

Latte: Use-Case and Assistive-Service Driven Automated
Accessibility Testing Framework for Android

Navid Salehnamadi Abdulaziz Alshayban Jun-Wei Lin
School of Information and Computer School of Information and Computer School of Information and Computer

Sciences Sciences Sciences
University of California, Irvine, USA University of California, Irvine, USA University of California, Irvine, USA

nsalehna@uci.edu aalshayb@uci.edu junwel1@uci.edu

Iftekhar Ahmed Stacy Branham Sam Malek
School of Information and Computer School of Information and Computer School of Information and Computer

Sciences Sciences Sciences
University of California, Irvine, USA University of California, Irvine, USA University of California, Irvine, USA

iftekha@uci.edu sbranham@uci.edu malek@uci.edu

ABSTRACT
For 15% of the world population with disabilities, accessibility is ar-
guably the most critical software quality attribute. The ever-growing
reliance of users with disability on mobile apps further underscores
the need for accessible software in this domain. Existing automated
accessibility assessment techniques primarily aim to detect viola-
tions of predefned guidelines, thereby produce a massive amount
of accessibility warnings that often overlook the way software is
actually used by users with disability. This paper presents a novel,
high-fdelity form of accessibility testing for Android apps, called
Latte, that automatically reuses tests written to evaluate an app’s func-
tional correctness to assess its accessibility as well. Latte frst extracts
the use case corresponding to each test, and then executes each use
case in the way disabled users would, i.e., using assistive services.
Our empirical evaluation on real-world Android apps demonstrates
Latte’s effectiveness in detecting substantially more useful defects
than prior techniques.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; • Human-centered computing → Accessibility design and
evaluation methods.

KEYWORDS
Accessibility, Automated Testing, Mobile Application

ACM Reference Format:
Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed,
Stacy Branham, and Sam Malek. 2021. Latte: Use-Case and Assistive-Service
Driven Automated Accessibility Testing Framework for Android. In CHI
Conference on Human Factors in Computing Systems (CHI ’21), May 8–
13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3411764.3445455

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
proft or commercial advantage and that copies bear this notice and the full citation on
the frst page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s).
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445455

1 INTRODUCTION
Mobile applications (apps) are permeating every aspect of the daily
life of billions of people around the world, from personal banking to
communication, transportation, and more. The ability to access and
use these apps with ease is vital for everyone, especially for approxi-
mately 15% of the world population with some form of disability [27].
However, recent studies have shown accessibility issues are prevalent
in mobile apps, hindering their use by users with disability [1, 15, 23].

To date, various automated accessibility analysis techniques have
been proposed to deal with the widespread prevalence of accessibil-
ity issues [3, 5, 12, 13]. Common across all these tools is the way
they aim to identify accessibility issues in terms of predefned rules
derived from accessibility guidelines. For instance, whether a label
for an icon is missing, whether there is suffcient contrast between
text and background, whether the actionable elements are too close
to each other, etc. While it is important for developers to follow
these guidelines in the construction of their apps, the rules by them-
selves are not able to precisely determine the diffculties a user with
disability may experience. For example, from a disabled user’s stand-
point, there is a signifcant difference between accessibility issues
affecting the main functionalities of an app versus those affecting
its incidental functionalities (e.g., advertisement banners, copyright
disclaimers), yet the existing techniques provide no effective means
of distinguishing between the two. Prior studies [1] have shown the
developers tend to either not utilize or simply ignore the results of
existing accessibility analysis tools, because they produce a massive
amount of accessibility warnings, many of which are minor, or simply
wrong. A user study on web accessibility [21] indicates that half of
the problems that people with disabilities encounter are not covered
by Web Content Accessibility Guidelines [26].

Another limitation of the existing automated accessibility anal-
ysis techniques is that none consider the assistive services such as
TalkBack (a screen reader for Android users with blindness or visual
impairment) or SwitchAccess (an Android service for navigating app
for users with motor impairment) in their analysis. Since disabled
users are heavily reliant on assistive services in interacting with apps,
many important cues are missed when these services are not consid-
ered in the evaluation of an app’s accessibility. For instance, a screen
with a dynamic user interface (UI) may have no apparent accessibility

https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455
mailto:malek@uci.edu
mailto:sbranham@uci.edu
mailto:iftekha@uci.edu
mailto:junwel1@uci.edu
mailto:aalshayb@uci.edu
mailto:nsalehna@uci.edu
https://doi.org/10.1145/3411764.3445455
https://doi.org/10.1145/3411764.3445455
mailto:malek@uci.edu
mailto:sbranham@uci.edu
mailto:iftekha@uci.edu
mailto:junwel1@uci.edu
mailto:aalshayb@uci.edu
mailto:nsalehna@uci.edu

CHI ’21, May 8–13, 2021, Yokohama, Japan

issue in the implementation of its individual elements, yet be com-
pletely unusable by a disabled user due to the assistive technology’s
inability to detect the changes in UI. As another example, a screen
with a revolving list of items in one panel may have no accessibility
issue in its implementation according to existing guidelines, yet pre-
vent a disabled user from reaching another panel on that screen using
the commonly available assistive technologies.

The key insights that guide our research are that (1) the focus of
automated accessibility analysis should be on the main functionalities
of an app, and not some incidental features, such as displayed ads, and
(2) a high-fdelity form of analysis needs to refect the way disabled
users actually interact with apps, i.e., using the assistive technologies.

Informed by the above-mentioned insight, we have developed a
new form of automated accessibility analysis, called Latte, that builds
on the way developers already validate their apps for functional cor-
rectness. A widely adopted practice in software development is for
developers to write system tests, often in the form of Graphical User
Interface (GUI) tests, to validate the important use cases (function-
alities) of an app for correctness. These use cases are the important
functionalities of an app that should also be accessible. Given an app
under test and a set of regular GUI tests (written by developers) as
input, Latte frst extracts a Use-Case Specifcation corresponding to
each test. A Use-Case Specifcation defnes the human-perceivable
steps a test takes to exercise a particular functionality in an app. Latte
then executes the Use-Case Specifcation using an assistive service,
i.e., TalkBack and SwitchAccess. If a use case cannot be completed
using an assistive service, it naturally means the corresponding use
case has an accessibility problem, which is reported to the developer.

Latte mitigates the limitations of existing automated accessibility
analysis techniques by evaluating the accessibility issues in a more
realistic setting, i.e., using assistive services. In more than half of the
subjects apps in our experiments, Latte detected accessibility issues
that were not detected by Google’s Accessibility Scanner, the most
widely used accessibility analyzer for Android. Moreover, unlike
prior solutions that produce a massive number of accessibility warn-
ings by simply scanning an app’s screens irrespective of its purpose,
our approach produces a small number of actionable accessibility
defects that are guaranteed to affect a disabled user’s proper usage
of the app’s main functionalities. Latte produces a detailed report for
each failed use case that provides the developer with the exact cause
of inaccessibility and steps to replicate it.

Although the most reliable method of validating an app’s accessi-
bility is through user evaluation, fnding users with different types of
disability and conducting such evaluations can be prohibitively diff-
cult, especially for small development teams with limited resources.
Using Latte, developers are able to gain useful insights into how their
apps behave when engaged through an assistive service, allowing
them to fx the issues prior to their release. Our approach can also
complement user evaluation by allowing the development teams to
hone in on a subset of problematic use cases that are fagged by our
tool.

This paper makes the following contributions:

• A novel, high-fdelity form of automated accessibility analysis that
evaluates the degree to which important use cases of an app can be
accessed by users with disability through assistive services;

Salehnamadi et al.

• An implementation of the above-mentioned approach for Android,
called Latte, that is publicly available [24];

• An extensive empirical evaluation on real-world Android apps,
demonstrating effectiveness of Latte in identifying issues that the
existing automated techniques cannot detect; and

• A qualitative study of the different types of accessibility failures
and warnings that can be detected using Latte.

The remainder of this paper is organized as follows. Section 2
summarizes the related work. Section 3 illustrates an accessibility
issue that cannot be detected using existing automated techniques,
while Section 4 describes the details of our approach. Section 5
presents our experimental evaluation. Finally, Section 6 concludes
and describes our future work. The tool and experimental artifacts
can be found on the companion website, https://github.com/seal-
hub/Latte.

2 RELATED WORK
Accessibility analysis can be a challenging and time-consuming task,
since it requires human expertise and judgment. Researchers have
investigated various ways of automating the accessibility analysis
process, which can be broadly categorized into two categories: static
and dynamic accessibility analysis [25].

Static accessibility analysis tools analyze the screen content and
confguration fles to look for predefned accessibility violation rules.
For example, Lint [9], which is shipped with Android Studio [7],
can identify accessibility issues such as missing content descriptions,
missing translation, and layout issues. Since it does not consider
dynamic properties and views created at runtime, the types of acces-
sibility issues it can detect are limited.

Dynamic analysis based techniques try to mitigate the limitations
of static analysis based techniques. Google Accessibility Scanner [3]
is one such technique that detects accessibility issues by analyzing
the currently displayed user interface components. Though Google
Accessibility Scanner can identify a larger number of accessibility
issues than static accessibility analysis tools [25], one of its major
limitations is that it requires the developers to manually crawl the
app under test and activate the tool on each screen. Other testing
frameworks like Espresso [8] and Robolectric [22] also require devel-
opers to manually specify the test cases which signifcantly increases
developers’ workload.

Since there is a large range of disabilities with varying sever-
ity, it may not be possible for a development team to manually test
an app through user evaluation. Moreover, due to time and budget
constraints, such manual approaches often result in insuffcient evalu-
ation [25]. Relying on manual evaluation also makes it challenging
to re-evaluate new releases of apps, which may frequently occur due
to short release cycles, changing requirements, and rapidly evolving
technologies [14].

To overcome the mentioned limitations, Alshayban et al. [1] im-
plemented a random crawler to automatically explore the different
screens/activities of the app under test while assessing each screen
for accessibility violations. However, their technique fails to explore
many screens of the app due to the random nature of event genera-
tion [1]. Eler et al. developed MATE [16] to mitigate this limitation.
MATE improves the exploration process by considering interactable

https://github.com/seal-hub/Latte
https://github.com/seal-hub/Latte
https://github.com/seal

 Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 1: a) The very frst step of creating account in “geek" shopping app (the dotted box) b) The accessibility issues reported by
Google Accessibility Scanner c) Navigating the app using assistive services (TalkBack and SwitchAccess)

elements, e.g., a clickable button, rather than random events on ran-
dom coordinates.

However, all existing accessibility evaluation techniques have two
common limitations. First, none of the current techniques consider
the importance of the functionality affected by accessibility issues. As
a result, they fail to report the severity of the identifed accessibility
issues accurately. Second, none of the existing techniques consider
assistive services such as TalkBack or SwitchAccess in their analysis
and miss out on many important cues when evaluating an app’s
accessibility.

3 ILLUSTRATIVE EXAMPLE
Figure 1(a) shows the launch screen of Geek - Smarter Shopping
app (version ’2.3.7’) with more than 10 millions users [18]. The
foreground layout contains register and login buttons, while the back-
ground is a layout of rolling decorative images. One of the most im-
portant use cases in this app is registration, since it is the prerequisite
for accessing all other functionalities. This use case starts by clicking
on the Create Account button (the dashed box in Figure 1(a)) followed
by flling a form with user information (not depicted in the fgure). A
developer can create a GUI test to automatically verify this use case is
working. For example, Listing 1 showsww a GUI test in Appium [11]
testing framework written in Python. It is basically a sequence of steps
performing actions on specifc elements on the screen, e.g., click-
ing on an element with resource-id com.contextlogic.geek:id-
/login_fragment_create_account_button.

While a user without disability interacting with the app can see the
full screen and perform all gestures, a user with disability has to rely
on assistive services to complete their intended task. For example,
a blind user relies on TalkBack [17] to read the textual description
of the elements on the screen. TalkBack gives spoken feedback and
notifcations to users by announcing headers, labels, icons and other

Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 1: a) The very first step of creating account in “geek" shopping app (the dotted box) b) The accessibility issues reported by
Google Accessibility Scanner c) Navigating the app using assistive services (TalkBack and SwitchAccess)

elements, e.g., a clickable button, rather than random events on ran-
dom coordinates.

However, all existing accessibility evaluation techniques have two
common limitations. First, none of the current techniques consider
the importance of the functionality affected by accessibility issues. As
a result, they fail to report the severity of the identified accessibility
issues accurately. Second, none of the existing techniques consider
assistive services such as TalkBack or SwitchAccess in their analysis
and miss out on many important cues when evaluating an app’s
accessibility.

3 ILLUSTRATIVE EXAMPLE
Figure 1(a) shows the launch screen of Geek - Smarter Shopping
app (version ’2.3.7’) with more than 10 millions users [18]. The
foreground layout contains register and login buttons, while the back-
ground is a layout of rolling decorative images. One of the most im-
portant use cases in this app is registration, since it is the prerequisite
for accessing all other functionalities. This use case starts by clicking
on the Create Account button (the dashed box in Figure 1(a)) followed
by filling a form with user information (not depicted in the figure). A
developer can create a GUI test to automatically verify this use case is
working. For example, Listing 1 showsww a GUI test in Appium [11]
testing framework written in Python. It is basically a sequence of steps
performing actions on specific elements on the screen, e.g., click-
ing on an element with resource-id com.contextlogic.geek:id-
/login_fragment_create_account_button.

While a user without disability interacting with the app can see the
full screen and perform all gestures, a user with disability has to rely
on assistive services to complete their intended task. For example,
a blind user relies on TalkBack [17] to read the textual description
of the elements on the screen. TalkBack gives spoken feedback and
notifications to users by announcing headers, labels, icons and other

1 find_element_by_id("com.contextlogic.geek:id/
login_fragment_create_account_button").click()

2 find_element_by_xpath("/android.widget.FrameLayout/.../android.
widget.EditText[1]").send_keys("John Doe")

3 find_element_by_id("fragment_email_text").send_keys("john.
doe@example.com")

4 find_element_by_id("fragment_password_text").send_keys("StR0nGp@ss"
)

5 find_element_by_xpath("/android.widget.FrameLayout/.../android.
widget.TextView[3]").click()

Listing 1: The test script corresponding to the registration use
case

assistive content defined by developers. The user can explore the app
either by reading the elements in order or touching different parts
of the screen, asking TalkBack to announce the textual description
of the selected element. A user with motor disability, on the other
hand, uses SwitchAccess [2] to navigate the app; however, the user
can see the whole screen. SwitchAccess is an assistive service that
enables users to interact with the device using a special keyboard
with a limited set of buttons such as Next and Select. SwitchAccess
highlights the focused element on the screen. The user uses the two
buttons to change the focus to next element or select the currently
focused element.

While the developer of an app like this is likely to write a test to
evaluate the functional correctness of registration, given its important
to the overall functionality of the app, the conventional execution
of such test does not reveal anything about the app’s accessibility
issues. To test the accessibility of this app, a conscientious developer
would also run the Google Accessibility Scanner [3]—a de facto
standard tool for analysis of accessibility in Android—on the launch
screen and review the identified issues, as shown in Figure 1(b). In
total, 16 accessibility issues are detected by the Scanner, denoted
by orange borders placed around the elements with a problem. Out
of these, there are 8 “missing speakable text” and 6 “low image

assistive content defned by developers. The user can explore the app
either by reading the elements in order or touching different parts
of the screen, asking TalkBack to announce the textual description
of the selected element. A user with motor disability, on the other
hand, uses SwitchAccess [2] to navigate the app; however, the user
can see the whole screen. SwitchAccess is an assistive service that
enables users to interact with the device using a special keyboard
with a limited set of buttons such as Next and Select. SwitchAccess
highlights the focused element on the screen. The user uses the two
buttons to change the focus to next element or select the currently
focused element.

While the developer of an app like this is likely to write a test to
evaluate the functional correctness of registration, given its important
to the overall functionality of the app, the conventional execution
of such test does not reveal anything about the app’s accessibility
issues. To test the accessibility of this app, a conscientious developer
would also run the Google Accessibility Scanner [3]—a de facto
standard tool for analysis of accessibility in Android—on the launch
screen and review the identifed issues, as shown in Figure 1(b). In
total, 16 accessibility issues are detected by the Scanner, denoted
by orange borders placed around the elements with a problem. Out
of these, there are 8 “missing speakable text” and 6 “low image
contrast” issues for the decorative images in the background, and 2

CHI ’21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

Figure 2: Overview of Latte

“small touch target size” issues for the buttons in the foreground. As
can be seen, there are many issues with the very frst screen, and no
particular hint as to the severity of these issues is provided to help the
developer prioritize the effort involved in fxing the reported issues.
The only accessibility issue reported for Create Account button is
the “small touch target size”, which in fact does not affect users who
rely on assistive tools for their interactions. Once the reported issues
are fxed, this screen becomes supposedly accessibility-issue free,
according to the automated accessibility scanner.

In practice, however, when TalkBack and SwitchAccess are used to
operate this app, the frst decorative image in the background receives
the focus (top left dotted box in Figure 1(c)). To reach the Create
Account button, users have to navigate through the elements. But
here the decorative background layout reflls dynamically, i.e., it is a
revolving list. As a result, the focus never reaches to the foreground
layout. The navigation path taken through the use of assistive tools
is depicted in Figure 1(c) as arrows. This makes it diffcult, if not
impossible, for both TalkBack and SwitchAccess users to reach the
Create Account button. In some cases, it may be possible for the user
to touch random spots on the screen and fnd the button by chance;
nevertheless, it would be far from perfect and frustrating at the very
least.

4 APPROACH
Our objective is to develop an automated accessibility analyzer that
is use-case and assistive-service driven. Figure 2 shows an overview
of our approach, Latte, consisting of three phases: (I) analysis of
the provided GUI test suite of an Android app to determine the
corresponding use cases, (II) execution of each use case on the app
using an assistive service to evaluate the accessibility of the use case,

(III) collection and analysis of the results to produce an accessibility
report. In this section, we describe these phases in detail.

4.1 Test Analyzer
A use case is a sequence of interactions between a user and a software
system for achieving an objective. In the case of a shopping app, for
instance, creating an account, searching for a product, and purchasing
a product, are examples of use case. As a common development
practice, developers write GUI tests to automatically evaluate the
correctness of a software system’s use cases. A GUI test is a sequence
of steps, where in each step, the test (1) locates a GUI element, and
(2) performs an action on that element. For example, the frst step
(line 1) in Listing 1 locates an element with resource-id equal to
com.contextlogic.geek:id/login_fragment_create_accoun-
t_button and then clicks on it. GUI tests need to uniquely identify
elements on the screen. They leverage the implementation details
of an app, such as resource-id, to interact with the GUI elements of
the app. A GUI test thus follows a white-box approach, i.e., uses the
implementation details of an app to drive the execution. Although
this format is quite effective for machine execution, it differs vastly
from how users interact with an app. A user may exercise the same
use case as a test, but follows a black-box approach, i.e., interacts
directly with the UI elements of an app to drive the execution.

Since our objective is to evaluate the accessibility of use cases
exercised by tests, we frst have to extract a description of the use case
in terms of constructs available to a user. For instance, while the test
script is able to access a button through its programmatic identifer
(i.e, resource-id attribute), a blind user would access it through its
textual content description. The Test Analyzer component takes a
GUI test as input and transforms it into a Use-Case Specifcation,

Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

// Resource Id
viewIdResName: com.contextlogic.geek:id/

login_fragment_create_account_button;
// Textual information
className: android.widget.TextView;
text: Create Account;
contentDescription: null;
// Other fields
boundsInParent: Rect(0, 0 - 498, 110);
boundsInScreen: Rect(291, 856 - 789, 966);
clickable: true;
focusable: true;
focused: false;
selected: false;
longClickable: false;
enabled: true;
importantForAccessibility: true;
...

Listing 2: The AccessibilityNodeInfo object
corresponding to “Create Account" button

1 Click on element with Text: "Create Account", ContentDescription:
null, Class: TextView

2 Type "John Doe" on element with Text: "Name", ContentDescription:
null, Class: EditText

3 Type "john.doe@example.com" on element with Text: "Email",
ContentDescription: null, Class: EditText

4 Type "StR0nGp@ss" on element with Text: "Password",
ContentDescription: null, Class: EditText

5 Click on element with Text: null, ContentDescription: "Submit,
Class: ImageButton

Listing 3: The use case corresponding to the registration test
case in the illustrative example

GUI test as input and transforms it into a Use-Case Specification,
consisting of a set of equivalent steps as those performed by the
test at the level of abstraction understood by users. In other words,
Use-Case Specification of a test represents the steps a user would
need to perform to exercise the same functionality as that of the test.

To extract the use cases from GUI tests, we have developed a
novel, dynamic program analysis technique that, given a test script
and an app, determines (1) the various GUI elements involved
in the test and their attributes, and (2) the actions performed on
those elements. Dynamic program analysis entails evaluating a pro-
gram by executing it. In fact, software testing is the most common
form of dynamic program analysis. By dynamically analyzing a test
script (i.e, running the test on the app), we are able to identify the
AccessibilityNodeInfo object corresponding to each GUI ele-
ment. AccessibilityNodeInfo class is provided by the Android
framework and represents the attributes of a GUI element on the
screen. For example, the AccessibilityNodeInfo of the element
in the first step in Listing 1, “Create Account” button, can be found in
Listing 2. The first field is viewIdResName (or resrouce-id) that is the
identifier of the element. The textual attributes are className, text,
and contentDescription. There are also other types of attributes
such as coordinates and supported behaviors, e.g., this element is
clickable, focusable, etc. We extract the textual attributes (text, con-
tentDescription, and className) for each element, since these are the
attributes perceived by users in locating GUI elements. Note that the
className attribute is perceivable by users, since a sighted or blind
user can recognize it visually or textually, i.e., EditText element
has its distinguishable shape, and TalkBack announces it as Edit Text
Box. We further extract actions (e.g., click, type) performed on the

GUI elements from the test script itself. From Listing 1, we are able
to determine that the use case consists of five steps, where the first
and last steps click on GUI elements and the other steps enter textual
information in GUI elements.

We finally combine the information obtained through the above-
mentioned analysis of the GUI tests to arrive at the equivalent Use-
Case Specifications. For example, Listing 3 is the Use-Case Spec-
ification generated from the GUI test shown in Listing 1. The first
step shows the user clicking on a TextView element with the text
“Create Account” and the last step is clicking on an ImageButton ele-
ment with content description equal to “Submit”. Intuitively, we have
transformed a white-box description of a use case (i.e., GUI test) to a
black-box description of that use case (i.e., Use-Case Specification).

The Test Analyzer component is written in Python programming
language on top of the Appium testing framework [11].

4.2 Use-Case Executor
The existing testing frameworks can access all GUI elements and
perform any actions on them, even if the target element is not visible
to the user. For example, the first step of the test shown in Listing 1
is able to locate the “Create Account” button and click on it, no
matter where the button is located on the screen. However, users
with disability may not be able to perform such actions smoothly.
Blind users need to explore the app using a screen reader to locate
the element. Although recognizing elements is comparatively easier
for users with motor disability, they may have difficulty reaching and
initiating action on the element, as we saw in the illustrative example
of Section 3.

To improve the fidelity of evaluating accessibility issues for users
with disability, Latte is designed to automatically execute a use case
using assistive services. To that end, we have provided our own
implementation of AccessibilityService—an abstract service
provided by the Android framework to assist users with disabili-
ties. The official assistive tools in Android, such as TalkBack and
SwitchAcces, are also implementations of this abstract service [4].
AccessibilityService can be seen as a wrapper around a mobile
device that performs actions on and receives feedback from the de-
vice. Since these abilities may introduce security and privacy issues,
an implementation of this service must specify the types of feedback
it can receive and actions it can perform. For example, TalkBack
can receive feedback about all elements on the screen, since it has
android:canRetrieveWindowContent attribute in its specification.
Moreover, it can perform actions, such as click, on elements; however,
it cannot perform gesture such as swiping on the screen, since the at-
tribute android:canPerformGestures does not exist in TalkBack’s
specification.

The feedback is delivered to accessibility services through Acces-
sibilityEvent objects. An implementation of this service must
define the method onAccessibilityEvent that is called back by
AccessibilityManager—a system-level service that serves as an
event dispatcher for AccessibilityEvents [4]. Accessibility events
are generated when something notable happens on the user interface,
e.g., an Activity starts, the focus of an element changes, etc. When
a change occurs, AccessibilityManager passes the associated
AccessibilityEvent object to onAccessibilityEvent method

Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

// Resource Id
viewIdResName: com.contextlogic.geek:id/

login_fragment_create_account_button;
// Textual information
className: android.widget.TextView;
text: Create Account;
contentDescription: null;
// Other fields
boundsInParent: Rect(0, 0 - 498, 110);
boundsInScreen: Rect(291, 856 - 789, 966);
clickable: true;
focusable: true;
focused: false;
selected: false;
longClickable: false;
enabled: true;
importantForAccessibility: true;
...

Listing 2: The AccessibilityNodeInfo object
corresponding to “Create Account" button

1 Click on element with Text: "Create Account", ContentDescription:
null, Class: TextView

2 Type "John Doe" on element with Text: "Name", ContentDescription:
null, Class: EditText

3 Type "john.doe@example.com" on element with Text: "Email",
ContentDescription: null, Class: EditText

4 Type "StR0nGp@ss" on element with Text: "Password",
ContentDescription: null, Class: EditText

5 Click on element with Text: null, ContentDescription: "Submit,
Class: ImageButton

Listing 3: The use case corresponding to the registration test
case in the illustrative example

GUI test as input and transforms it into a Use-Case Specification,
consisting of a set of equivalent steps as those performed by the
test at the level of abstraction understood by users. In other words,
Use-Case Specification of a test represents the steps a user would
need to perform to exercise the same functionality as that of the test.

To extract the use cases from GUI tests, we have developed a
novel, dynamic program analysis technique that, given a test script
and an app, determines (1) the various GUI elements involved
in the test and their attributes, and (2) the actions performed on
those elements. Dynamic program analysis entails evaluating a pro-
gram by executing it. In fact, software testing is the most common
form of dynamic program analysis. By dynamically analyzing a test
script (i.e, running the test on the app), we are able to identify the
AccessibilityNodeInfo object corresponding to each GUI ele-
ment. AccessibilityNodeInfo class is provided by the Android
framework and represents the attributes of a GUI element on the
screen. For example, the AccessibilityNodeInfo of the element
in the first step in Listing 1, “Create Account” button, can be found in
Listing 2. The first field is viewIdResName (or resrouce-id) that is the
identifier of the element. The textual attributes are className, text,
and contentDescription. There are also other types of attributes
such as coordinates and supported behaviors, e.g., this element is
clickable, focusable, etc. We extract the textual attributes (text, con-
tentDescription, and className) for each element, since these are the
attributes perceived by users in locating GUI elements. Note that the
className attribute is perceivable by users, since a sighted or blind
user can recognize it visually or textually, i.e., EditText element
has its distinguishable shape, and TalkBack announces it as Edit Text
Box. We further extract actions (e.g., click, type) performed on the

GUI elements from the test script itself. From Listing 1, we are able
to determine that the use case consists of five steps, where the first
and last steps click on GUI elements and the other steps enter textual
information in GUI elements.

We finally combine the information obtained through the above-
mentioned analysis of the GUI tests to arrive at the equivalent Use-
Case Specifications. For example, Listing 3 is the Use-Case Spec-
ification generated from the GUI test shown in Listing 1. The first
step shows the user clicking on a TextView element with the text
“Create Account” and the last step is clicking on an ImageButton ele-
ment with content description equal to “Submit”. Intuitively, we have
transformed a white-box description of a use case (i.e., GUI test) to a
black-box description of that use case (i.e., Use-Case Specification).

The Test Analyzer component is written in Python programming
language on top of the Appium testing framework [11].

4.2 Use-Case Executor
The existing testing frameworks can access all GUI elements and
perform any actions on them, even if the target element is not visible
to the user. For example, the first step of the test shown in Listing 1
is able to locate the “Create Account” button and click on it, no
matter where the button is located on the screen. However, users
with disability may not be able to perform such actions smoothly.
Blind users need to explore the app using a screen reader to locate
the element. Although recognizing elements is comparatively easier
for users with motor disability, they may have difficulty reaching and
initiating action on the element, as we saw in the illustrative example
of Section 3.

To improve the fidelity of evaluating accessibility issues for users
with disability, Latte is designed to automatically execute a use case
using assistive services. To that end, we have provided our own
implementation of AccessibilityService—an abstract service
provided by the Android framework to assist users with disabili-
ties. The official assistive tools in Android, such as TalkBack and
SwitchAcces, are also implementations of this abstract service [4].
AccessibilityService can be seen as a wrapper around a mobile
device that performs actions on and receives feedback from the de-
vice. Since these abilities may introduce security and privacy issues,
an implementation of this service must specify the types of feedback
it can receive and actions it can perform. For example, TalkBack
can receive feedback about all elements on the screen, since it has
android:canRetrieveWindowContent attribute in its specification.
Moreover, it can perform actions, such as click, on elements; however,
it cannot perform gesture such as swiping on the screen, since the at-
tribute android:canPerformGestures does not exist in TalkBack’s
specification.

The feedback is delivered to accessibility services through Acces-
sibilityEvent objects. An implementation of this service must
define the method onAccessibilityEvent that is called back by
AccessibilityManager—a system-level service that serves as an
event dispatcher for AccessibilityEvents [4]. Accessibility events
are generated when something notable happens on the user interface,
e.g., an Activity starts, the focus of an element changes, etc. When
a change occurs, AccessibilityManager passes the associated
AccessibilityEvent object to onAccessibilityEvent method

consisting of a set of equivalent steps as those performed by the
test at the level of abstraction understood by users. In other words,
Use-Case Specifcation of a test represents the steps a user would
need to perform to exercise the same functionality as that of the test.

To extract the use cases from GUI tests, we have developed a
novel, dynamic program analysis technique that, given a test script
and an app, determines (1) the various GUI elements involved
in the test and their attributes, and (2) the actions performed on
those elements. Dynamic program analysis entails evaluating a pro-
gram by executing it. In fact, software testing is the most common
form of dynamic program analysis. By dynamically analyzing a test
script (i.e, running the test on the app), we are able to identify the
AccessibilityNodeInfo object corresponding to each GUI ele-
ment. AccessibilityNodeInfo class is provided by the Android
framework and represents the attributes of a GUI element on the
screen. For example, the AccessibilityNodeInfo of the element
in the frst step in Listing 1, “Create Account” button, can be found in
Listing 2. The frst feld is viewIdResName (or resrouce-id) that is the
identifer of the element. The textual attributes are className, text,
and contentDescription. There are also other types of attributes
such as coordinates and supported behaviors, e.g., this element is
clickable, focusable, etc. We extract the textual attributes (text, con-
tentDescription, and className) for each element, since these are the
attributes perceived by users in locating GUI elements. Note that the
className attribute is perceivable by users, since a sighted or blind
user can recognize it visually or textually, i.e., EditText element
has its distinguishable shape, and TalkBack announces it as Edit Text
Box. We further extract actions (e.g., click, type) performed on the
GUI elements from the test script itself. From Listing 1, we are able
to determine that the use case consists of fve steps, where the frst

and last steps click on GUI elements and the other steps enter textual
information in GUI elements.

We fnally combine the information obtained through the above-
mentioned analysis of the GUI tests to arrive at the equivalent Use-
Case Specifcations. For example, Listing 3 is the Use-Case Spec-
ifcation generated from the GUI test shown in Listing 1. The frst
step shows the user clicking on a TextView element with the text
“Create Account” and the last step is clicking on an ImageButton ele-
ment with content description equal to “Submit”. Intuitively, we have
transformed a white-box description of a use case (i.e., GUI test) to a
black-box description of that use case (i.e., Use-Case Specifcation).

The Test Analyzer component is written in Python programming
language on top of the Appium testing framework [11].

4.2 Use-Case Executor
The existing testing frameworks can access all GUI elements and
perform any actions on them, even if the target element is not visible
to the user. For example, the frst step of the test shown in Listing 1
is able to locate the “Create Account” button and click on it, no
matter where the button is located on the screen. However, users
with disability may not be able to perform such actions smoothly.
Blind users need to explore the app using a screen reader to locate
the element. Although recognizing elements is comparatively easier
for users with motor disability, they may have diffculty reaching and
initiating action on the element, as we saw in the illustrative example
of Section 3.

To improve the fdelity of evaluating accessibility issues for users
with disability, Latte is designed to automatically execute a use case
using assistive services. To that end, we have provided our own
implementation of AccessibilityService—an abstract service
provided by the Android framework to assist users with disabili-
ties. The offcial assistive tools in Android, such as TalkBack and
SwitchAcces, are also implementations of this abstract service [4].
AccessibilityService can be seen as a wrapper around a mobile
device that performs actions on and receives feedback from the de-
vice. Since these abilities may introduce security and privacy issues,
an implementation of this service must specify the types of feedback
it can receive and actions it can perform. For example, TalkBack
can receive feedback about all elements on the screen, since it has
android:canRetrieveWindowContent attribute in its specifcation.
Moreover, it can perform actions, such as click, on elements; however,
it cannot perform gesture such as swiping on the screen, since the at-
tribute android:canPerformGestures does not exist in TalkBack’s
specifcation.

The feedback is delivered to accessibility services through Acces-
sibilityEvent objects. An implementation of this service must
defne the method onAccessibilityEvent that is called back by
AccessibilityManager—a system-level service that serves as an
event dispatcher for AccessibilityEvents [4]. Accessibility events
are generated when something notable happens on the user interface,
e.g., an Activity starts, the focus of an element changes, etc. When
a change occurs, AccessibilityManager passes the associated
AccessibilityEvent object to onAccessibilityEvent method
to interpret and provide feedback to the user. For example, in Talk-
Back, when an element is focused, its textual description is an-
nounced to the user. Alternatively, in SwitchAccess, the focused

 CHI ’21, May 8–13, 2021, Yokohama, Japan

element is highlighted. An AccessibilityEvent object is asso-
ciated with an AccessibilityNodeInfo object that contains the
element’s attributes. For instance, when a user clicks on “Create
Account” button (highlited in Figure 1(a)), the system creates an
AccessibilityEvent of type TYPE_VIEW_CLICKED, which is asso-
ciated with the AccessibilityNodeInfo object shown in Listing 2.

Although implementations of AccessibilityService, such as
TalkBack and SwitchAccess, are typically used for assisting users to
interact with the mobile device, these services can also be designed to
cooperate with one another, as we have done here. We have developed
our own implementation of AccessibilityService, called Use-
Case Executor, that takes a Use-Case Specifcation as input, and
sequentially executes the steps defned in it using TalkBack and
SwitchAccess. Each step in the Use-Case Specifcation results in the
execution of 6 steps in the device, as shown in phase II of Figure 2.
We explain how the approach works using TalkBack below (a similar
process is followed in the case of SwitchAccess):

(1) Use-Case Executor performs an action using APIs pro-
vided by AccessibilityService. For example, List-
ing 4 shows a code snippet from the implementation
of Use-Case Executor that performs a swipe right ges-
ture on the screen. The performed action is received
by the AccessibilityManager service, A11yManager in
short, and generates accessibility events corresponding
to the action, e.g., TYPE_GESTURE_DETECTION_START and
TYPE_GESTURE_DETECTION_END events for the swipe.

(2) All implementations of AccessibilityService, including
TalkBack, receive the generated accessibility events. TalkBack
may suppress delivering the incoming events to the app, and
possibly translates them to something else. For example, while
swiping right on the screen may result in a menu option to be
shown, TalkBack may translate that gesture to changing the
focus to the next element when TalkBack is enabled on the
device.

(3) TalkBack analyzes the incoming event and initiates another
action accordingly. For example, in the case of swipe right,
TalkBack changes the focus to the next element, and in the
case of a double tap, the currently focused element is clicked.
Note that TalkBack is not aware of the sender of these events,
in this case Use-Case Executor. As a result, TalkBack behaves
the same as it would if a human user had performed the action.

(4) A11yManager receives the new action from TalkBack and
sends it to the app under test. For example, if the TalkBack’s
action is clicking on the focused element, A11yManager sends
an event to the onClickListener class associated with the
focused element in the app. The app receives the action and
updates its internal state accordingly, e.g., executing onClick
method of the clicked element.

(5) The app informs A11yManager regarding the changes in the
GUI elements. For example, when “Create Account" button is
clicked, the current screen disappears and another screen with
a form appears.

(6) A11yManager receives the changes in the layout
and dispatches feedback events accordingly, e.g., a
TYPE_VIEW_FOCUSED accessibility event associated with the
focused element’s AccessibilityNodeInfo object. As a

Salehnamadi et al. CHI ’21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

to interpret and provide feedback to the user. For example, in Talk-
Back, when an element is focused, its textual description is an-
nounced to the user. Alternatively, in SwitchAccess, the focused
element is highlighted. An AccessibilityEvent object is asso-
ciated with an AccessibilityNodeInfo object that contains the
element’s attributes. For instance, when a user clicks on “Create
Account” button (highlited in Figure 1(a)), the system creates an
AccessibilityEvent of type TYPE_VIEW_CLICKED, which is asso-
ciated with the AccessibilityNodeInfo object shown in Listing 2.

Although implementations of AccessibilityService, such as
TalkBack and SwitchAccess, are typically used for assisting users to
interact with the mobile device, these services can also be designed to
cooperate with one another, as we have done here. We have developed
our own implementation of AccessibilityService, called Use-
Case Executor, that takes a Use-Case Specification as input, and
sequentially executes the steps defined in it using TalkBack and
SwitchAccess. Each step in the Use-Case Specification results in the
execution of 6 steps in the device, as shown in phase II of Figure 2.
We explain how the approach works using TalkBack below (a similar
process is followed in the case of SwitchAccess):

(1) Use-Case Executor performs an action using APIs pro-
vided by AccessibilityService. For example, List-
ing 4 shows a code snippet from the implementation
of Use-Case Executor that performs a swipe right ges-
ture on the screen. The performed action is received
by the AccessibilityManager service, A11yManager in
short, and generates accessibility events corresponding
to the action, e.g., TYPE_GESTURE_DETECTION_START and
TYPE_GESTURE_DETECTION_END events for the swipe.

(2) All implementations of AccessibilityService, including
TalkBack, receive the generated accessibility events. TalkBack
may suppress delivering the incoming events to the app, and
possibly translates them to something else. For example, while
swiping right on the screen may result in a menu option to be
shown, TalkBack may translate that gesture to changing the
focus to the next element when TalkBack is enabled on the
device.

(3) TalkBack analyzes the incoming event and initiates another
action accordingly. For example, in the case of swipe right,
TalkBack changes the focus to the next element, and in the
case of a double tap, the currently focused element is clicked.
Note that TalkBack is not aware of the sender of these events,
in this case Use-Case Executor. As a result, TalkBack behaves
the same as it would if a human user had performed the action.

(4) A11yManager receives the new action from TalkBack and
sends it to the app under test. For example, if the TalkBack’s
action is clicking on the focused element, A11yManager sends
an event to the onClickListener class associated with the
focused element in the app. The app receives the action and
updates its internal state accordingly, e.g., executing onClick
method of the clicked element.

(5) The app informs A11yManager regarding the changes in the
GUI elements. For example, when “Create Account" button is
clicked, the current screen disappears and another screen with
a form appears.

1 Path swipePath = new Path();
2 swipePath.moveTo(x_left, y_middle);
3 swipePath.lineTo(x_right, y_middle);
4 gestureBuilder.addStroke(new GestureDescription.StrokeDescription(

swipePath, 0, gestureDuration));
5 GestureDescription gestureDescription = gestureBuilder.build();
6 accessibilityService.dispatchGesture(gestureDescription, callback,

null);

Listing 4: A code snippet from Use-Case Executor that performs
a swipe right on the screen using AccessibilityService
API (x_left, x_right, and y_middle are the left and right
horizontal, and middle vertical coordinates on the screen)

(6) A11yManager receives the changes in the layout
and dispatches feedback events accordingly, e.g., a
TYPE_VIEW_FOCUSED accessibility event associated with the
focused element’s AccessibilityNodeInfo object. As a
result, Use-Case Executor is informed of the latest changes
on the device. For instance, it becomes aware of the element
that is currently focused. Note that there is a possibility that
because of the changes caused by step 5, i.e., showing a new
screen, another interaction is initiated between A11yManager
and TalkBack, similar to steps 2 and 3.

Use-Case Executor executes the steps in the use case according
to the procedure described above. Each step consists of two parts,
locating (focusing) the target element, and performing the target
action on it. For the first part, Latte scans the screen by sending swipe
right events for TalkBack and Next button events for SwitchAccess,
until the element that matches the description in the step is focused.
Once the element is located (focused), Latte performs the target
action, e.g., if the action is click, Latte sends a double tap event for
TalkBack and Select button event for SwitchAccess.

There are two scenarios during the use-case execution where the
scanning process may not finish; in other words, none of the focused
elements match the description of the target element in the use-case
step. First, the textual description of the element is not sufficient to
uniquely recognize the element, because either there are multiple ele-
ments with the same description (duplicate labels issue) or the target
element does not have any textual description (unlabeled element
issue). This scenario occurs only in the case of TalkBack. The other
scenario occurs when the target element could not be focused (or
reached) by TalkBack or SwitchAccess, e.g., illustrative example of
Section 3 in which “Create Account” button could not be reached.

Latte defines two termination conditions to prevent getting stuck
in such cases: (1) if an element is visited more than a predefined
number of times, or (2) if a step takes more than a predefined number
of interactions to complete. These thresholds are configurable. Once
either one of these conditions is satisfied, Latte marks the step as
inaccessible. However, since we would like to identify all accessi-
bility issues in a use case, and not just the first encountered issue,
when an inaccessible step is encountered, Latte executes it using the
corresponding instruction in the original test script. This allows Latte
to continue the analysis and report all accessibility issues within a
use case.

The Use-Case Executor component is implemented in Java by
extending Android’s AccessibilityService. We used the latest

result, Use-Case Executor is informed of the latest changes
on the device. For instance, it becomes aware of the element
that is currently focused. Note that there is a possibility that
because of the changes caused by step 5, i.e., showing a new
screen, another interaction is initiated between A11yManager
and TalkBack, similar to steps 2 and 3.

Use-Case Executor executes the steps in the use case according
to the procedure described above. Each step consists of two parts,
locating (focusing) the target element, and performing the target
action on it. For the frst part, Latte scans the screen by sending swipe
right events for TalkBack and Next button events for SwitchAccess,
until the element that matches the description in the step is focused.
Once the element is located (focused), Latte performs the target
action, e.g., if the action is click, Latte sends a double tap event for
TalkBack and Select button event for SwitchAccess.

There are two scenarios during the use-case execution where the
scanning process may not fnish; in other words, none of the focused
elements match the description of the target element in the use-case
step. First, the textual description of the element is not suffcient to
uniquely recognize the element, because either there are multiple ele-
ments with the same description (duplicate labels issue) or the target
element does not have any textual description (unlabeled element
issue). This scenario occurs only in the case of TalkBack. The other
scenario occurs when the target element could not be focused (or
reached) by TalkBack or SwitchAccess, e.g., illustrative example of
Section 3 in which “Create Account” button could not be reached.

Latte defnes two termination conditions to prevent getting stuck
in such cases: (1) if an element is visited more than a predefned
number of times, or (2) if a step takes more than a predefned number
of interactions to complete. These thresholds are confgurable. Once
either one of these conditions is satisfed, Latte marks the step as
inaccessible. However, since we would like to identify all accessi-
bility issues in a use case, and not just the frst encountered issue,
when an inaccessible step is encountered, Latte executes it using the
corresponding instruction in the original test script. This allows Latte
to continue the analysis and report all accessibility issues within a
use case.

The Use-Case Executor component is implemented in Java by
extending Android’s AccessibilityService. We used the latest
versions of TalkBack (8.2) and SwitchAcces (8.2), which were re-
leased by Google on Github in July 2020 [10].

4.3 Result Analyzer
To retrieve the information generated during use case execution auto-
matically, we implemented a Command Line Interface (CLI) on top

Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

of the Android Debug Bridge (ADB) [6]. Using the CLI, the Result
Analyzer component communicates with the Use-Case Executor to
receive and record details of the execution for each step of a use
case (recall Figure 2). Moreover, it automatically records the screen
during the use-case execution and stores the video clip. Once all use
cases are executed, the Result Analyzer aggregates the results and
generates an Accessibility Report, consisting of the following four
components.

Accessibility Failures. For each use case, Latte reports if it en-
countered an accessibility failure during its execution using assistive
services. A use case has an accessibility failure if the GUI element of
one of its steps cannot be located (focused).

Recorded Screens. While Latte executes a use case, it records the
screens to help developers (1) localize the accessibility issues, and
(2) obtain insights into how users with disability may interact with
their apps using assistive services.

Execution Details. Latte reports other information extracted from
the execution of each use case, including the execution time and the
number of interactions to complete the use case. This information
can be used as a source of insight for developers.

Accessibility Warnings. If a specifc use case takes an exorbitant
number of interactions to complete, it indicates a usability concern
for disabled users. We report this category of issues as accessibility
warnings, since in practice they can adversely affect users with dis-
ability. The threshold of what constitutes an exorbitant number of
interactions is confgurable in Latte. For the purpose of experiments
reported in the next section, we empirically observed that on average
1 direct interaction with an app requires approximately 5 times more
interactions using TalkBack. We thus set the threshold to 15 times
the number of direct interactions, or 3 times the average number of
TalkBack interactions.

5 EVALUATION
In this section, we evaluate Latte on real-world apps to investigate
the following research questions:

• RQ1. How accurately does Latte execute use cases using as-
sistive services?

• RQ2. How does Latte compare to Google Accessibility Scan-
ner (the offcial tool for detecting accessibility issues in An-
droid)?

• RQ3. How do the detected accessibility failures and warnings
impact the usage of apps?

5.1 Experimental Setup
We evaluated our proposed technique using 20 apps, 5 of which
have known accessibility issues, as confrmed through user studies
with disabled users in prior work [28]. The rest have been randomly
selected from 13 different categories on Google Play (e.g., enter-
tainment, productivity, fnance), where 12 of them have more than 1
million installs.

We constructed a set of 2 to 4 test cases per app using Appium [11],
which is an open-source testing framework. In total, we ended up with
50 test cases for 20 apps. The test cases refect a sample of the apps’
main use cases, as provided in their descriptions (e.g., register an
account, search for products, place products in a shopping cart). For
the apps with confrmed issues (frst 5 apps highlighted in Table 1),

Table 1: The summary of detected accessibility failures. ‘x’
shows a failure was found in an app (row) while executing under
a setting (column). Red bold ‘x’ is a failure that was detected us-
ing Latte but not using Google Accessibility Scanner. ‘✓’ means
the test or use case could be executed completely under a setting.
The frst fve highlighted apps have confrmed accessibility issues
per prior user study [28] .

None

(Test Cases)

SwitchAccess

(Use Cases)

TalkBack

(Use Cases)

iPlayRadio ✓✓ xx xx

Feedly ✓✓ xx xx

Checkout51 ✓✓ ✓✓ x✓

Yelp. ✓✓ ✓✓ xx

Astro ✓✓ ✓✓ x✓

BillManager ✓✓ ✓✓ x✓

Budget ✓✓✓ xx✓ xxx

CalorieCounter ✓✓✓ x✓✓ xxx

Clock ✓✓ ✓✓ xx

Cookpad ✓✓ ✓✓ xx

Dictionary ✓✓✓ ✓✓✓ xxx

Fuelio ✓✓✓ ✓✓✓ x✓✓

Geek ✓✓ xx xx

SchoolPlanner ✓✓✓ ✓✓✓ xxx

SoundCloud ✓✓ ✓✓ xx

TodoList ✓✓✓✓ xx✓✓ xxx✓

TripIt ✓✓✓ ✓✓✓ xx✓

Vimeo ✓✓✓ ✓✓✓ xx✓

Walmart ✓✓ ✓✓ ✓✓

ZipRecruiter ✓✓✓ ✓✓✓ xx✓

one of the test cases corresponds to the previously reported use case
that users with disability could not perform. Our experiments were
conducted on a MacBook Pro with 2.8 GHz Core i7 CPU and 16
GB memory (a typical computer setup for development) using an
Android emulator (SDK 27).

5.2 RQ1. Accuracy of Latte
We frst executed the 50 GUI test cases to ensure they are constructed
correctly. We then generated the Use-Case Specifcations from the
tests and executed them using both SwitchAccess with two physical
switches (Next and Select) and TalkBack with directional navigation
(swiping).

Table 1 summarizes the presence of accessibility failures in differ-
ent settings. In a cell, ‘x’ indicates a use case of an app (row header)
that could not be executed using an assistive service (column header)
due to an accessibility failure, and ‘✓’ indicates a use case that could
be fully executed without any failure. As shown under column head-
ing “None”, all original test cases passed, since they do not check
the accessibility of apps, but rather evaluate the correctness of corre-
sponding use cases. All accessibility results were manually examined
and the failures were verifed by the authors (the video clips of the
failures can be found on the companion website [24]). Latte achieves

CHI ’21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al. CHI ’21, May 8–13, 2021, Yokohama, Japan Salehnamadi et al.

(a) TripIt - The initial screen (b) TripIt - After navigation the
bottom menu is disappeared

(c) Yelp - the dotted box could not
be focused by TalkBack

(d) Reported accessibility issues by
Scanner for Feedly (Orange solid
boxes)

Figure 3: The screenshots of some apps with accessibility failures

be fully executed without any failure. As shown under column head-
ing “None”, all original test cases passed, since they do not check
the accessibility of apps, but rather evaluate the correctness of corre-
sponding use cases. All accessibility results were manually examined
and the failures were verified by the authors (the video clips of the
failures can be found on the companion website [24]). Latte achieves
100% precision (no false positives) in determining accessibility fail-
ures in the use cases; in other words, all of the failed use cases in our
experiments manifest a real accessibility issue. As can be seen, 11
use cases in 6 apps and 39 use cases in 19 apps have accessibility
failures with SwitchAccess and TalkBack, respectively. Additionally,
Latte detected 17 and 25 accessibility warnings using SwitchAccess
and TalkBack, respectively. The warnings are not reported in Table 1,
but discussed in more detail later.

We also analyzed the number of interactions for executing a use
case with different assistive services. On average, Latte requires 11,
51, and 43 interactions to finish each use case under None, SwitchAc-
cess, and TalkBack settings, respectively. Additionally, the ratios of
the number of interactions required for SwitchAccess and TalkBack
over those required for None were 5 and 4, respectively. This means
Latte requires more than 4 interactions using assistive services to
fulfill a single interaction without such services, giving us a glimpse
into the practical challenges disabled users face in their usage of
mobile apps.

5.3 RQ2. Latte vs. Google Accessibility Scanner
We ran Google Accessibility Scanner at each step of all use cases.
We then compared the failures detected by Latte against the issues
reported by Scanner. Red bold ‘x’ in Table 1 represents the corre-
sponding use case has an accessibility failure detected by Latte that
Scanner could not detect.

Scanner was able to detect only 18 of the 50 accessibility failures
detected by Latte in the evaluated use cases. For each failure detected
by LATTE, we examined all of the issues reported by Scanner. If any
of those issues were found to be related to the actual fault, we assumed

the Scanner can help to find the failure, e.g., Scanner can detect
missing labels. Scanner could not detect any of the 11 accessibility
failures detected by Latte using SwitchAccess, and 21 of the 39
failures detected by Latte using TalkBack. While Latte was able to
detect all of the 5 issues confirmed by actual users with disability in
the first 5 apps of Table 1, Scanner was only able to detect 1 of the
issues (in Astro app). In addition, Scanner was not able to find the
accessibility failures in 8 of our randomly selected subject apps.

Scanner reports an exorbitant number of issues that would over-
whelm a typical developer. It reports on average 34 issues per use
case for a total of 1,716 issues in the 50 use cases in our experiments.
Interestingly, out of the 1,716 reported issues by Scanner, only 18
were relevant to the serious accessibility failures reported by Latte.
In comparison, Latte produces at most one accessibility failure per
use case. For example, in Figure 3(d), Scanner detected a number of
issues, e.g., “Get Smarter” has low text contrast. The Scanner did not
report any problem regarding the top two buttons (menu and search
icons) that cannot be reached using TalkBack and SwitchAccess,
making the app totally inaccessible.

5.4 RQ3. Qualitative Study of Detected
Accessibility Failures and Warnings

5.4.1 Accessibility Failures. We manually examined all use-case
failures and categorized them into the following three groups:

Dynamic Layout. Some apps change the visibility of elements on
the screen dynamically. For example, Figure 3(a) shows the initial
screen of TripIt app. If a user wants to reach the bottom menu, e.g.,
clicking on the Alert icon, she needs to explore the elements to
locate the target widget; however, during the directional navigation
with TalkBack, the bottom menu disappears (Figure 3(b)). The reason
behind hiding the menu is to improve the user experience by providing
more space in the middle list (where a sighted user is looking for an
item). However, this change in the layout makes the bottom menu
inaccessible for a blind user, since she does not know the menu

Figure 3: The screenshots of some apps with accessibility failures

100% precision (no false positives) in determining accessibility fail-
ures in the use cases; in other words, all of the failed use cases in our
experiments manifest a real accessibility issue. As can be seen, 11
use cases in 6 apps and 39 use cases in 19 apps have accessibility
failures with SwitchAccess and TalkBack, respectively. Additionally,
Latte detected 17 and 25 accessibility warnings using SwitchAccess
and TalkBack, respectively. The warnings are not reported in Table 1,
but discussed in more detail later.

We also analyzed the number of interactions for executing a use
case with different assistive services. On average, Latte requires 11,
51, and 43 interactions to fnish each use case under None, SwitchAc-
cess, and TalkBack settings, respectively. Additionally, the ratios of
the number of interactions required for SwitchAccess and TalkBack
over those required for None were 5 and 4, respectively. This means
Latte requires more than 4 interactions using assistive services to
fulfll a single interaction without such services, giving us a glimpse
into the practical challenges disabled users face in their usage of
mobile apps.

5.3 RQ2. Latte vs. Google Accessibility Scanner
We ran Google Accessibility Scanner at each step of all use cases.
We then compared the failures detected by Latte against the issues
reported by Scanner. Red bold ‘x’ in Table 1 represents the corre-
sponding use case has an accessibility failure detected by Latte that
Scanner could not detect.

Scanner was able to detect only 18 of the 50 accessibility failures
detected by Latte in the evaluated use cases. For each failure detected
by LATTE, we examined all of the issues reported by Scanner. If any
of those issues were found to be related to the actual fault, we assumed
the Scanner can help to fnd the failure, e.g., Scanner can detect
missing labels. Scanner could not detect any of the 11 accessibility
failures detected by Latte using SwitchAccess, and 21 of the 39
failures detected by Latte using TalkBack. While Latte was able to
detect all of the 5 issues confrmed by actual users with disability in
the frst 5 apps of Table 1, Scanner was only able to detect 1 of the

issues (in Astro app). In addition, Scanner was not able to fnd the
accessibility failures in 8 of our randomly selected subject apps.

Scanner reports an exorbitant number of issues that would over-
whelm a typical developer. It reports on average 34 issues per use
case for a total of 1,716 issues in the 50 use cases in our experiments.
Interestingly, out of the 1,716 reported issues by Scanner, only 18
were relevant to the serious accessibility failures reported by Latte.
In comparison, Latte produces at most one accessibility failure per
use case. For example, in Figure 3(d), Scanner detected a number of
issues, e.g., “Get Smarter” has low text contrast. The Scanner did not
report any problem regarding the top two buttons (menu and search
icons) that cannot be reached using TalkBack and SwitchAccess,
making the app totally inaccessible.

5.4 RQ3. Qualitative Study of Detected
Accessibility Failures and Warnings

5.4.1 Accessibility Failures. We manually examined all use-case
failures and categorized them into the following three groups:

Dynamic Layout. Some apps change the visibility of elements on
the screen dynamically. For example, Figure 3(a) shows the initial
screen of TripIt app. If a user wants to reach the bottom menu, e.g.,
clicking on the Alert icon, she needs to explore the elements to
locate the target widget; however, during the directional navigation
with TalkBack, the bottom menu disappears (Figure 3(b)). The reason
behind hiding the menu is to improve the user experience by providing
more space in the middle list (where a sighted user is looking for an
item). However, this change in the layout makes the bottom menu
inaccessible for a blind user, since she does not know the menu
has disappeared. The accessibility failures in TripIt and Dictionary
apps belong to this category. This observation is consistent with the
fndings in a prior work [20] that showed usability and accessibility
concerns are not a subset of each other. Furthermore, this example
suggests improving the usability of a use case for some users may in
fact degrade the accessibility of that use case for others.

Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

(a) School Planner (b) Todo List (c) Dictionary

Figure 4: Screens of few apps with accessibility issues

has disappeared. The accessibility failures in TripIt and Dictionary
apps belong to this category. This observation is consistent with the
findings in a prior work [20] that showed usability and accessibility
concerns are not a subset of each other. Furthermore, this example
suggests improving the usability of a use case for some users may in
fact degrade the accessibility of that use case for others.

Navigation Loop. Assistive services may not reach a GUI ele-
ment in some apps because of a static or dynamic loop in directional
navigation. Developers can create a static loop by defining custom tra-
versal order over elements using accessibilityTraversalAfter
attribute. While Accessibility Scanner can detect static loops, none
of the apps in our experiments had this issue. On the other hand, a
dynamic loop is caused by inserting elements while the user interacts
with an app. For example, as shown in Section 3, the images in the
background are inserted as the user navigates through them, making
the navigation list virtually infinite. This issue is usually caused by
RecyclerView widget where its adapter indefinitely inserts items
into the container. The accessibility failures of this type could be
found in Yelp, CalorieCounter, CookPad, Geek, and SoundCloud
apps.

Non-Standard Implementation. Developers use customized GUI
widgets in their apps that may have different behavior when users
interact with them using an assistive service. For example, Figure 3(c)
is the page of a restaurant in Yelp where users can rate the restau-
rant (the dotted blue box). However, TalkBack cannot focus on the
rating widget since it is a customized TextView without any text.
Therefore, even a sighted user using TalkBack cannot select this wid-
get to rate the restaurant. Another source of these failures is using
WebView widgets carelessly. WebView allows Android apps to load
UI elements using web technologies, e.g., HTML, JavaScript. For
example, in Feedly app (Figure 3(d)), the search icon at the top right
is a WebView icon where its clickable attribute is false, meaning it

cannot be invoked using assistive services. This attribute, however,
does not prevent a user without disability from directly tapping the
icon, which results in the corresponding JavaScript event handler
to be invoked. Latte detected these types of failures in iPlayRadio,
Feedly, Checkout51, Yelp, Budget, and TodoList apps.

5.4.2 Accessibility Warnings. We also studied the use cases with
Accessibility Warnings and categorized them into four categories.
Recall that Latte reports an accessibility warning when an step in the
use-case execution takes more than a specific number of interactions
(15 interactions in our experiments).

Overlapping Layouts. Most of the apps have multiple layouts that
overlay on top of each other, i.e., Activity, menu, and dialogue layout.
A user who directly interacts with the screen only considers the ele-
ments on the top layout. However, TalkBack and SwitchAccess visit
all focusable elements regardless of the layout hierarchy. Therefore,
users who use assistive services often navigate through elements even
if they are not on the top layout. For example, Figure 4(a) shows the
main screen of the School Planner app. As can be seen, the side menu
is the active window (it is fully visible). However, it takes at least
12 interactions for a user to even reach the first item in the menu.
Developers can fix this issue by making the elements in the non-top
layouts unfocusable.

Far-Off Widget. All screen elements can be accessed virtually in
no time for a user who directly interacts with the device. However,
users relying on assistive services access the elements sequentially.
Therefore, it takes longer for them to access a frequently used element
located at the end of the navigation list. For example, in the TripIt app,
Figure 3(a), a user has to navigate all elements from the top to the
bottom to access the fab icon (the icon with a plus sign, highlighted in
Figure 3(b)). To resolve these issues, developers can define a custom
navigation to reduce the interactions required to reach the important

Figure 4: Screens of few apps with accessibility issues

Navigation Loop. Assistive services may not reach a GUI ele-
ment in some apps because of a static or dynamic loop in directional
navigation. Developers can create a static loop by defning custom tra-
versal order over elements using accessibilityTraversalAfter
attribute. While Accessibility Scanner can detect static loops, none
of the apps in our experiments had this issue. On the other hand, a
dynamic loop is caused by inserting elements while the user interacts
with an app. For example, as shown in Section 3, the images in the
background are inserted as the user navigates through them, making
the navigation list virtually infnite. This issue is usually caused by
RecyclerView widget where its adapter indefnitely inserts items
into the container. The accessibility failures of this type could be
found in Yelp, CalorieCounter, CookPad, Geek, and SoundCloud
apps.

Non-Standard Implementation. Developers use customized GUI
widgets in their apps that may have different behavior when users
interact with them using an assistive service. For example, Figure 3(c)
is the page of a restaurant in Yelp where users can rate the restau-
rant (the dotted blue box). However, TalkBack cannot focus on the
rating widget since it is a customized TextView without any text.
Therefore, even a sighted user using TalkBack cannot select this wid-
get to rate the restaurant. Another source of these failures is using
WebView widgets carelessly. WebView allows Android apps to load
UI elements using web technologies, e.g., HTML, JavaScript. For
example, in Feedly app (Figure 3(d)), the search icon at the top right
is a WebView icon where its clickable attribute is false, meaning it
cannot be invoked using assistive services. This attribute, however,
does not prevent a user without disability from directly tapping the
icon, which results in the corresponding JavaScript event handler
to be invoked. Latte detected these types of failures in iPlayRadio,
Feedly, Checkout51, Yelp, Budget, and TodoList apps.

5.4.2 Accessibility Warnings. We also studied the use cases with
Accessibility Warnings and categorized them into four categories.
Recall that Latte reports an accessibility warning when an step in the
use-case execution takes more than a specifc number of interactions
(15 interactions in our experiments).

Overlapping Layouts. Most of the apps have multiple layouts that
overlay on top of each other, i.e., Activity, menu, and dialogue layout.
A user who directly interacts with the screen only considers the ele-
ments on the top layout. However, TalkBack and SwitchAccess visit
all focusable elements regardless of the layout hierarchy. Therefore,
users who use assistive services often navigate through elements even
if they are not on the top layout. For example, Figure 4(a) shows the
main screen of the School Planner app. As can be seen, the side menu
is the active window (it is fully visible). However, it takes at least
12 interactions for a user to even reach the frst item in the menu.
Developers can fx this issue by making the elements in the non-top
layouts unfocusable.

Far-Off Widget. All screen elements can be accessed virtually in
no time for a user who directly interacts with the device. However,
users relying on assistive services access the elements sequentially.
Therefore, it takes longer for them to access a frequently used element
located at the end of the navigation list. For example, in the TripIt app,
Figure 3(a), a user has to navigate all elements from the top to the
bottom to access the fab icon (the icon with a plus sign, highlighted in
Figure 3(b)). To resolve these issues, developers can defne a custom
navigation to reduce the interactions required to reach the important
elements. For example, in the School Planner app (Figure 4(a)), the
fab icon is located at the top of the navigation list, although its actual
position on the screen is at the bottom right.

Grid Layout. Grids provide an effcient layout for presenting mul-
tiple items in a small space, all of which can be accessed in no time

 CHI ’21, May 8–13, 2021, Yokohama, Japan

for users without disability. However, since a grid’s items are ac-
cessed linearly by SwitchAccess, it takes a lot of interactions to reach
the last element on the gird. For example, in the TodoList app, the
calendar widget has 30 items in the grid that need to be visited before
reaching to “CANCEL” or “OK” buttons (Figure 4(b)). To fx this,
developers can provide different layouts for different settings, e.g., a
text-based date picker when TalkBack or SwitchAccess are enabled.

Web View. There is a common practice for mobile developers
to reuse web content (implemented in HTML/JavaScript) for some
parts of their apps using WebView widget [19]. However, assistive
services cannot analyze web elements properly, as shown earlier in
the case of Non-Standard Implementation category of accessibility
failures. Even if improper usage of web elements does not make an
app inaccessible, it can degrade the user experience. For example, in
the case of Dictionary app, shown in Figure 4(c), the defnition of a
term is shown in terms of a series of web elements, and each word
in the passage is a clickable Android GUI element. Consequently,
TalkBack and SwitchAccess need to navigate through all of these
elements to reach the end of the text.

6 CONCLUDING REMARKS
In this paper, we described a novel, high-fdelity form of automated
accessibility analysis for Android apps, called Latte. It reuses tests
written by developers to evaluate the correctness of the important
use cases in their apps to also validate the accessibility of those use
cases. Latte frst extracts use cases corresponding to an app’s tests,
and subsequently executes them with the help of assistive services.
We evaluated the effectiveness of Latte by analyzing 20 apps selected
from 13 different categories from Google Play and identifed 32
accessibility failures that could not be identifed using the state-of-
the-art technique. A qualitative analysis of the results obtained in our
experiments allowed us to identify a number of interesting categories
of accessibility failures and warnings, together with ways in which
developers can resolve them.

Although Latte fnds accessibility failures undetected by Accessi-
bility Scanner, it cannot detect accessibility barriers for users who do
not use assistive services, e.g., low text contrast. Moreover, we plan to
conduct user studies to gain a deeper understanding of the accessibil-
ity issues that Latte cannot detect. Therefore, Accessibility Scanner
cannot be replaced completely by Latte, rather they complement each
other. Our current work focuses on two assistive services and two
gestures, clicking and typing. Our future research entails extending
Latte to handle additional assistive services and more complex ges-
tures. The version and settings of assistive services may improve or
degrade the accessibility of the apps; consequently, our experiments
may be affected by them. In future work, we would like to study
the impact of settings of assistive services, which may be used by
advanced users, on the accessibility of apps. Our eventual goal is to
develop an extensible framework capable of identifying a broad list
of accessibility issues that can be incorporated into app developers’
workfow seamlessly.

ACKNOWLEDGMENTS
This work was supported in part by award numbers 1629771 and
1823262 from the National Science Foundation and an Exploration
award from the School of Information and Computer Sciences at

Salehnamadi et al.

the University of California, Irvine. We would like to thank the
anonymous reviewers of this paper for their detailed feedback, which
helped us improve the work.

REFERENCES
[1] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues

in Android apps: state of affairs, sentiments, and ways forward. In 2020 IEEE/ACM
42nd International Conference on Software Engineering. ICSE, Virtual, 1323–
1334.

[2] Android. 2020. About Switch Access for Android. https://support.google.com/
accessibility/android/answer/6122836?hl=en.

[3] Android. 2020. Accessibility Scanner - Apps on Google Play. https:
//play.google.com/store/apps/details?id=com.google.android.apps.accessibility.
auditor&hl=en_US.

[4] Android. 2020. AccessibilityService in Android. Google. Retrieved September 15,
2020 from https://developer.android.com/guide/topics/ui/accessibility/service

[5] Android. 2020. Android accessibility overview. Google. Retrieved August 20,
2020 from https://support.google.com/accessibility/android/answer/6006564

[6] Android. 2020. Android Debug Bridge. Google. Retrieved September 15, 2020
from https://developer.android.com/studio/command-line/adb

[7] Android. 2020. Android Studio. Google. Retrieved August 27, 2020 from
https://developer.android.com/studio

[8] Android. 2020. Espresso : Android Developers. Google. Retrieved August 20,
2020 from https://developer.android.com/training/testing/espresso

[9] Android. 2020. Improve your code with lint checks. Google. Retrieved August 20,
2020 from https://developer.android.com/studio/write/lint?hl=en

[10] Android. 2020. TalkBack and SwitchAccess source code by Google. Google.
Retrieved September 15, 2020 from https://github.com/google/talkback

[11] Appium. 2020. Mobile App Automation Made Awesome. http://appium.io/.
[12] Apple. 2020. Apple Accessibility - iPhone. https://www.apple.com/accessibility/

iphone/.
[13] Apple. 2020. Apple Accessibility Scanner. https://developer.apple.com/

library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/
OSXAXTestingApps.html.

[14] Giorgio Brajnik. 2004. Comparing accessibility evaluation tools: a method for tool
effectiveness. Universal access in the information society 3, 3-4 (2004), 252–263.

[15] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, and
Guoqiang Li. 2020. Unblind Your Apps: Predicting Natural-Language Labels for
Mobile GUI Components by Deep Learning. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering. ICSE, Virtual, 322–334.

[16] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated accessibility testing of mobile apps. In 2018 IEEE 11th International
Conference on Software Testing, Verifcation and Validation. ICST, Västerås, Swe-
den, 116–126.

[17] Google. 2020. Get started on android with talkback - android accessibility help.
https://support.google.com/accessibility/android/answer/6283677?hl=en.

[18] Wish Inc. 2020. Geek - Smarter Shopping. https://play.google.com/store/apps/
details?id=com.contextlogic.geek&hl=en_US.

[19] Opinion Matters. 2020. Mobile App Backlog Is Directly Damaging Revenue in the
Enterprise. BizReport. Retrieved September 15, 2020 from http://www.bizreport.
com/whitepapers/mobile_app_backlog_is_directly.html

[20] Helen Petrie and Omar Kheir. 2007. The relationship between accessibility and
usability of websites. In Proceedings of the SIGCHI conference on Human factors
in computing systems. CHI, San Jose, California, USA, 397–406.

[21] Christopher Power, André Freire, Helen Petrie, and David Swallow. 2012. Guide-
lines are only half of the story: accessibility problems encountered by blind users on
the web. In Proceedings of the SIGCHI conference on human factors in computing
systems. CHI, Texas, USA, 433–442.

[22] Robolectric. 2019. robolectric/robolectric. https://github.com/robolectric/
robolectric

[23] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O Wobbrock. 2017.
Epidemiology as a framework for large-scale mobile application accessibility
assessment. In Proceedings of the 19th international ACM SIGACCESS conference
on computers and accessibility. ASSETS, Baltimore, MD, USA, 2–11.

[24] Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2020. Latte companion website. https://github.com/seal-
hub/Latte.

[25] Camila Silva, Marcelo Medeiros Eler, and Gordon Fraser. 2018. A survey on the
tool support for the automatic evaluation of mobile accessibility. In Proceedings of
the 8th International Conference on Software Development and Technologies for
Enhancing Accessibility and Fighting Info-exclusion. DSAI, Thessaloniki, Greece,
286–293.

[26] W3. 2020. Web Content Accessibility Guidelines (WCAG) Overview. World Wide
Web Consortium. Retrieved August 20, 2020 from https://www.w3.org/WAI/
standards-guidelines/wcag/

https://support.google.com/accessibility/android/answer/6122836?hl=en
https://support.google.com/accessibility/android/answer/6122836?hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor&hl=en_US
https://developer.android.com/guide/topics/ui/accessibility/service
https://support.google.com/accessibility/android/answer/6006564
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/write/lint?hl=en
https://github.com/google/talkback
http://appium.io/
https://www.apple.com/accessibility/iphone/
https://www.apple.com/accessibility/iphone/
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://support.google.com/accessibility/android/answer/6283677?hl=en
https://play.google.com/store/apps/details?id=com.contextlogic.geek&hl=en_US
https://play.google.com/store/apps/details?id=com.contextlogic.geek&hl=en_US
http://www.bizreport.com/whitepapers/mobile_app_backlog_is_directly.html
http://www.bizreport.com/whitepapers/mobile_app_backlog_is_directly.html
https://github.com/robolectric/robolectric
https://github.com/robolectric/robolectric
https://github.com/seal-hub/Latte
https://github.com/seal-hub/Latte
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/

 Latte: Use-Case and Assistive-Service Driven Automated Accessibility Testing Framework for Android CHI ’21, May 8–13, 2021, Yokohama, Japan

[27] WHO. 2011. World report on disability. World Health Organization. Retrieved [28] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annotation
August 20, 2020 from https://www.who.int/disabilities/world_report/2011/report/ of Mobile Application Interfaces in Methods for Accessibility Repair and En-
en/ hancement. In Proceedings of the 31st Annual ACM Symposium on User Interface

Software and Technology. UIST, Berlin, Germany, 609–621.

https://www.who.int/disabilities/world_report/2011/report/en/
https://www.who.int/disabilities/world_report/2011/report/en/

	Abstract
	1 Introduction
	2 Related Work
	3 Illustrative Example
	4 Approach
	4.1 Test Analyzer
	4.2 Use-Case Executor
	4.3 Result Analyzer

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1. Accuracy of Latte
	5.3 RQ2. Latte vs. Google Accessibility Scanner
	5.4 RQ3. Qualitative Study of Detected Accessibility Failures and Warnings

	6 Concluding Remarks
	Acknowledgments
	References

