDep creates a widget dependency {w1b,w} (lines
13–15 of Algorithm 1).

The widget dependency pairs are then merged (line 16). Two
widget dependency pairs are merged if any of their elements inter-
sect. For instance, two dependency pairs {wα,wβ} and {wβ,wω}
are merged, and the resulting set {wα,wβ,wω} is stored in WD. Fi-
nally, widgets that do not interact with any other widget, and thus
not part of any dependency pair set, are each isolated into their own
singleton set and added to WD (line 17).

5.2 Handler Dependency
To further reduce the number of test cases, Dependency Extrac-

tion identifies the dependencies between widgets and event han-
dlers. This kind of dependency occurs when a widget value is used
in an event handler, indicating that all combinations of the widget
and the event resulting in the invocation of event handler should be
tried. As an example of this, consider the following code snippet,
where the value of totalDays is used in the onClick() method of
NextButton in the ItemizedReportActivity of ERS:

public class NextButton implements OnClickListener
{
public void onClick(View v) {

totalDaysValue = String.valueOf(totalDays.
getSelectedItem());

...}}

If an event handler uses multiple widgets, all combinations of
those widgets according to their widget dependencies need to be
tested together with the handler’s event.

Thus, the pruning of irrelevant test combinations is achieved
through determining the widgets that are not used by event han-
dlers. For example, the onClick() handler for the Reset button
of ItemizedReportActivity clears the screen regardless of the values
of the widgets. Hence, no value combinations of the widgets on
ItemizedReportActivity need to be tested with the Reset button.

Algorithm 3: aDep
Input: ai,a j ∈ A,e ∈ eHandlers(a)
Output: boolean
/* get the intent sent from ai to a j in e */

1 I← ai.getIntent(e,a j)
2 foreach payload ∈ I.IntentExtras() do
3 re f s← getAffectedReferences(payload)
4 foreach r ∈ re f s do
5 if isAWidget(r) then
6 return true;

7 return false;

Algorithm 2 defines hDep, which partitions widgets(a) into a set
based on handler dependencies. The input to the algorithm is an
activity a and an event handler e. The output of the algorithm is
HD, a partition of widgets(a) where HD⊂ P (widgets(a)).

5.3 Activity Dependency
The third type of dependency involves the widget values in one

Activity that may impact the behavior of another Activity. If so,
we need to test all combinations of those widgets in a first Activ-
ity impacting a second activity with all combinations of widgets
in the second Activity. Since Activities in Android communicate
using Intent messages, we say the value of a widget w in an Ac-
tivity ai may impact another Activity a j, if it affects the payload
of an Intent that is sent from ai to a j. For example, as shown in
the following code snippet, NewReportActivity sends an Intent that
starts the ItemizedReportActivity and passes the selected value for
currencyRB in the payload of the Intent:

public class ItemizedReportButton implements
OnClickListener {

public void onClick(View v) {
int selectedId = currencyRB.getCheckedRadioButtonId

();
currencyRB = (RadioButton)findViewById(selectedId);
String currency = currencyRB.getText();
Intent intent = new Intent(this,

ItemizedReportActivity.class);
intent.putExtra("currency", currency);
startActivity(intent);}}

On the other hand, from the above code snippet, we can see that
the value of Destination drop-down menu from NewReportActivity
does not impact the Intent sent to ItemizedReportActivity. Thus,
there is no need to test all combinations of widgets on NewRepor-
tActivity with the widgets on ItemizedReportActivity. This provides
us with yet another opportunity to prune the tests.

Algorithm 3 defines aDep, which determines whether an Activ-
ity has a dependency to widget values selected in a preceding Ac-
tivity. The algorithm takes two Activities ai and a j, corresponding
to the source and destination of an Intent, an event handler e, real-
izing the transition between the two activities, and returns true if an
Activity dependency exists and false otherwise.

6. SEQUENCE GENERATION
In GUI system testing, a test is comprised of two parts: se-

quence of events (e.g., button clicks) and selection of input values
(e.g., drop-down menu choices). In this section, we describe how
TrimDroid produces sequences of events that represent possible use
cases for the system. In the next section, we provide the details of
how the dependencies are used to determine the combination of
input values for each sequence of events.

Our approach for the generation of event sequences is based on
using a formal language to describe the ATM as well as the cover-
age criteria for traversing it. We then use an automated constraint



solver to exhaustively synthesize the space of possible paths. Each
path in the ATM represents a sequence of event handlers triggered
in a possible use case for the system. These paths can be generated
using any given coverage criteria (e.g., node coverage, edge-pair
coverage). TrimDroid relies on prime path coverage as it has been
shown to subsume most other graph coverage criteria [10]. A cover-
age criterion α subsumes coverage criterion β, if and only if 100%
α coverage implies 100% β coverage [35].

TrimDroid represents an ATM in the form of an Alloy
model [22]. Alloy is a formal modeling language with a com-
prehensible syntax that stems from notations ubiquitous in ob-
ject orientation, and semantics based on the first-order relational
logic [22], making it an appropriate language for declarative spec-
ification of both application models and properties to be verified.
Listing 1 shows (part of) the Alloy specification of ATM, specif-
ically the signatures for activity, simplePath and primePath.
Each Activity has a set of event handlers (eHandlers), and a field
(isStart), indicating whether it is a starting activity or not. Lines
4–11 present the simplePath signature along with its facts that
specify the elements involved in, and the semantics of, a simple
path, respectively. A simple path is a sequence of transitions from
the starting activity (i.e., a0), where no activity node appears more
than once, except possibly when the first and last nodes are the
same. A prime path then, as specified in lines 12–14, is a simple
path that does not appear as a proper sub-path of any other sim-
ple path. An example of a prime path in the ATM of Figure 3 is:
a0

e1−→ a2
e4−→ a3

e5−→ a4.
A test path satisfies prime path coverage if and only if it starts

from a starting node and ends in a final node while covering a prime
path in a graph [10]. The prime-path criterion limits visits of each
loop to one, since simple paths have no internal loops. It also limits
the number of generated paths, as it only contains paths that are not
sub-path of any other path. The ATM of our running example (see
Figure 3) thus includes three prime paths, automatically generated
using Alloy Analyzer.

7. TEST GENERATION
Each system test st ∈ ST is comprised of a sequence of activity

tests: st = 〈ata0 ,ata1 , ...,atan〉. An activity test consists of widget
value combinations and an event that exercises a particular Activity
and results in a transition, either to itself or to another Activity,
according to ATM.

TrimDroid generates the system tests in two steps. First, it gen-
erates the activity tests using the widget value combinations and
events available on each Activity. Afterwards, it combines activity
tests into a sequence that represents a GUI system test to cover a
particular prime path.

To illustrate, we use the execution scenario for the ERS app
shown in Figure 1. The ATM for ERS (recall Figure 3) shows

1 abs t r ac t s ig a c t i v i t y {
2 i s S t a r t : one I s S t a r t , // indicator of a starting activity
3 eHandlers : se t a c t i v i t y } // activity’s event handlers
4 s ig simplePath {
5 f i r s t : one a c t i v i t y , // the starting activity
6 t r a n s i t i o n s : a c t i v i t y −>a c t i v i t y } { // sequence of transitions
7 f i r s t . i s S t a r t = Yes
8 f i r s t i n t r a n s i t i o n s . a c t i v t y
9 a l l x : a c t i v i t y | lone x . t r a n s i t i o n s

10 t r a n s i t i o n s i n eHandlers
11 no x : t r a n s i t i o n s . a c t i v i t y | x ! i n f i r s t .∗ ( t r a n s i t i o n s ) }
12 s ig primePath extends simplePath { } {
13 // an activity with no outgoing transition
14 no f i n a l A c t i v i t y [ t r a n s i t i o n s ] . eHandlers }
15 fun f i n a l A c t i v i t y [ r : a c t i v i t y −>a c t i v i t y ] : one a c t i v i t y {
16 r [ a c t i v i t y ]− r . a c t i v i t y }

Listing 1: Specifications for ATM in Alloy.

its five activities (denoted as a) and their transitions (denoted as
e). The input classes for widgets on NewReportActivity are
captured in Figure 4a, where ic(w) indicates the possible val-
ues for widget w. Figure 4b captures the same information for
ItemizedReportActivity. In addition, the widget dependencies
(recall Algorithm 1), handler dependencies (recall Algorithm 2),
and activity dependencies (recall Algorithm 3) are all denoted in
Figure 4c.

7.1 Activity Test Generation
We generate tests for an Activity a in three steps:
(Step 1) For each event e ∈ eHandlers(a), we use Alloy Ana-

lyzer to enumerate over all combinations of widget values in a that
are dependent on e. To determine those combinations, we utilize
the set of handler dependencies. Let h ∈ hDep(a,e) represent a set
of dependent widgets with respect to an event handler e. We cal-
culate WCh, i.e., the widget combinations for h, using the Alloy
Analyzer, as the Cartesian product of all the input classes for its
widgets:

WCh ≡
|h|⊗
j=1

ic(w j),where w j ∈ h

For instance, in ERS as shown in Figure 4c, we can see that
hDep(a0,e1) is comprised of two sets: {dest,cur} and {amount}.
Each one of these two sets indicates a widget dependency among
its members, as well as a handler dependency with respect to e1
(i.e., "ItemizedReport.onClick"). We can determine the com-
bination of their elements as shown in Figure 4d.

(Step 2) To generate tests for Activity a with respect to event
e, every widget w ∈ h, where h ∈ hDep(a,e), must be assigned a
value. To achieve this, all widget combinations, i.e., all instances of
WCh, are combined into one final set. However, since these widgets
are independent from one another, we simply need to merge them,
rather than calculate their cross-product, as follows:

WChDep(a,e) ≡ merge(H),where H = {h|h ∈hDep(a,e)}

Definition 3 (Merge). Given a set of sets S, let
m = ∀s ∈ S,max(|s|), we merge all members of S into C defined as
follows:

C = {ci|ci ≡
⋃
∀s∈S

x(i mod |s|),

where 0≤ i≤ (m−1)∧ xi ∈ s}

Thus, considering the widget combination in Figure 4d,
we can calculate the final set of combinations for Activity
a0 (NewReportActivity) in the context of event handler e1
(ItemizedReport.onClick) as shown in Figure 4e.

As shown in Figure 4a, |ic(dest)| = 10, |ic(cur)| = 3 and
|ic(amount)| = 2. Thus, merging WC{dest,cur} with WC{amount}
produces 30 unique possible combinations. Note that since
WC{amount} only has 2 combinations, when we merge it with
WC{dest,cur}, which has 30 combinations, we simply need to en-
sure all of its unique values are included in the generated tests. In
this case, we chose values 100 and 0 for the first two combinations
and simply chose 100 for all the remaining combinations. Since we
know that amount does not interact with the other widgets, we just
need to ensure all of its unique values are included in the combina-
tions. However, we still need to include a value for amount for all
combinations, as the event handler depends on it.

(Step 3) Given all widget value combinations for an Activity
a in relation to an event handler e ∈ eHandlers(a), we can now
construct all of the corresponding activity tests AThDep(a,e). To that
end, we simply augment each element of the set WChDep(a,e) with
the action corresponding to the triggering of event handler, i.e., e,
as follows:



NewReportActivity
# ic(dest) ic(amount) ic(cur)
1 Rome 100 Euro
2 London 0 Dollar
3 Rome Pound
. .
. .

10 Berlin

(a)

ItemizedReportActivity
# ic(totalDays) ic( f b f ) ic( f l) ic( f d) ic(lb f ) ic(ll) ic(ld)
1 1 true true true true true true
2 2 false false false false false false
3 3
. .
. .
6 6

(b)

Dependencies
wDep(a0) = {{dest,cur},{amount}}
wDep(a2) = {{totalDays, lb f , ll, ld},

{ f b f},{ f l},{ f d}}
hDep(a0,e1) = {{dest,cur},{amount}}
hDep(a2,e3) = {}
aDep(a0,e1,a2) = true
aDep(a2,e3,a2) = f alse

(c)
# WC(dest,cur) WC(amount)
1 Rome, Euro 100
2 Rome, Dollar 0
3 Rome, Pound
4 London, Euro
5 London, Dollar
. .
. .

30 Berlin, Pound

(d)

# WChDep(a0 ,e1)
1 Rome, Euro, 100
2 Rome, Dollar, 0
3 Rome, Pound, 100
4 London, Euro, 0
5 London, Dollar, 100
. .
. .

30 Berlin, Pound, 100

(e)

# AThDep(a0 ,e1)
1 {{Rome , Euro, 100}, ItemizedReport}
2 {{Rome , Dollar, 0}, ItemizedReport}
3 {{Rome , Pound, 100}, ItemizedReport}
4 {{London , Euro, 0}, ItemizedReport}
5 {{London , Dollar, 100}, ItemizedReport}
. .
. .

30 {{Berlin, Pound, 0}, ItemizedReport}

(f)

Figure 4: An example to illustrate TrimDroid’s generation of tests: (a) input classes of widgets in NewReportActivity, (b) input classes of
widgets in ItemizedReportActivity, (c) dependency sets for NewReportActivity and ItemizedReportActivity, (d) widget combina-
tions for dependent widgets in a0 with respect to e1, (e) final set of combinations for Activity a0 (NewReportActivity) in the context of
event handler e1, and (f) generation of Activity Tests for a0 with respect to e1.

AThDep(a,e) ≡WChDep(a,e)

⊗
e

For instance, in our running example, the set of test combi-
nations for Activity a0 (NewReportActivity) in relation to e1
(ItemizedReport.onClick) is represented in Figure 4f. On the
other hand, to test Activity a2 (ItemizedReportActivity) in re-
lation to e3 (Reset.onClick) no value combinations are needed,
as WChDep(a2,e3) = {}.

Tests for an Activity a can be calculated as the union of all gen-
erated tests in relation to its event handlers:

ATa ≡
⋃

∀e∈eHandlers(a)

AThDep(a,e)

This section illustrated two ways in which TrimDroid reduces
the number of generated tests. First, since TrimDroid has de-
termined that {dest,cur} is independent of {amount}, instead of
calculating all their combinations by taking their cross-product, it
simply merges the two sets of combinations (recall Definition 3).
Second, since TrimDroid detects there are no dependencies be-
tween the “Reset” button’s event handler and any of the widgets
on ItemizedReportActivity, it does not generate tests involving
any of the widget combinations for that particular event.

7.2 System Test Generation
To generate the GUI system tests ST for a given path

ai
ep−→ a j

eq−→ ak in an ATM, we first generate the activity tests for
each transition (event handler) in the manner described in the pre-
vious section. Next, if ai and a j are dependent with respect to ep
(i.e., aDep(ai,ep,a j) = true), we enumerate all combinations of
AThDep(ai,ep) and AThDep(a j ,eq) by calculating their cross-product:

ST
ai

ep−→a j
eq−→ ≡ AThDep(ai,ep)

⊗
AThDep(a j ,eq)

Otherwise, ai and a j are independent with respect to ep, in which
case we apply the merge operator, resulting in a reduction of gen-
erated tests:

ST
ai

ep−→a j
eq−→ ≡ merge(AThDep(ai,ep),AThDep(a j ,eq))

Note that for transition a j
eq−→ ak that ends with a final Activity ak

(e.g., a4 in Figure 3), ak has no activity tests as it has no outgoing
transition, and in turn, contributes no combinations to the system
tests.

To illustrate the process, consider a situation in ERS where the
goal is to generate a system test for the path a0

e1−→ a2
e3−→ a2 in Fig-

ure 3. There is an activity dependency between a0 and a2 with
respect to e1, i.e., aDep(a0,e1,a2) = true as shown in Figure 4c.
We thus create all combinations of activity tests for both activities
in that transition to build the system tests ST , as shown in Figure 5.

# ST
a0

e1−→a2
e3−→a2

1 〈{{Rome,Euro,100}, ItemizedReport},{Reset}〉
2 〈{{Rome,Dollar,100}, ItemizedReport},{Reset}〉
3 〈{{Rome,Pound,100}, ItemizedReport},{Reset}〉
4 〈{{London,Euro,100}, ItemizedReport},{Reset}〉
5 〈{{London,Dollar,100}, ItemizedReport},{Reset}〉
. .
. .

30 〈{{Berlin,Pound,100}, ItemizedReport},{Reset}〉

Figure 5: System tests for the path a0
e1−→ a2

e3−→ a2 in ERS
Our approach produces a total of 30 system tests for this path,

each indicated as a sequence in the set ST . Following the genera-
tion of system tests, Test-Case Generation transforms each test case
to proper Robotium format for execution [6].

8. EVALUATION
To evaluate our approach, we measure TrimDroid’s ability to

reduce test suites, while maintaining effectiveness. To assess ef-
fectiveness, we compare TrimDroid’s code coverage and execution
time against exhaustive combinatorial testing as well as prior An-
droid testing techniques. Specifically, we investigate the following
three research questions:

• RQ1: How do TrimDroid, exhaustive GUI combinatorial,
and pairwise testing compare with respect to the size of gen-
erated test suites and their execution time?

• RQ2: How do TrimDroid, exhaustive GUI combinatorial,
and pairwise testing compare with respect to code coverage?

• RQ3: How effective is TrimDroid compared to prior An-
droid test automation techniques?

For investigating these questions, we use several real-world apps
from an open-source repository, called F-Droid [4]. Each selected
app satisfies the following criteria: (1) its source code is available;
and (2) it uses only standard GUI widgets of the Android Appli-
cation Development Framework, e.g., it is a native mobile app,



rather than a web mobile app. The first criterion ensures that we
can properly measure code coverage; the second criterion is due to
the limitation of our static program analysis that only supports stan-
dard Android libraries and widgets. These apps are selected from
different categories, such as productivity, entertainment, and tools.

Table 1 lists these apps. For each App, Table 1 depicts its size
as measured using lines of code (LOC). We compare TrimDroid’s
coverage against exhaustive combinatorial testing, since its cover-
age subsumes the coverage of all other combinatorial testing tech-
niques [20]. We used prime path coverage criterion (recall Sec-
tion 6) for both exhaustive testing and TrimDroid to allow for a fair
comparison.

We also compare TrimDroid’s coverage with M[agi]C [32]—a
pairwise GUI combinatorial testing technique that has been applied
on Android apps, among others. M[agi]C requires the user to man-
ually construct two types of models for the software under test: a
model identifying the input classes for all the widgets, and a model
that captures the transitions between the screens. In fact, the for-
mer is equivalent to TrimDroid’s ATM, and the latter to its IM. To
ensure a fair comparison, we manually transformed the ATM and
IM models that TrimDroid generated automatically for each app
into models that can be used by M[agi]C. M[agi]C uses a post-
optimization algorithm that reduces the number of generated test
cases after executing them once. This is achieved by removing the
input combinations for paths that share events. Finally, we did not
use the optimization option of M[agi]C to ensure the generated test
cases achieve the maximum code coverage.

Although assessing TrimDroid’s fault-detection ability is a pri-
mary concern of ours, currently there is no organized set of open-
source Android apps with known defects and fault reports that can
be used to evaluate TrimDroid’s fault detection ability. Alterna-
tively, mutation testing can be used, where the mutants replicate
actual faults. Unfortunately, there is no support for mutation testing
of Android apps to this date. Particularly, no fault model exists for
Android apps, preventing production of mutants that can substitute
for real faults. One of the authors has recently begun to investigate
the challenges of mutation testing for Android applications [17].

All of our experiments were conducted on a machine with 16GB
memory and a quad core 2.3GHz processor. We used Android Vir-
tual Devices (Android emulators) with 2GB RAM, 1GB SD Card,
and the latest version of Android that is compatible with the app,
except for Dynodroid, whose in-box emulator uses Android 2.3. A
fresh emulator was created for each app along with only default
system applications. During the experiments, we used EMMA [3]
to monitor code coverage. Specifically, we measured line coverage
by running all of the generated test cases on each app. TrimDroid,
subject apps, and our research artifacts are publicly available [7].

8.1 Test-Suite Reduction
To answer RQ1, we compare the test suites generated by Trim-

Droid, exhaustive combinatorial testing and M[agi]C in terms of
size and execution time. For each App, Table 1 shows the size and
execution time of test cases for both techniques. The table also
shows the reduction of test cases compared to exhaustive combina-
torial testing in the right-most column.

We observe that in most cases TrimDroid is able to significantly
reduce the number of generated tests compared to exhaustive test-
ing. TrimDroid, on average, generates 57.86% fewer tests com-
pared to exhaustive testing. The smaller number of tests that would
need to be inspected, especially for human engineers, would result
in significant savings in time and effort. By doing so, TrimDroid
reduces the time needed to execute the tests by 57.46% on average.
The savings are more pronounced in certain cases. For Password-
Generator, TrimDroid eliminates more than 479,000 tests, which is
a reduction in tests by multiple orders of magnitude. Furthermore,

exhaustive testing crashes for PasswordGenerator (as denoted by
the dash in Table 1) before generating all the app’s test cases, as
the massive size of its generated test suite depletes our machine’s
memory.

On average, TrimDroid generates 2 times more test cases than
M[agi]C. However, as described later, the tests generated by Trim-
Droid achieve a substantially higher code coverage. Recall that
while TrimDroid adopts t-way testing, where t is determined ac-
cording to the dependencies extracted through program analysis,
M[agi]C uses a fixed t for all apps, i.e., two. Apps for which Trim-
Droid has produced more tests than M[agi]C, harbor complex de-
pendencies involving three or more widgets. Apps for which Trim-
Droid has produced fewer tests are lacking dependencies among
their widgets, indicating that the pairwise strategy is producing un-
necessary tests.

8.2 Effectiveness - Exhaustive and Pairwise
To answer RQ2, we compare the statement coverage resulting

from the execution of test suites generated by TrimDroid, M[agi]C
and exhaustive testing. The results are summarized in Figure 6.
Each application is identified along the horizontal axis, while the
vertical axis shows the statement coverage achieved by TrimDroid,
M[agi]C and exhaustive testing. In all cases, TrimDroid achieves
at least the same statement coverage as exhaustive testing and the
same or better statement coverage than M[agi]C. For the Password-
Generator app, exhaustive testing’s failure to complete is depicted
as 0% coverage, since the inability to generate the test suite is ef-
fectively 0% statement coverage.

Note that some subject apps (e.g., autoanswer and httpmon)
heavily use Service components. Unlike Activity components, Ser-
vice components are responsible for handling events initiated by
the system rather than the GUI. For example, autoanswer provides
Services that perform a task based on a set of predefined prefer-
ences when a phone call is received. Given that TrimDroid’s focus
is on GUI testing, it is no surprise that it does not achieve good cov-
erage for these types of apps. In fact, when we compare against the
highest possible coverage for a GUI-based testing approach in such
apps, namely exhaustive GUI testing, we observe that TrimDroid
achieves the same coverage.

Thus, in comparison to exhaustive testing, the results show that,
although TrimDroid significantly reduces the number of tests, and
subsequently their execution time, the resulting code coverage is
not degraded at all. In principle, however, due to the limitations
of static analysis (e.g., unsupported Android libraries), it is possi-
ble for TrimDroid to achieve less coverage than exhaustive testing,
even though our experiments have not yet revealed such instances.

On average, TrimDroid achieves 13% more statement coverage
than M[agi]C. This result supports the effectiveness of using the
proposed dependency-based heuristics for reducing the number of
tests, rather than fixed strategies, such as pairwise testing, that com-
promise on coverage.

8.3 Effectiveness - Other Android Testing
A meaningful comparison of Android test automation techniques

is generally difficult, as each has its own unique objective. Our ob-
jective in TrimDroid has been to reduce the number of tests in com-
binatorial GUI testing of Android apps without compromising on
coverage. On the other hand, several prior techniques have aimed
to maximize code coverage through search-based techniques, re-
gardless of the number of tests it takes to do so, which could pose
a significant burden when the assessment of whether the tests have
passed or failed entails manual effort. Nevertheless, we compare
against the code coverage and execution time achieved by four prior
techniques: Monkey [1], Dynodroid [27], M[agi]C [32] and our
prior work, EvoDroid [29].



Table 1: Pruning effect in TrimDroid

App LOC

Exhaustive M[agi]C TrimDroid
ReductionTesting

Test Time Test Time Test Time
Cases (s) Cases (s) Cases (s)

HashPass 429 128 515 15 50 32 126 75.00%
Tipster 423 36 243 20 44 24 156 33.33%

MunchLife 631 10 84 9 37 8 56 20%
Blinkenlights 851 54 252 5 36 22 112 59.25%

JustSit 849 50 236 10 42 16 74 68%
autoanswer 999 576 5655 17 196 12 118 97.91%

AnyCut 1095 6 38 4 38 6 38 0%
DoF Calculator 1321 1174 7292 107 953 30 373 97.44%

Divide&Conquer 1824 12 85 5 47 4 32 66.66%
PasswordGene 2824 > 48000 – 58 351 418 1263 99.91%
TippyTipper 2953 26 238 30 172 25 225 3.84%
androidtoken 3680 454 13336 19 189 42 686 90.74%

httpMon 4939 42 407 34 235 28 282 33.33%
Remembeer 5915 48 633 24 194 17 320 64.58%

Android Monkey, a widely used testing technique developed by
Google, represents the state-of-practice and operates by sending
random inputs and events to the app under test. Dynodroid uses
several heuristics to improve on the number of inputs/events used
by Monkey, and thus achieves similar coverage with fewer gener-
ated events. As both Monkey and Dynodroid are based on pseudo-
random testing, using the same low number of events that are gen-
erated by TrimDroid may not be a fair comparison. To address that,
we ran both Dynodroid and Monkey with 2,000 input events, which
is the maximum input size for Dynodroid [27].

EvoDroid is a system testing technique that implements a novel
evolutionary testing algorithm. EvoDroid’s fitness is designed to
maximize the statement coverage through exhaustively exploring
the search space for event sequences. Note that EvoDroid is a
search-based testing technique; thus, using the same low number of
events that are generated by TrimDroid is not adequate for the evo-
lutionary search to be effective. On the other hand, the main goal of
TrimDroid is to generate a limited number of tests, which is crucial
when the evaluation of tests (i.e., oracle) involves manual effort.
To summarize, EvoDroid is intended to exhaustively test event se-
quences; TrimDroid is designed to comprehensively test the input
space of GUI widgets, using a limited number of event sequences
identified by utilizing prime paths. Consequently, a fair one-to-one
comparison of the two techniques might not be possible. Having
said that, we ran EvoDroid for ten evolutionary generations on all
apps, which is the same setup as that used in [29], and compare the
resulting statement coverage.

Few other tools exist, but we were unable to include them in our
experiments, as we could not properly run them after significant
consultation with their developers. A3E [12] aims to discover the
Activities comprising an app by covering a model similar to our
notion of ATM. We were unable to run A3E on any of our apps using
the virtual machine provided by its developers. A3E gets stuck
when trying to start Troyd [24]—an integration testing framework
for Android utilized by the tool.

We also attempted to run SwiftHand [14]. It uses (1) machine
learning to infer a model of the app during testing, (2) the inferred
model to generate user inputs that visit unexplored states of the app,
and (3) the execution of the app on the generated inputs to refine the
model. SwiftHand exits with an exception failing to locate the main
Activity of the app. Based on our analysis, the issue may reside
with the custom made instrumentation of the app under test. Our
attempts to resolve the issues with the help of the tool developers
have been unsuccessful to date.

The statement coverage and execution time for all five testing
techniques are summarized in Table 2. Dynodroid cannot run on
TippyTipper and DoF Calculator—denoted by a dash (-) in Ta-
ble 2—since the newer Android APIs utilized by those apps are not

Figure 6: Statement coverage comparison

supported by Dynodroid. We could not run the current version of
EvoDroid on DivideAndConquer due to use of unsupported APIs.

The results show that TrimDroid is able to achieve higher code
coverage in most cases. Note that TrimDroid is targeted at GUI
testing, and therefore only generates GUI events, while Dynodroid
and EvoDroid support both system events as well as GUI events.
As a result, for some apps, TrimDroid cannot achieve the same
coverage as Dynodroid and EvoDroid. Nevertheless, TrimDroid’s
coverage, on average, outperforms Monkey by 27.36%, Dynodroid
by 16.33%, M[agi]C by 14%, and EvoDroid by 4%.

In addition, TrimDroid runs 134 times faster than Dynodroid, 78
times faster than EvoDroid, 1.5 times slower than M[agi]C, and
about 3 times slower than Monkey. TrimDroid’s slower perfor-
mance in comparison to M[agi]C and Monkey can be attributed to
the analysis performed for extracting the models as well as the ap-
plication of heuristics for reducing the number of tests.

9. RELATED WORK
In this section, we describe the most relevant research from two

areas: Android testing and combinatorial testing.

9.1 Android Testing
The Android development environment ships with a powerful

testing framework [2] that is built on top of JUnit. Robolectric [5]
is another framework that separates the test cases from the device
or emulator and provides the ability to run the tests directly by ref-
erencing the Android library. While these frameworks automate
the execution of the tests, the test cases themselves still have to be
manually developed.

Several prior approaches build on random testing techniques.
Amalfitano et al. [8, 9] described a crawling-based approach that
leverages completely random inputs to generate unique test cases.
Hu and Neamtiu [21] presented a random approach for generating
GUI tests that uses Android Monkey. Dynodroid [27] incorporates
several heuristics to improve on Android Monkey’s performance.

Several prior approaches have focused on the extraction of mod-
els for Android testing. ORBIT [38] is a grey-box model creation
technique that creates a GUI model of the app for testing. A3E [12]
is a static taint analysis technique for building an app model for
automated exploration of an app’s Activities.

Unlike TrimDroid, these approaches focus on the construction
of models for testing that are covered using a depth-first search
strategy for generation of event sequences and random input data.
Our work differs from them as we use prime path coverage, which
subsumes all other graph coverage criteria, to generate the event
sequences. We further generate the inputs for GUI widgets in a
combinatorial fashion rather than using randomly generated input.

Choudhary et al. [15] compare several of the testing techniques



Table 2: Comparison of TrimDroid with other techniques

App TrimDroid M[agi]C Monkey Dynodroid EvoDroid
Coverage Time(s) Coverage Time(s) Coverage Time(s) Coverage Time(s) Coverage Time(s)

HashPass 88% 126 37% 50 40% 41 57% 33917 57% 23472
Tipster 81% 156 34% 44 67% 104 59% 33825 89% 22813

MunchLife 74% 56 71% 37 49% 75 54% 31421 78% 20965
Blinkenlights 85% 112 84% 36 49% 49 81% 25278 63% 22418

JustSit 77% 74 60% 42 35% 163 53% 41252 84% 20391
autoanswer 9% 118 9% 196 6% 43 10% 59672 8% 21883

AnyCut 58% 38 62% 38 6% 71 66% 21757 84% 19735
DoF Calculator 89% 373 75% 953 43% 70 - - 36% 20713

DivideAndConquer 46% 32 43% 37 51% 58 83% 33644 - -
PasswordGen 49% 1263 48% 351 42% 128 33% 31882 62% 26129
TippyTipper 81% 225 63% 172 42% 106 - - 82% 23108
androidtoken 38% 686 19% 189 10% 67 11% 57813 29% 19188

httpmon 45% 282 20% 235 4% 46 6% 22563 36% 23403
Remembeer 33% 320 33% 194 27% 46 23% 53013 28% 22517

mentioned above by evaluating them according to four criteria:
code coverage, fault detection capabilities, ease of use, and com-
patibility with different Android SDK versions. Their results shows
that Monkey outperforms other studied approaches along the four
mentioned criteria. They suggest that using a combination of these
approaches may result in better performance. To that end, Trim-
Droid utilizes a combination of a model-based testing approach and
a combinatorial approach.

Jensen et al. [23] presented a system testing approach that com-
bines symbolic execution with sequence generation. The goal
of their work is to find valid sequences and inputs to reach pre-
specified target locations, while TrimDroid aims to maximize the
code coverage. Anand et al. [11] presented an approach based
on concolic testing of a particular Android library to identify the
valid GUI events using the pixel coordinates. Unlike our research,
their approach does not generate systems tests, nor do they gen-
erate the tests in a combinatorial fashion. Finally, in our own
prior research, we have developed techniques based on evolution-
ary search [28,29], as well as symbolic execution [30,31] for testing
Android apps. Unlike our prior work, TrimDroid is targeted at GUI
testing and explores a new combinatorial testing approach.

9.2 Combinatorial Testing
Combinatorial testing has shown to be an effective approach in

GUI-based testing [39]. Approaches such as [18, 36] propose us-
ing greedy or heuristic algorithms to generate minimal sets of tests
for a given combinatorial criteria. Nguyen et al. [32] proposed an
approach that leverages manually constructed behavioral models
of an app in pairwise testing of GUI-based applications. Kim et
al. [25] introduced the idea of using static analysis to filter irrele-
vant features when testing software product lines. Petke et al. [34]
showed that higher strength of t-way testing can be practical and
more effective in the presence of constraints.

Our work differs from these approaches as we (1) specifically
target Android apps, (2) automatically extract the models through
program analysis, (3) use prime paths to generate the sequences
of events, and (4) rely on a number of heuristics to determine the
interacting widgets in order to reduce the number of tests without
degrading the coverage.

10. CONCLUSION AND FUTURE WORK
We presented a fully-automated approach for generating GUI

system tests for Android apps using a novel combinatorial tech-
nique. Our approach employs program analysis to partition the GUI
input widgets into sets of dependent widgets. Thus, the GUI wid-
gets with dependencies become candidates for combinatorial test-
ing. We then use an efficient constraint solver to enumerate the test
cases covering all possible combinations of dependent GUI wid-

gets. Our experimental evaluation shows that TrimDroid is able to
significantly reduce the number of tests in comparison to exhaustive
combinatorial testing, without any degradation in code coverage.

While our program analysis heuristics have shown to be quite
effective in pruning the test combinations, they have some known
limitations. For example, the IM is constructed by analyzing the
layout XML files statically, which does not handle cases where the
Activity views are defined dynamically. In addition, our static anal-
ysis is subject to false negatives in certain rare cases, e.g., depen-
dencies due to widget values being stored/read from the SD card,
or dependencies occurring through global variables. Our future re-
search involves improving the analysis to support such cases.

Recall from Section 4 that our current implementation uses a
predefined set of input classes for unbounded widgets. In our fu-
ture work, we plan to extend our previous work [30, 31] on sym-
bolic evaluation of Android apps to systematically derive the input
classes for those widgets.

The premise of our work is that the only available resource for
automated testing is an app’s APK file. If an app’s specification is
also available (e.g., in a formal machine-interpretable format), one
could investigate the extraction of interactions from the app’s spec-
ification as well as its implementation for combinatorial test gener-
ation. In practice, most apps on the market lack specifications that
can be used effectively for automated testing. However, this means
that if two widgets should have a dependency according to the in-
tended specification of the software, but the implemented software
does not have such a dependency, possibly because the developer
failed to correctly realize the specification, TrimDroid would not
generate tests to exercise those combinations.

In this work, we have focused on automatic test case generation,
rather than automatic test oracle construction, resulting in oracles
that determine whether test cases pass or fail. We believe that it
will be necessary to have the user in the loop to generate oracles
that assess intended app behaviors. Hence, reducing the number
of test cases to be inspected is certainly beneficial. Moreover, the
ability to generate tests that can achieve high code coverage has
applications beyond testing for functional defects: Energy issues,
latent malware, and portability problems are important concerns in
the context of mobile devices that are often effectively detected by
executing the code.
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