
Latte: Use-Case and Assistive-Service Driven Automated
Accessibility Testing Framework for Android

Navid Salehnamadi
School of Information and Computer

Sciences
University of California, Irvine, USA

nsalehna@uci.edu

Abdulaziz Alshayban
School of Information and Computer

Sciences
University of California, Irvine, USA

aalshayb@uci.edu

Jun-Wei Lin
School of Information and Computer

Sciences
University of California, Irvine, USA

junwel1@uci.edu

Iftekhar Ahmed
School of Information and Computer

Sciences
University of California, Irvine, USA

iftekha@uci.edu

Stacy Branham
School of Information and Computer

Sciences
University of California, Irvine, USA

sbranham@uci.edu

Sam Malek
School of Information and Computer

Sciences
University of California, Irvine, USA

malek@uci.edu

ABSTRACT
For 15% of the world population with disabilities, accessibility is ar-
guably the most critical software quality attribute. The ever-growing
reliance of users with disability on mobile apps further underscores
the need for accessible software in this domain. Existing automated
accessibility assessment techniques primarily aim to detect viola-
tions of predefined guidelines, thereby produce a massive amount
of accessibility warnings that often overlook the way software is
actually used by users with disability. This paper presents a novel,
high-fidelity form of accessibility testing for Android apps, called
Latte, that automatically reuses tests written to evaluate an app’s func-
tional correctness to assess its accessibility as well. Latte first extracts
the use case corresponding to each test, and then executes each use
case in the way disabled users would, i.e., using assistive services.
Our empirical evaluation on real-world Android apps demonstrates
Latte’s effectiveness in detecting substantially more useful defects
than prior techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; • Human-centered computing → Accessibility design and
evaluation methods.

KEYWORDS
Accessibility, Automated Testing, Mobile Application

ACM Reference Format:
Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed,
Stacy Branham, and Sam Malek. 2021. Latte: Use-Case and Assistive-Service
Driven Automated Accessibility Testing Framework for Android. In CHI
Conference on Human Factors in Computing Systems (CHI ’21), May 8–
13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3411764.3445455

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s).
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445455

1 INTRODUCTION
Mobile applications (apps) are permeating every aspect of the daily
life of billions of people around the world, from personal banking to
communication, transportation, and more. The ability to access and
use these apps with ease is vital for everyone, especially for approxi-
mately 15% of the world population with some form of disability [27].
However, recent studies have shown accessibility issues are prevalent
in mobile apps, hindering their use by users with disability [1, 15, 23].

To date, various automated accessibility analysis techniques have
been proposed to deal with the widespread prevalence of accessibil-
ity issues [3, 5, 12, 13]. Common across all these tools is the way
they aim to identify accessibility issues in terms of predefined rules
derived from accessibility guidelines. For instance, whether a label
for an icon is missing, whether there is sufficient contrast between
text and background, whether the actionable elements are too close
to each other, etc. While it is important for developers to follow
these guidelines in the construction of their apps, the rules by them-
selves are not able to precisely determine the difficulties a user with
disability may experience. For example, from a disabled user’s stand-
point, there is a significant difference between accessibility issues
affecting the main functionalities of an app versus those affecting
its incidental functionalities (e.g., advertisement banners, copyright
disclaimers), yet the existing techniques provide no effective means
of distinguishing between the two. Prior studies [1] have shown the
developers tend to either not utilize or simply ignore the results of
existing accessibility analysis tools, because they produce a massive
amount of accessibility warnings, many of which are minor, or simply
wrong. A user study on web accessibility [21] indicates that half of
the problems that people with disabilities encounter are not covered
by Web Content Accessibility Guidelines [26].

Another limitation of the existing automated accessibility anal-
ysis techniques is that none consider the assistive services such as
TalkBack (a screen reader for Android users with blindness or visual
impairment) or SwitchAccess (an Android service for navigating app
for users with motor impairment) in their analysis. Since disabled
users are heavily reliant on assistive services in interacting with apps,
many important cues are missed when these services are not consid-
ered in the evaluation of an app’s accessibility. For instance, a screen
with a dynamic user interface (UI) may have no apparent accessibility

https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455


CHI ’21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

issue in the implementation of its individual elements, yet be com-
pletely unusable by a disabled user due to the assistive technology’s
inability to detect the changes in UI. As another example, a screen
with a revolving list of items in one panel may have no accessibility
issue in its implementation according to existing guidelines, yet pre-
vent a disabled user from reaching another panel on that screen using
the commonly available assistive technologies.

The key insights that guide our research are that (1) the focus of
automated accessibility analysis should be on the main functionalities
of an app, and not some incidental features, such as displayed ads, and
(2) a high-fidelity form of analysis needs to reflect the way disabled
users actually interact with apps, i.e., using the assistive technologies.

Informed by the above-mentioned insight, we have developed a
new form of automated accessibility analysis, called Latte, that builds
on the way developers already validate their apps for functional cor-
rectness. A widely adopted practice in software development is for
developers to write system tests, often in the form of Graphical User
Interface (GUI) tests, to validate the important use cases (function-
alities) of an app for correctness. These use cases are the important
functionalities of an app that should also be accessible. Given an app
under test and a set of regular GUI tests (written by developers) as
input, Latte first extracts a Use-Case Specification corresponding to
each test. A Use-Case Specification defines the human-perceivable
steps a test takes to exercise a particular functionality in an app. Latte
then executes the Use-Case Specification using an assistive service,
i.e., TalkBack and SwitchAccess. If a use case cannot be completed
using an assistive service, it naturally means the corresponding use
case has an accessibility problem, which is reported to the developer.

Latte mitigates the limitations of existing automated accessibility
analysis techniques by evaluating the accessibility issues in a more
realistic setting, i.e., using assistive services. In more than half of the
subjects apps in our experiments, Latte detected accessibility issues
that were not detected by Google’s Accessibility Scanner, the most
widely used accessibility analyzer for Android. Moreover, unlike
prior solutions that produce a massive number of accessibility warn-
ings by simply scanning an app’s screens irrespective of its purpose,
our approach produces a small number of actionable accessibility
defects that are guaranteed to affect a disabled user’s proper usage
of the app’s main functionalities. Latte produces a detailed report for
each failed use case that provides the developer with the exact cause
of inaccessibility and steps to replicate it.

Although the most reliable method of validating an app’s accessi-
bility is through user evaluation, finding users with different types of
disability and conducting such evaluations can be prohibitively diffi-
cult, especially for small development teams with limited resources.
Using Latte, developers are able to gain useful insights into how their
apps behave when engaged through an assistive service, allowing
them to fix the issues prior to their release. Our approach can also
complement user evaluation by allowing the development teams to
hone in on a subset of problematic use cases that are flagged by our
tool.

This paper makes the following contributions:

• A novel, high-fidelity form of automated accessibility analysis that
evaluates the degree to which important use cases of an app can be
accessed by users with disability through assistive services;

• An implementation of the above-mentioned approach for Android,
called Latte, that is publicly available [24];

• An extensive empirical evaluation on real-world Android apps,
demonstrating effectiveness of Latte in identifying issues that the
existing automated techniques cannot detect; and

• A qualitative study of the different types of accessibility failures
and warnings that can be detected using Latte.

The remainder of this paper is organized as follows. Section 2
summarizes the related work. Section 3 illustrates an accessibility
issue that cannot be detected using existing automated techniques,
while Section 4 describes the details of our approach. Section 5
presents our experimental evaluation. Finally, Section 6 concludes
and describes our future work. The tool and experimental artifacts
can be found on the companion website, https://github.com/seal-
hub/Latte.

2 RELATED WORK
Accessibility analysis can be a challenging and time-consuming task,
since it requires human expertise and judgment. Researchers have
investigated various ways of automating the accessibility analysis
process, which can be broadly categorized into two categories: static
and dynamic accessibility analysis [25].

Static accessibility analysis tools analyze the screen content and
configuration files to look for predefined accessibility violation rules.
For example, Lint [9], which is shipped with Android Studio [7],
can identify accessibility issues such as missing content descriptions,
missing translation, and layout issues. Since it does not consider
dynamic properties and views created at runtime, the types of acces-
sibility issues it can detect are limited.

Dynamic analysis based techniques try to mitigate the limitations
of static analysis based techniques. Google Accessibility Scanner [3]
is one such technique that detects accessibility issues by analyzing
the currently displayed user interface components. Though Google
Accessibility Scanner can identify a larger number of accessibility
issues than static accessibility analysis tools [25], one of its major
limitations is that it requires the developers to manually crawl the
app under test and activate the tool on each screen. Other testing
frameworks like Espresso [8] and Robolectric [22] also require devel-
opers to manually specify the test cases which significantly increases
developers’ workload.

Since there is a large range of disabilities with varying sever-
ity, it may not be possible for a development team to manually test
an app through user evaluation. Moreover, due to time and budget
constraints, such manual approaches often result in insufficient evalu-
ation [25]. Relying on manual evaluation also makes it challenging
to re-evaluate new releases of apps, which may frequently occur due
to short release cycles, changing requirements, and rapidly evolving
technologies [14].

To overcome the mentioned limitations, Alshayban et al. [1] im-
plemented a random crawler to automatically explore the different
screens/activities of the app under test while assessing each screen
for accessibility violations. However, their technique fails to explore
many screens of the app due to the random nature of event genera-
tion [1]. Eler et al. developed MATE [16] to mitigate this limitation.
MATE improves the exploration process by considering interactable

https://github.com/seal-hub/Latte
https://github.com/seal-hub/Latte


Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI '21, May 8–13, 2021, Yokohama, Japan

Figure 1: a) The very �rst step of creating account in “geek" shopping app (the dotted box) b) The accessibility issues reported by
Google Accessibility Scanner c) Navigating the app using assistive services (TalkBack and SwitchAccess)

elements, e.g., a clickable button, rather than random events on ran-
dom coordinates.

However, all existing accessibility evaluation techniques have two
common limitations. First, none of the current techniques consider
the importance of the functionality affected by accessibility issues. As
a result, they fail to report the severity of the identi�ed accessibility
issues accurately. Second, none of the existing techniques consider
assistive services such asTalkBackor SwitchAccessin their analysis
and miss out on many important cues when evaluating an app's
accessibility.

3 ILLUSTRATIVE EXAMPLE
Figure 1(a) shows the launch screen ofGeek - Smarter Shopping
app (version '2.3.7') with more than 10 millions users [18]. The
foreground layout contains register and login buttons, while the back-
ground is a layout of rolling decorative images. One of the most im-
portant use cases in this app is registration, since it is the prerequisite
for accessing all other functionalities. This use case starts by clicking
on theCreate Accountbutton (the dashed box in Figure 1(a)) followed
by �lling a form with user information (not depicted in the �gure). A
developer can create a GUI test to automatically verify this use case is
working. For example, Listing 1 showsww a GUI test in Appium [11]
testing framework written in Python. It is basically a sequence of steps
performing actions on speci�c elements on the screen, e.g., click-
ing on an element with resource-idcom.contextlogic.geek:id-
/login_fragment_create_account_button .

While a user without disability interacting with the app can see the
full screen and perform all gestures, a user with disability has to rely
on assistive services to complete their intended task. For example,
a blind user relies on TalkBack [17] to read the textual description
of the elements on the screen. TalkBack gives spoken feedback and
noti�cations to users by announcing headers, labels, icons and other

assistive content de�ned by developers. The user can explore the app
either by reading the elements in order or touching different parts
of the screen, asking TalkBack to announce the textual description
of the selected element. A user with motor disability, on the other
hand, uses SwitchAccess [2] to navigate the app; however, the user
can see the whole screen. SwitchAccess is an assistive service that
enables users to interact with the device using a special keyboard
with a limited set of buttons such asNextandSelect. SwitchAccess
highlights the focused element on the screen. The user uses the two
buttons to change the focus to next element or select the currently
focused element.

While the developer of an app like this is likely to write a test to
evaluate the functional correctness of registration, given its important
to the overall functionality of the app, the conventional execution
of such test does not reveal anything about the app's accessibility
issues. To test the accessibility of this app, a conscientious developer
would also run the Google Accessibility Scanner [3]—a de facto
standard tool for analysis of accessibility in Android—on the launch
screen and review the identi�ed issues, as shown in Figure 1(b). In
total, 16 accessibility issues are detected by the Scanner, denoted
by orange borders placed around the elements with a problem. Out
of these, there are 8“missing speakable text”and 6“low image
contrast” issues for the decorative images in the background, and 2



CHI '21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

Figure 2: Overview of Latte

“small touch target size”issues for the buttons in the foreground. As
can be seen, there are many issues with the very �rst screen, and no
particular hint as to the severity of these issues is provided to help the
developer prioritize the effort involved in �xing the reported issues.
The only accessibility issue reported forCreate Accountbutton is
the“small touch target size”, which in fact does not affect users who
rely on assistive tools for their interactions. Once the reported issues
are �xed, this screen becomes supposedly accessibility-issue free,
according to the automated accessibility scanner.

In practice, however, when TalkBack and SwitchAccess are used to
operate this app, the �rst decorative image in the background receives
the focus (top left dotted box in Figure 1(c)). To reach theCreate
Accountbutton, users have to navigate through the elements. But
here the decorative background layout re�lls dynamically, i.e., it is a
revolving list. As a result, the focus never reaches to the foreground
layout. The navigation path taken through the use of assistive tools
is depicted in Figure 1(c) as arrows. This makes it dif�cult, if not
impossible, for both TalkBack and SwitchAccess users to reach the
Create Accountbutton. In some cases, it may be possible for the user
to touch random spots on the screen and �nd the button by chance;
nevertheless, it would be far from perfect and frustrating at the very
least.

4 APPROACH
Our objective is to develop an automated accessibility analyzer that
is use-case and assistive-service driven. Figure 2 shows an overview
of our approach,Latte, consisting of three phases: (I) analysis of
the provided GUI test suite of an Android app to determine the
corresponding use cases, (II) execution of each use case on the app
using an assistive service to evaluate the accessibility of the use case,

(III) collection and analysis of the results to produce an accessibility
report. In this section, we describe these phases in detail.

4.1 Test Analyzer
A use case is a sequence of interactions between a user and a software
system for achieving an objective. In the case of a shopping app, for
instance, creating an account, searching for a product, and purchasing
a product, are examples of use case. As a common development
practice, developers write GUI tests to automatically evaluate the
correctness of a software system's use cases. A GUI test is a sequence
of steps, where in each step, the test (1) locates a GUI element, and
(2) performs an action on that element. For example, the �rst step
(line 1) in Listing 1 locates an element withresource-idequal to
com.contextlogic.geek:id/login_fragment_create_accoun-
t_button and then clicks on it. GUI tests need to uniquely identify
elements on the screen. They leverage the implementation details
of an app, such asresource-id, to interact with the GUI elements of
the app. A GUI test thus follows awhite-box approach, i.e., uses the
implementation details of an app to drive the execution. Although
this format is quite effective for machine execution, it differs vastly
from how users interact with an app. A user may exercise the same
use case as a test, but follows ablack-box approach, i.e., interacts
directly with the UI elements of an app to drive the execution.

Since our objective is to evaluate the accessibility of use cases
exercised by tests, we �rst have to extract a description of the use case
in terms of constructs available to a user. For instance, while the test
script is able to access a button through its programmatic identi�er
(i.e, resource-idattribute), a blind user would access it through its
textual content description. The Test Analyzer component takes a
GUI test as input and transforms it into aUse-Case Speci�cation,



Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI '21, May 8–13, 2021, Yokohama, Japan

consisting of a set of equivalent steps as those performed by the
test at the level of abstraction understood by users. In other words,
Use-Case Speci�cation of a test represents the steps a user would
need to perform to exercise the same functionality as that of the test.

To extract the use cases from GUI tests, we have developed a
novel, dynamic program analysis technique that, given a test script
and an app, determines (1) the various GUI elements involved
in the test and their attributes, and (2) the actions performed on
those elements. Dynamic program analysis entails evaluating a pro-
gram by executing it. In fact, software testing is the most common
form of dynamic program analysis. By dynamically analyzing a test
script (i.e, running the test on the app), we are able to identify the
AccessibilityNodeInfo object corresponding to each GUI ele-
ment.AccessibilityNodeInfo class is provided by the Android
framework and represents the attributes of a GUI element on the
screen. For example, theAccessibilityNodeInfo of the element
in the �rst step in Listing 1, “Create Account” button, can be found in
Listing 2. The �rst �eld is viewIdResName(or resrouce-id) that is the
identi�er of the element. The textual attributes areclassName, text ,
andcontentDescription . There are also other types of attributes
such as coordinates and supported behaviors, e.g., this element is
clickable, focusable, etc. We extract the textual attributes (text, con-
tentDescription, andclassName) for each element, since these are the
attributes perceived by users in locating GUI elements. Note that the
classNameattribute is perceivable by users, since a sighted or blind
user can recognize it visually or textually, i.e.,EditText element
has its distinguishable shape, and TalkBack announces it asEdit Text
Box. We further extract actions (e.g., click, type) performed on the
GUI elements from the test script itself. From Listing 1, we are able
to determine that the use case consists of �ve steps, where the �rst

and last steps click on GUI elements and the other steps enter textual
information in GUI elements.

We �nally combine the information obtained through the above-
mentioned analysis of the GUI tests to arrive at the equivalent Use-
Case Speci�cations. For example, Listing 3 is the Use-Case Spec-
i�cation generated from the GUI test shown in Listing 1. The �rst
step shows the user clicking on aTextView element with the text
“Create Account” and the last step is clicking on anImageButton ele-
ment with content description equal to “Submit”. Intuitively, we have
transformed a white-box description of a use case (i.e., GUI test) to a
black-box description of that use case (i.e., Use-Case Speci�cation).

The Test Analyzer component is written in Python programming
language on top of the Appium testing framework [11].

4.2 Use-Case Executor
The existing testing frameworks can access all GUI elements and
perform any actions on them, even if the target element is not visible
to the user. For example, the �rst step of the test shown in Listing 1
is able to locate the “Create Account” button and click on it, no
matter where the button is located on the screen. However, users
with disability may not be able to perform such actions smoothly.
Blind users need to explore the app using a screen reader to locate
the element. Although recognizing elements is comparatively easier
for users with motor disability, they may have dif�culty reaching and
initiating action on the element, as we saw in the illustrative example
of Section 3.

To improve the �delity of evaluating accessibility issues for users
with disability,Latteis designed to automatically execute a use case
using assistive services. To that end, we have provided our own
implementation ofAccessibilityService —an abstract service
provided by the Android framework to assist users with disabili-
ties. The of�cial assistive tools in Android, such as TalkBack and
SwitchAcces, are also implementations of this abstract service [4].
AccessibilityService can be seen as a wrapper around a mobile
device that performs actions on and receives feedback from the de-
vice. Since these abilities may introduce security and privacy issues,
an implementation of this service must specify the types of feedback
it can receive and actions it can perform. For example, TalkBack
can receive feedback about all elements on the screen, since it has
android:canRetrieveWindowContent attribute in its speci�cation.
Moreover, it can perform actions, such as click, on elements; however,
it cannot perform gesture such as swiping on the screen, since the at-
tributeandroid:canPerformGestures does not exist in TalkBack's
speci�cation.

The feedback is delivered to accessibility services throughAcces-
sibilityEvent objects. An implementation of this service must
de�ne the methodonAccessibilityEvent that is called back by
AccessibilityManager —a system-level service that serves as an
event dispatcher forAccessibilityEvents [4]. Accessibility events
are generated when something notable happens on the user interface,
e.g., an Activity starts, the focus of an element changes, etc. When
a change occurs,AccessibilityManager passes the associated
AccessibilityEvent object toonAccessibilityEvent method
to interpret and provide feedback to the user. For example, in Talk-
Back, when an element is focused, its textual description is an-
nounced to the user. Alternatively, in SwitchAccess, the focused



CHI '21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

element is highlighted. AnAccessibilityEvent object is asso-
ciated with anAccessibilityNodeInfo object that contains the
element's attributes. For instance, when a user clicks on “Create
Account” button (highlited in Figure 1(a)), the system creates an
AccessibilityEvent of typeTYPE_VIEW_CLICKED, which is asso-
ciated with theAccessibilityNodeInfo object shown in Listing 2.

Although implementations ofAccessibilityService , such as
TalkBack and SwitchAccess, are typically used for assisting users to
interact with the mobile device, these services can also be designed to
cooperate with one another, as we have done here. We have developed
our own implementation ofAccessibilityService , calledUse-
Case Executor, that takes a Use-Case Speci�cation as input, and
sequentially executes the steps de�ned in it using TalkBack and
SwitchAccess. Each step in the Use-Case Speci�cation results in the
execution of 6 steps in the device, as shown in phase II of Figure 2.
We explain how the approach works using TalkBack below (a similar
process is followed in the case of SwitchAccess):

(1) Use-Case Executor performs an action using APIs pro-
vided by AccessibilityService . For example, List-
ing 4 shows a code snippet from the implementation
of Use-Case Executor that performs a swipe right ges-
ture on the screen. The performed action is received
by the AccessibilityManager service,A11yManagerin
short, and generates accessibility events corresponding
to the action, e.g.,TYPE_GESTURE_DETECTION_STARTand
TYPE_GESTURE_DETECTION_ENDevents for the swipe.

(2) All implementations ofAccessibilityService , including
TalkBack, receive the generated accessibility events. TalkBack
may suppress delivering the incoming events to the app, and
possibly translates them to something else. For example, while
swiping right on the screen may result in a menu option to be
shown, TalkBack may translate that gesture to changing the
focus to the next element when TalkBack is enabled on the
device.

(3) TalkBack analyzes the incoming event and initiates another
action accordingly. For example, in the case of swipe right,
TalkBack changes the focus to the next element, and in the
case of a double tap, the currently focused element is clicked.
Note that TalkBack is not aware of the sender of these events,
in this case Use-Case Executor. As a result, TalkBack behaves
the same as it would if a human user had performed the action.

(4) A11yManager receives the new action from TalkBack and
sends it to the app under test. For example, if the TalkBack's
action is clicking on the focused element, A11yManager sends
an event to theonClickListener class associated with the
focused element in the app. The app receives the action and
updates its internal state accordingly, e.g., executingonClick
method of the clicked element.

(5) The app informs A11yManager regarding the changes in the
GUI elements. For example, when “Create Account" button is
clicked, the current screen disappears and another screen with
a form appears.

(6) A11yManager receives the changes in the layout
and dispatches feedback events accordingly, e.g., a
TYPE_VIEW_FOCUSEDaccessibility event associated with the
focused element'sAccessibilityNodeInfo object. As a

result, Use-Case Executor is informed of the latest changes
on the device. For instance, it becomes aware of the element
that is currently focused. Note that there is a possibility that
because of the changes caused by step 5, i.e., showing a new
screen, another interaction is initiated between A11yManager
and TalkBack, similar to steps 2 and 3.

Use-Case Executor executes the steps in the use case according
to the procedure described above. Each step consists of two parts,
locating (focusing) the target element, and performing the target
action on it. For the �rst part,Lattescans the screen by sending swipe
right events for TalkBack and Next button events for SwitchAccess,
until the element that matches the description in the step is focused.
Once the element is located (focused),Latte performs the target
action, e.g., if the action is click,Lattesends a double tap event for
TalkBack and Select button event for SwitchAccess.

There are two scenarios during the use-case execution where the
scanning process may not �nish; in other words, none of the focused
elements match the description of the target element in the use-case
step. First, the textual description of the element is not suf�cient to
uniquely recognize the element, because either there are multiple ele-
ments with the same description (duplicate labels issue) or the target
element does not have any textual description (unlabeled element
issue). This scenario occurs only in the case of TalkBack. The other
scenario occurs when the target element could not be focused (or
reached) by TalkBack or SwitchAccess, e.g., illustrative example of
Section 3 in which “Create Account” button could not be reached.

Lattede�nes two termination conditions to prevent getting stuck
in such cases: (1) if an element is visited more than a prede�ned
number of times, or (2) if a step takes more than a prede�ned number
of interactions to complete. These thresholds are con�gurable. Once
either one of these conditions is satis�ed,Latte marks the step as
inaccessible. However, since we would like to identify all accessi-
bility issues in a use case, and not just the �rst encountered issue,
when an inaccessible step is encountered,Latteexecutes it using the
corresponding instruction in the original test script. This allowsLatte
to continue the analysis and report all accessibility issues within a
use case.

The Use-Case Executor component is implemented in Java by
extending Android'sAccessibilityService . We used the latest
versions of TalkBack (8.2) and SwitchAcces (8.2), which were re-
leased by Google on Github in July 2020 [10].

4.3 Result Analyzer
To retrieve the information generated during use case execution auto-
matically, we implemented a Command Line Interface (CLI) on top



Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI '21, May 8–13, 2021, Yokohama, Japan

of the Android Debug Bridge (ADB) [6]. Using the CLI, the Result
Analyzer component communicates with the Use-Case Executor to
receive and record details of the execution for each step of a use
case (recall Figure 2). Moreover, it automatically records the screen
during the use-case execution and stores the video clip. Once all use
cases are executed, the Result Analyzer aggregates the results and
generates anAccessibility Report, consisting of the following four
components.

Accessibility Failures.For each use case,Latte reports if it en-
countered an accessibility failure during its execution using assistive
services. A use case has an accessibility failure if the GUI element of
one of its steps cannot be located (focused).

Recorded Screens.While Latteexecutes a use case, it records the
screens to help developers (1) localize the accessibility issues, and
(2) obtain insights into how users with disability may interact with
their apps using assistive services.

Execution Details.Lattereports other information extracted from
the execution of each use case, including the execution time and the
number of interactions to complete the use case. This information
can be used as a source of insight for developers.

Accessibility Warnings. If a speci�c use case takes an exorbitant
number of interactions to complete, it indicates a usability concern
for disabled users. We report this category of issues as accessibility
warnings, since in practice they can adversely affect users with dis-
ability. The threshold of what constitutes an exorbitant number of
interactions is con�gurable in Latte. For the purpose of experiments
reported in the next section, we empirically observed that on average
1 direct interaction with an app requires approximately5 times more
interactions using TalkBack. We thus set the threshold to15 times
the number of direct interactions, or3 times the average number of
TalkBack interactions.

5 EVALUATION
In this section, we evaluateLatteon real-world apps to investigate
the following research questions:

� RQ1. How accurately doesLatteexecute use cases using as-
sistive services?

� RQ2. How doesLattecompare to Google Accessibility Scan-
ner (the of�cial tool for detecting accessibility issues in An-
droid)?

� RQ3. How do the detected accessibility failures and warnings
impact the usage of apps?

5.1 Experimental Setup
We evaluated our proposed technique using 20 apps, 5 of which
have known accessibility issues, as con�rmed through user studies
with disabled users in prior work [28]. The rest have been randomly
selected from 13 different categories on Google Play (e.g., enter-
tainment, productivity, �nance), where 12 of them have more than 1
million installs.

We constructed a set of 2 to 4 test cases per app using Appium [11],
which is an open-source testing framework. In total, we ended up with
50 test cases for 20 apps. The test cases re�ect a sample of the apps'
main use cases, as provided in their descriptions (e.g., register an
account, search for products, place products in a shopping cart). For
the apps with con�rmed issues (�rst 5 apps highlighted in Table 1),

Table 1: The summary of detected accessibility failures. `x'
shows a failure was found in an app (row) while executing under
a setting (column). Red bold `x' is a failure that was detected us-
ing Latte but not using Google Accessibility Scanner.X̀ ' means
the test or use case could be executed completely under a setting.
The �rst �ve highlighted apps have con�rmed accessibility issues
per prior user study [28] .

None SwitchAccess TalkBack

(Test Cases) (Use Cases) (Use Cases)

iPlayRadio XX xx xx

Feedly XX xx xx

Checkout51 XX XX xX

Yelp. XX XX xx

Astro XX XX xX

BillManager XX XX xX

Budget XXX xxX xxx

CalorieCounter XXX xXX xxx

Clock XX XX xx

Cookpad XX XX xx

Dictionary XXX XXX xxx

Fuelio XXX XXX xXX

Geek XX xx xx

SchoolPlanner XXX XXX xxx

SoundCloud XX XX xx

TodoList XXXX xxXX xxxX

TripIt XXX XXX xxX

Vimeo XXX XXX xxX

Walmart XX XX XX

ZipRecruiter XXX XXX xxX

one of the test cases corresponds to the previously reported use case
that users with disability could not perform. Our experiments were
conducted on a MacBook Pro with 2.8 GHz Core i7 CPU and 16
GB memory (a typical computer setup for development) using an
Android emulator (SDK 27).

5.2 RQ1. Accuracy of Latte
We �rst executed the 50 GUI test cases to ensure they are constructed
correctly. We then generated the Use-Case Speci�cations from the
tests and executed them using both SwitchAccess with two physical
switches (Next and Select) and TalkBack with directional navigation
(swiping).

Table 1 summarizes the presence of accessibility failures in differ-
ent settings. In a cell, `x' indicates a use case of an app (row header)
that could not be executed using an assistive service (column header)
due to an accessibility failure, and `X' indicates a use case that could
be fully executed without any failure. As shown under column head-
ing “None”, all original test cases passed, since they do not check
the accessibility of apps, but rather evaluate the correctness of corre-
sponding use cases. All accessibility results were manually examined
and the failures were veri�ed by the authors (the video clips of the
failures can be found on the companion website [24]). Latteachieves



CHI '21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

Figure 3: The screenshots of some apps with accessibility failures

100% precision (no false positives) in determining accessibility fail-
ures in the use cases; in other words, all of the failed use cases in our
experiments manifest a real accessibility issue. As can be seen, 11
use cases in 6 apps and 39 use cases in 19 apps have accessibility
failures with SwitchAccess and TalkBack, respectively. Additionally,
Lattedetected 17 and 25 accessibility warnings using SwitchAccess
and TalkBack, respectively. The warnings are not reported in Table 1,
but discussed in more detail later.

We also analyzed the number of interactions for executing a use
case with different assistive services. On average,Latterequires11,
51, and43 interactions to �nish each use case under None, SwitchAc-
cess, and TalkBack settings, respectively. Additionally, the ratios of
the number of interactions required for SwitchAccess and TalkBack
over those required for None were 5 and 4, respectively. This means
Latte requires more than 4 interactions using assistive services to
ful�ll a single interaction without such services, giving us a glimpse
into the practical challenges disabled users face in their usage of
mobile apps.

5.3 RQ2. Latte vs. Google Accessibility Scanner
We ran Google Accessibility Scanner at each step of all use cases.
We then compared the failures detected byLatteagainst the issues
reported by Scanner. Red bold `x' in Table 1 represents the corre-
sponding use case has an accessibility failure detected byLattethat
Scanner could not detect.

Scanner was able to detect only18 of the50 accessibility failures
detected byLattein the evaluated use cases. For each failure detected
by LATTE, we examined all of the issues reported by Scanner. If any
of those issues were found to be related to the actual fault, we assumed
the Scanner can help to �nd the failure, e.g., Scanner can detect
missing labels. Scanner could not detect any of the 11 accessibility
failures detected byLatte using SwitchAccess, and 21 of the 39
failures detected byLatteusing TalkBack. WhileLattewas able to
detect all of the 5 issues con�rmed by actual users with disability in
the �rst 5 apps of Table 1, Scanner was only able to detect 1 of the

issues (in Astro app). In addition, Scanner was not able to �nd the
accessibility failures in 8 of our randomly selected subject apps.

Scanner reports an exorbitant number of issues that would over-
whelm a typical developer. It reports on average34 issues per use
case for a total of1;716issues in the50use cases in our experiments.
Interestingly, out of the1;716reported issues by Scanner, only18
were relevant to the serious accessibility failures reported byLatte.
In comparison,Latteproduces at most one accessibility failure per
use case. For example, in Figure 3(d), Scanner detected a number of
issues, e.g., “Get Smarter” has low text contrast. The Scanner did not
report any problem regarding the top two buttons (menu and search
icons) that cannot be reached using TalkBack and SwitchAccess,
making the app totally inaccessible.

5.4 RQ3. Qualitative Study of Detected
Accessibility Failures and Warnings

5.4.1 Accessibility Failures. We manually examined all use-case
failures and categorized them into the following three groups:

Dynamic Layout.Some apps change the visibility of elements on
the screen dynamically. For example, Figure 3(a) shows the initial
screen ofTripIt app. If a user wants to reach the bottom menu, e.g.,
clicking on the Alert icon, she needs to explore the elements to
locate the target widget; however, during the directional navigation
with TalkBack, the bottom menu disappears (Figure 3(b)). The reason
behind hiding the menu is to improve the user experience by providing
more space in the middle list (where a sighted user is looking for an
item). However, this change in the layout makes the bottom menu
inaccessible for a blind user, since she does not know the menu
has disappeared. The accessibility failures inTripIt andDictionary
apps belong to this category. This observation is consistent with the
�ndings in a prior work [20] that showed usability and accessibility
concerns are not a subset of each other. Furthermore, this example
suggests improving the usability of a use case for some users may in
fact degrade the accessibility of that use case for others.


	Abstract
	1 Introduction
	2 Related Work
	3 Illustrative Example
	4 Approach
	4.1 Test Analyzer
	4.2 Use-Case Executor
	4.3 Result Analyzer

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1. Accuracy of Latte
	5.3 RQ2. Latte vs. Google Accessibility Scanner
	5.4 RQ3. Qualitative Study of Detected Accessibility Failures and Warnings

	6 Concluding Remarks
	Acknowledgments
	References

