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Abstract

AUTOMATED INPUT GENERATION TECHNIQUES FOR TESTING ANDROID AP-
PLICATIONS

Nariman Mirzaei, PhD

George Mason University, 2016

Dissertation Director: Dr. Paul Ammann

The rising popularity of Android and the GUI-driven nature of its apps have moti-

vated the need for applicable automated testing techniques. This dissertation describes

two automatic techniques for generating inputs for testing Android applications, SIG-Droid

and TrimDroid. Both presented techniques employ a model-based approach to capture the

event-driven nature of Android applications into two inferred models : Interface Model and

Activity Transition Model. The Interface Model is used to find values that an app can

receive through its interfaces. The Activity Transition Model is used to generate sequences

of events that resemble user interactions with the app. SIG-Droid uses symbolic execu-

tion for obtaining test inputs that ensure covering each reachable branch in the program,

while TrimDroid focuses on reducing the combinatorics (i.e. dealing with combinatorial

explosion of test cases) in combinatorial testing of Android apps. TrimDroid relies on pro-

gram analysis to extract formal specifications that express the dependencies between the

GUI elements. The dependencies among the GUI elements comprising the app are used to

reduce the number of combinations with the help of a solver. All conducted experiments

corroborate the e↵ectiveness and e�ciency of SIG-Droid and TrimDroid.



Chapter 1: Introduction

Advances in mobile devices’ processing power have resulted in an increase in both popularity

of mobile devices and their capabilities. The current software distribution model for all

existing mobile platforms is through the use of online app stores or markets. These online

markets have made it very easy and cheap for the developers to produce apps that can

reach a large number of consumers.

The mobile app markets are creating a paradigm shift in the way software is delivered

to the end-users. The benefits of this software supply model are plenty, including the

ability to rapidly and e↵ectively introduce, maintain, and enhance software used by the

consumers. By providing a medium for reaching a large consumer market at a nominal

cost, app markets have leveled the software development field, allowing small entrepreneurs

to compete head-to-head against prominent software development companies.

Android, introduced by Google in 2008, is currently one of the most popular available

mobile platforms. It is a comprehensive software framework for mobile communication de-

vices including smartphones and PDAs. Android has had a meteoric rise since its inception

partly due to its vibrant app market that currently provisions nearly a million apps, with

thousands added and updated on a daily basis [3].

Testing is traditionally a manual, expensive, and cumbersome process. While there are

numerous existing methods for Unit Testing and GUI testing of Android apps there is a lack

of a comprehensive technique for system testing of these apps. Not surprisingly there is an

increasing demand by developers, consumers, and market operators for automated testing

techniques applicable to Android apps. From a technical standpoint, a key obstacle is the

lack of practical techniques to generate test inputs to test the apps submitted to the app

markets.
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In automated testing techniques, often test cases are generated using some information

about the system under test that either already exists or is acquired from the program

structure, source code, the specifications, execution logs and so on. Some of the well-known

techniques that can be considered for generating test input include: (1) model-based test

case generation; (2) symbolic execution; (3) combinatorial testing; (4) random and pseudo

random testing [4].

Although, there is a wealth of research on using the aforementioned techniques in tradi-

tional software systems, but only a few works have attempted to investigate these techniques

in mobile platforms such as in Android. Most of the recent testing approaches that tar-

get Android focus on either improving the state-of-the-art model-based techniques [5–7] or

improving random testing coverage by employing a set of heuristics [8, 9].

While promising, model-based testing techniques have a major shortcoming. Model

inference and model based testing help us understand and test the behaviors of an app by

means of abstract models and the inferred models can be used to generate sequences of

events that simulate the user’s interaction with the app [10, 11]. To make these sequences

executable, we need to accompany them with manually-defined or arbitrarily chosen values

for data input widgets. But defining the input data manually is expensive, su↵ers from

human mistakes and is hard to deal with in large models. Moreover, both approaches

ignore the interaction between input widgets, reducing both the code coverage and the

chances of detecting faults [12].

On the other hand, symbolic execution and combinatorial testing are two techniques

that can be used for generating input values for data widgets [13–15], but neither can

deal with the problem of exercising the sequences of events [16]. The underlying insight

in this research is that a model-based approach can be combined with either symbolic

execution or combinatorial testing to complement each other and compensate for each

other’s weaknesses. The inferred models can be used to analyze the behaviors of the app

and to generate sequences of events for the test cases. Accordingly, symbolic execution and

combinatorial testing are used to generate sets of input values to augment the sequences of

2



events to generate concrete and executable test cases. Hence, the problem of testing Android

applications is broken down into two problems of (1) generating sequences of events, where

each sequence captures a particular use-case for the app, and (2) generating proper concrete

values for GUI data widgets that take user inputs.

The main focus of this research is on the problem of system-level input generation

for Android applications. To that end, this dissertation first presents a model-inference

technique that leverages the knowledge of Android specifications to automatically extract

two models from an app’s APK file:1 an Activity Transition Model (ATM), representing

the event-driven behavior of the app, and an Interface Model (IM), representing all of the

input interfaces in the app and the widgets they contain, including buttons, input boxes,

etc. These models are used to guide the generation of event sequences aimed at simulating

actual user behaviors.

This is followed by investigating symbolic execution as the main mechanism for gen-

erating concrete values to augment the sequences of events to generate system-level test

cases. The proposed symbolic approach is built on top of NASA’s Java Path Finder [17] to

systematically generate inputs for Android apps that achieve high code coverage. It uses

the ATM and the IM to exhaustively pinpoint possible ways an app can receive inputs. It

then exchanges all concrete inputs with symbolic values, and gathers the constraints around

those inputs.

Although the evaluation results support the e↵ectiveness of the symbolic approach in

terms of code coverage, extending it to support all real-world apps is not easy. Android apps

are built using an application development framework (ADF), which allows the programmers

to extend the base functionality of the platform using a well-defined API that includes more

than 17000 Java classes [18]. Hence, e�cient and automatic symbolic execution of Android

apps requires an overwhelming engineering e↵ort to support the API libraries of the Android

ADF.

Combinatorial testing has shown to be a promising alternative for generating input

1An APK file is a Java byte-code package used to install Android apps.
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values for data widgets in Android applications [19]. But exhaustive combinatorial GUI

testing is often viewed to be impractical due to the explosion of possible combinations for

even the smallest applications [14]. T-way combinatorial testing [15] is a heuristic-based

alternative for exhaustive combinatorial testing that only considers a subset of GUI widgets

(i.e., t) [20]. But arbitrary selection of t widgets to be combinatorily tested can result in

less e↵ective test-cases than an exhaustive approach in terms of both code coverage and

fault detection [12].

To mitigate these issues, this dissertation proposes a novel combinatorial approach that

employs static analysis techniques that are informed by the rules and constraints imposed

by the Android ADF to identify GUI widgets that have dependencies on one another.

Thus, the set of GUI widgets with dependencies become candidates for t-way combinatorial

testing. Avoiding the generation of test cases for GUI widgets that do not have any de-

pendencies significantly reduces the number of test cases. For identifying the dependencies,

the interactions between the widgets and the variables in their def-use chain are statically

analyzed. Finally, an e�cient constraint solver is used to enumerate the test cases covering

all possible interactions among the GUI widgets. Finally, the ATM and the IM are used

to pinpoint possible ways an app can behave when it receives GUI inputs. These models

are transformed into Alloy [21] specifications, the solutions to which are enumerated with

a constraint solver for deriving the suite of test cases.

Despite the fact that combinatorial testing has shown to be e↵ective in testing GUI

application [15] by testing all combinations of values for input widgets of the program,

breaking down the input domain of each input widget into classes is a challenge. Here,

symbolic execution can be leveraged as a data generation technique to systematically derive

the input classes for unbounded data-widgets in Android apps.

These approaches are extensively evaluated using several real-world open-source Android

applications with respect to e↵ectiveness in terms of code coverage, and e�ciency in terms of

reducing the number of generated test cases compared to an exhaustive approach. Moreover,

the resulting code coverage is compared to several existing techniques.
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The rest of this dissertation is organized as follows. Chapter 2 provides a background

on Android, Symbolic Execution and Combinatorial Testing, followed by a discussion of the

related work. Chapter 3 describes the problem and specifies the scope of this thesis. Chap-

ter 4 describes the process for extraction of the required models. Chapter 5 provides the

detail for the symbolic execution approach and its evaluation results. Chapter 6 discusses

the proposed combinatorial approach and, respectively Chapter 7 presents how symbolic

evaluation is leveraged to improve the weaknesses of combinatorial testing. Finally, Chap-

ter 8 concludes this dissertation with the discussion of the contributions, limitations and

the future work.

The research presented in this dissertation has been published in the following venues:

• Nariman Mirzaei, Joshua Garcia, Hamid Bagheri and Sam Malek. Reducing Com-

binatorics in GUI Testing of Android Apps. To appear in the 38th International

Conference on Software Engineering (ICSE), Austin, TX, May 2016

• Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood and Sam Malek. ”SIG-Droid:

Automated System Input Generation for Android Applications”. in Proceedings of

the IEEE 26th International Symposium on Software Reliability Engineering (ISSRE),

Gaithersburg MD, November 2015.

• Riyadh Mahmood, Nariman Mirzaei, Sam Malek. ” EvoDroid: Segmented Evolution-

ary Testing of Android Apps”. in Proceedings of the 2014 ACM SIG- SOFT Interna-

tional Symposium on Foundations of Software Engineering, ser. FSE 14. Hong Kong,

China: ACM, November 2014.

• Nariman Mirzaei, Sam Malek, Corina S. Pasareanu, Naeem Esfahani, and Riyadh

Mahmood. ” Testing Android Apps Through Symbolic Execution”. 2012 JPF-

Workshop, Research Triangle Park, North Carolina, USA, November 2012.
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• Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek,

and Angelos Stavrou. ”A Whitebox Approach for Automated Security Testing of

Android Applications on the Cloud”. The 7th International Workshop on Automation

of Software Test (AST 2012), Zurich, Switzerland, June 2012.
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Chapter 2: Background and Related Work

This chapter provides an overview of Android followed by a brief review of the existing

literature on input generation techniques and Android testing.

2.1 Android Framework

The Google Android framework includes a full Linux operating system based on the ARM

processor, system libraries, middleware, and a suite of pre-installed applications. It is based

on the Dalvik Virtual Machine (DVM) [22] for executing programs written in Java. The

Android ADF provides an API for application development and includes services for building

GUI applications, data access, and other component types. The framework is designed to

simplify the reuse and integration of components. Applications publish their capabilities

and others can use them subject to certain constraints.

Android apps are built using a mandatory AndroidManifest.xml file. The manifest file

values are bound to the application at compile time and cannot be changed afterwards

unless the application is recompiled. This file provides essential information for managing

the lifecycle of an application to the Android ADF. Examples of the kinds of information

included in a manifest file are descriptions of the application’s components among other

architectural and configuration properties.

Components can be one of the following types: Activities, Services, Broadcast Receivers,

or Content Providers. An Activity is a screen that is presented to the user and contains

a set of layouts (e.g., LinearLayout that organizes items within the screen horizontally or

vertically). The layouts contain GUI controls, known as view widgets (e.g., TextView for

viewing text and EditText for text inputs). The layouts and their controls are typically

described in a configuration XML file with each layout and control having a unique identifier.
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Figure 2.1: Android Activity Lifecycle [1].

A Service is a component that runs in the background and performs long-running tasks,

such as playing music. Unlike an Activity, a Service does not present the user with a screen

for interaction. A Content Provider manages structured data stored on the file system or

database, such as contact information. Finally, a Broadcast Receiver responds to system-

wide announcement messages (e.g., messages indicating the screen has turned o↵ or the

8



Figure 2.2: Android Service Lifecycle [2].

battery is low).

Activities, Services, and Broadcast Receivers are activated via Intent messages. An

Intent message is an event for an action to be performed along with the data that supports

that action. Intent messaging allows for late run-time binding between components, where

the calls are not explicit in the code, rather connected through event messaging, a key

property of event driven systems.

All major components, including Activities and Services, are required to follow pre-

specified lifecycles [18] managed by the ADF. For instance, Figure 2.1 shows the events in

the lifecycle of an Activity: onCreate(), onStart(), onResume(), onPause(), onStop(),
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onRestart(), and onDestroy(). Figure 2.2 presents the lifecycle of a service. These

lifecycle event handlers are called by the ADF and play an important role in our research

as explained later.

Android software development kit (SDK) provides developers with the ability to create

Android Virtual Devices (AVD) (a.k.a emulators) [23] to simulate and imitate real devices.

The AVD is essentially meant for testing Android applications on various Android versions

and devices. Emulators mimic real Android devices and provide the user with most of the

functionalities of a real device. The emulator is pre-loaded with a set of applications (as

shown in the in Figure 2.3) like a browser, a phonebook and a map application, among

other features.

The Android emulators are used extensively in this research to install the application

under test as well as the test application that executes and instruments the application

under test. The Android Debug Bridge (ADB) [24] tool is a command line tool that lets

users communicate with an emulator or connected device.

2.2 Android Testing

There are several existing test input generation tools for Android with di↵erent primary

goals such as detecting existing faults in Android apps, or maximizing the code coverage.

Typically, it is assumed that the app developers are the main users of the tools. These

tools assume that the source-code of the app is available and their main goal is to help the

developer to improve the quality of their apps by catching possible faults and fixing them.

The ability to generate tests has applications beyond testing for functional defects. Energy

issues, latent malware, and portability problems are important concerns in the context of

mobile devices that are often e↵ectively detected by executing the code.

As Android apps are event-driven, i.e., the program is running in the idle state waiting

for the user to interact with the app via the GUI, or some type of system events from the

Android OS. In Android, GUI events include user-actions such as clicks, scrolls, or system

events, such as the GPS location update. Users may also use the GUI to enter certain values
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for the widgets. These inputs can be entering a value in a text-box, selecting a certain item

in a list, entering a specific value into a text-box and so on. Testing tools either treat all

user actions as events or break them down into sequences of events that simulate the user

actions and input values for the data-widgets on the GUI. Both the sequences of events and

the inputs can be generated either randomly or by following a systematic approach. In the

Figure 2.3: Android Emulator Screenshot.
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latter case, generally a model of the app is used to guide the process and limit the search

space. These models can be constructed statically, dynamically, or completely manually.

Current techniques for dealing with traditional event based systems either use capture-

replay or model driven approaches. In capture-replay approaches [25], the user records her

interaction sequences with the GUI, which are replayed at time of testing. Model driven

techniques such as [26, 27] require the user to provide a model of the software system’s

usages. Both capture-replay and model driven approaches depend on manual e↵ort, thus

are not very convenient, and are prone to missing ways in which an app could be engaged

and the human tester is unaware of. There have also been e↵orts to extract directed graph

models automatically by crawling the GUI [28, 29], and use those graphs to generate test

sequences, but again may fail to identify other ways a system can be engaged with.

2.2.1 Android Test Automation Frameworks

The Android development environment ships with a powerful testing framework, i.e., An-

droid Testing Framework [30]. The Android Testing framework is built on top of JUnit

and includes an API that extends the JUnit API with an instrumentation framework and

Android specific testing classes. It also includes additional utility classes such as an extra

set of Assertion classes for Android specific concepts (such as di↵erent Android Views), and

a set of classes for testing various Android components of an application (Activity, Content

Provider, and etc.).

Robotium [31] is an open-source testing framework for Android applications that is also

built on the top of Junit framework. Robotium provides additional GUI assertions like in

Web application testing using the Selenium framework. It is mostly used for Black-box

testing and to assess applications at functional, system, and acceptance level.

Uiautomator [32] provides a set of APIs for the test engineers to build GUI tests that

emulate user interactions such as clicking buttons, filling textboxes, and swiping. The

Uiautomator testing framework is useful Black-box testing of apps through GUI. It provides

support for GUI assertions and the ability of checking the state of apps GUI at before and
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after each action.

Monkey-Runner [33] provides an API for writing tests that control an Android device or

emulator from outside of Android code. Monkey-Runner captures the results as screenshots

and can be used for regression testing by comparing them as well as functional testing.

Esspreso [34] is the latest Android test automation framework by Google. It builds

on top of existing instrumentation infrastructure that Monkey-Runner provides an API to

interact with the UI more reliably.

Finally, Robolectric [35] is a testing framework that separates the test cases from the

device or emulator and provides the ability to run the tests directly by referencing the

Android library files. It provides lightweight shadow objects for Android framework library

classes, that mimic the actual classes behavior. It replaces the body of Android API methods

at run-time using java reflection. These shadow classes can be used for the purpose of unit

testing outside an emulator or a real device.

While all above frameworks automate the execution of the tests, they do not provide a

way for generating the test cases automatically, hence the test cases themselves still have

to be manually developed. In contrast the main focus of this dissertation is on building

techniques for generating test inputs automatically.

2.2.2 Random and Pseudo Random Techniques

The state of the practice in automated testing of Android apps is random testing. In fact,

a recent study of existing tools by Choudhary et al. [36] claims Android Monkey [37],

a random-testing program for Android, to be the winner among the existing test input

generation tools.

Android events consist of GUI events that are initiated by the user and system events

triggered by the Android framework itself. Usually, Android applications are registered to

handle only a handful of system events, and only under specific conditions. As a result,

testing system events randomly is quite ine�cient and most of the random testing techniques

for Android (such as [8,37]), focus on generating only GUI events. Another group of random
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testing techniques (such as [38]) focuses on testing inter-application communications by

randomly generating values for Intents (a.k.a Intent fuzzing). Intent fuzzers mainly aim to

test the robustness of the apps and reveal security vulnerabilities by generating invalid and

malicious intents.

Android Monkey [37] is a brute-force mechanism that often achieves shallow code cov-

erage. It is part of the Android developers toolkit and is widely used by both developers

and app market managers. Monkey utilizes a completely random strategy, and randomly

fires o↵ both GUI and system events based on the number of events that are specified by

the tester.

Dynodroid [8] also uses random values and sequences of events, but it incorporates

several heuristics to improve on Android Monkey’s performance. It generates only system

events that are relevant for the application by checking the android-manifest.xml. It also

tracks the type and number of events used so far and uses a least recently used algorithm

to pick the next event. Finally, Dynodroid provides the tester with the ability to manually

enter values for specific types of inputs (e.g. text-boxes).

Several other approaches build on random testing techniques. Amalfitano et al. [9] de-

scribe a GUI crawling-based approach that leverages completely random inputs to generate

unique test cases. Hu and Neamtiu [6] present a random approach for generating GUI tests

that uses the Android Monkey to execute.

Although, these random testing techniques can generate events e�ciently, they are not

suitable for generating highly specific inputs. Moreover, they are do not keep track of

part of the application that has been already covered, and are likely to generate redundant

events. In contrast the major focus of this dissertation is on generating intelligent test

inputs systematically with the goal of maximizing the statement coverage.
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2.2.3 Model Based Techniques

Following the path of previous testing techniques for event-based system such as web-based

applications, some Android testing tools extract a GUI model of the application to system-

atically generate sequences of events that resemble the behavior of the application. These

tools employ static and dynamic analysis techniques and generate a finite-state machine

that captures the activities of an app as the states and the events as the transitions.

MobiGUITAR [39], built on the top of famous GUITAR [40] framework uses GUI ripping

to build a model of an app. The model then is traversed by a depth-first search strategy

to generate test cases. The exploration is restarted from the starting state when the tool

cannot detect new states during the exploration. MobiGUITAR can use either random or

predefined constant input values during the exploration.

ORBIT [7] is a grey-box model extraction technique that creates a GUI model of the

app for testing. While ORBIT implements the same exploration strategy as MobiGUITAR

it uses static analysis to identify relevant UI events for a specific activity as the transitions

between the states.

SwiftHand [5] is a GUI testing technique that uses dynamic analysis and machine learn-

ing to infer a finite state model of the app during testing. The inferred model is used to

generate UI events that visit unexplored states of the app. The model is refined dynamically

during the execution of the app using the generated inputs. The main focus of SwiftHand

is to optimize the exploration strategy in order to minimize the restarts of the app during

the exploration.

A3E [41] is a static taint analysis technique for building an app model for automated

exploration of an app’s Activities. While the main focus of A3E is on the construction of

models for testing, rather than the generation of GUI tests in a systematic approach, two

exploration strategies are used to test the app: a depth first search strategy and a targeted

based strategy with a goal of reaching a certain state in the model.

PUMA [42] is built on the top of Uiautomator [32] and provides the infrastructure for

dynamic analysis of apps. PUMA is equipped with Monkey’s exploration strategy but

15



it provides a framework that can be extended to implement any exploration strategies.

Moreover, it provides an environment for analysis and modification of the finite-state model

of the app at run-time.

Unlike the work presented in the dissertation, these approaches focus on the construction

of models for testing that are covered using a depth-first search strategy for generation of

event sequences and random input data. This work di↵ers from them as I use prime path

coverage, which subsumes all other graph coverage criteria, to generate the event sequences.

I further generate the inputs for GUI widgets systematically through symbolic execution

and combinatorial testing rather than using randomly generated input.

2.2.4 Record and Replay Techniques

MonkeyRecorder [43] and RERAN [44] implement record and replay techniques for Android

apps. MonkeyRecorder allows testers to record a script for GUI events of an application on

the device and run it. MonkeyRecorder only collects click, swipe, and text-input events.

RERAN logs the event system commands of the Android operating system to generate

low-level event traces. These scripts are analyzed and turned into runnable scripts. RERAN

replays the recorded script and it does not use any recombination of the recorded events

for replay; moreover, the recorded scripts are hardware-specific including events coupled to

screen locations. As a result, RERAN scripts cannot be easily ported to be used for other

devices.

Although record and replay techniques can be useful for stress testing and regression

testing, the scripts are generated manually and as a result they are usually biased towards

only certain features and do not capture the behavior of the app completely. These tech-

niques can only replay what is recorded and do not consider other combinations of events

for replay. Moreover, the recorded scripts are often specific to a certain device and cannot

be used for other devices (e.g., recorded script on a Nexus 6P will not work on a Galaxy

S6). Unlike these works, the presented techniques in this dissertation provide a solution for

both generating the sequences of events and input values for GUI widgets automatically.
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Additionally, these test inputs can be used on any Android device that uses the Android

API the test inputs are generated for.

2.2.5 Other techniques

Some application behavior can only be revealed upon providing specific inputs. This is

the reason why some Android testing tools use more sophisticated techniques such as sym-

bolic execution and evolutionary algorithms to guide the exploration towards previously

uncovered code.

Jensen et al. [45] presented a system testing approach that combines symbolic execution

with sequence generation. The main goal of this work is to find valid sequences and inputs

to reach pre-specified target locations, and not maximizing the code coverage.

ACTEve [46] is an approach based on concolic testing of a particular Android library

to identify the valid GUI events using the pixel coordinates by instrumenting both the

framework and the app under test. While ACTEve handles both system and UI events,

the proposed approach only focuses on testing screen tap events and does not address the

problem of handling user’s input values.

EvoDroid [47] employs evolutionary search that is guided by two models of the system

to generate relevant sequences of events and inputs for apps. EvoDroid breaks down the

app into smaller segments where each segment is essentially an Android component and is

represented by an individual. The fitness function evaluates the quality of each test-case

and the individuals are mutated accordingly to maximize the coverage.

These techniques focus on the problem of generating complex sequences of events through

program analysis or evolutionary testing. On the other hand, this research mainly targets

a complimentary problem, i.e., generating proper input values for GUI testing of Android

applications systematically.
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2.3 Test Input Generation

The amount of research on automatic test case generation in the past decades has shown

its strong impact on the e↵ectiveness and e�ciency of whole testing process [48–50]. As a

result, a good number of di↵erent techniques of test case generation has been advanced and

investigated intensively.

This section provides a brief overview of the related literature on three well-known input

generation techniques that are used in this research.

2.3.1 Model-based Input Generation

Model based input generation is an approach in which a model of the system under test is

used as a reference to generate the test cases [50]. The model provides an abstraction of

the behavior of the system and describes possible sequences of transitions between its states

based on the app implementation. Model-based techniques can be divided into three cate-

gories: axiomatic approaches, finite state machine (FSM) approaches, and labeled transition

system (LTS) approaches. [4, 51]

Finite state machines are frequently used in the domain of GUI testing in which a node

of the FSM represents a state of the application and the state is identified by the values of

graphical objects [19,52–54]. A transition of the FSM represents an application event/action

(e.g., a method call, an event handler) that can change the application state, if executed.

Additionally, guards and conditions can enrich the model to capture the context in which

events and actions are executed.

The test cases are generated using a model exploration technique and a coverage criterion

[55]. For example, in node coverage criterion every FSM state needs to be exercised by at

least one test case, where edge coverage criterion ensures that every transition is executed

[56]. These event sequences represent a usage scenario of the system under test in a test

case.

All of these techniques focus on using the GUI model to generate sequences of events.
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Thus, they lack a systematic way of generating user input values for data widgets. As a

result, most MBT techniques use random or manually generated inputs. This can result in

lower code coverage, particularly if the program specifies constraints on user inputs as well

as missing potential faults. The research presented in this dissertation builds on an MBT

approach and complements it with techniques that can generate proper inputs values for

GUI widgets systematically.

2.3.2 Symbolic Execution

In 1975 King [13] introduced symbolic execution, a program analysis technique in which

symbolic values are used as program inputs instead of concrete values. Consequently, the

outputs of the program are transformed to a function of the symbolic inputs. The path con-

dition is a Boolean formula over the symbolic values representing the constraints that must

be satisfied in order for an execution to follow a specific path. Using the path conditions

around symbolic values, a decision tree, called symbolic execution tree, is created.

For illustration of this technique, consider the Java program depicted in Figure 2.4a,

where S0, S1, S2, S3, and S4 denote statements that can be invoked in di↵erent paths of the

program. Clearly, random testing is not likely to result in good coverage for this program.

Consider that the input value for y has to be exactly three times the value of variable x to

cover statement S0. This is precisely where the symbolic execution is shown to be fruitful.

Figure 2.4 shows the symbolic execution tree for this program. With the help of an o↵-

the-shelf SAT solver, actual input values that result in paths shown in Figure 2.4b can be

generated. These inputs can be used to generate test cases that cover di↵erent paths.

As an example, let X and Y be the symbolic representation of variables x and y, respec-

tively. By solving the following constraint “X > 0 & X  3 & Y = X ⇥ 3”, we obtain

two values “X = 3” and “Y = 9”, which result in taking the bold path in Figure 2.4 and

executing S0 and S3. Similarly, using symbolic execution, we can generate all possible in-

puts for the test method in such a way that all feasible paths in the program are explored.

Moreover, symbolic execution can determine infeasible or unreachable paths and report an

19



Figure 2.4: Symbolic execution: (a) sample code, and (b) the corresponding symbolic exe-
cution tree, where X and Y are the symbolic representations of variables x and y

assertion violation (path 6).

Recently, there has been an increasing attention towards symbolic execution techniques.

This is mainly a result of the inception of new powerful constraint solvers (e.g. Z3 [57]

and Yices [58]), which can solve complex and large constraints, and the low prices and

accessibility of computational power. Since its inception, symbolic execution has been

mostly used to generate test data with goals such as to improve code coverage and expose

software faults [59–61].

Symbolic execution is computationally expensive and it is di�cult to symbolically reason

about of all paths of significantly large programs, as most real world software have an

extremely large number of paths. Many techniques have been proposed to alleviate the

path explosion problem, among those dynamic symbolic execution (a.k.a concolic execution)

stands out.

Dynamic Symbolic Execution first executes the program normally along the path with

some random inputs [62, 63]. Next, the path constraints for each path the program takes

are computed. Finally, the path is also symbolically executed to compute new inputs that

drive the program along alternative paths.
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Pasareanu et al. [64] proposed using concrete values to simplify complex constraints.

Unlike previous Concolic Execution techniques, concrete values are not used to obtain the

path conditions from normal execution. The use of concrete values is limited to only complex

parts of the code or the external API calls that are not needed to be symbolically executed

to simplify the complex constraint.

A number of tools for symbolic execution are publicly available. Symbolic Pathfinder

(SPF), [65] is the best-known symbolic execution engine for Java programs. It is built

on top of Java Pathfinder (JPF) [17], an open source general-purpose model checker for

Java programs. Unlike other symbolic execution engines, SPF does not work with code

instrumentation. It works with a non-standard interpretation of Java byte-code using a

modified JVM [17]. SPF analyzes Java byte-code and handles mixed integer and real

constraints, as well as complex mathematical constraints through heuristic solving. SPF

can be used for test input generation and finding counterexamples to safety properties

[65]. Other well-known available symbolic execution tools include JCUTE [66] and JFuzz

[67] which target Java, CUTE [68], and Klee [69] which target C and, Pex [70] for .NET

languages.

Symbolic execution has been used for testing graphical interfaces. Barad [14] symbol-

ically executes a sequence of events to infer inputs for data components of the GUI and

relies on a random technique for generating the sequences of events. More recently, Jensen

et al. [45] proposed an approach that combines symbolic execution with sequence gener-

ation. Their work is mainly concerned with finding valid sequences and inputs to reach

pre-specified target locations.

Among well-known input generation techniques, symbolic execution is quite unique due

to its uses of program analysis and constraint solvers. However, it has been shown that

symbolic execution by itself could be ine↵ective for reasoning about event sequences and is

best when it is used in combination with other techniques such as evolutionary testing [16].

Among prior works on symbolic execution only a few have focused on using symbolic

execution to generate test inputs for GUI applications (e.g. [14, 45, 46] ) but non of them
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targets the problem generating system-level test inputs. Not only this dissertation presents

the first symbolic execution engine for Android applications, but also it introduces SIG-

Droid, a framework for generating system test inputs through symbolic execution.

2.3.3 Combinatorial Testing

Combinatorial testing [20] is a brute-force approach that tries all possible combinations

on inputs given a set of input parameters. For a system with p parameters, where each

parameter can take v possible values, the number of all possible combinations is pv. Hence,

exhaustive combinatiorial testing is often computationally prohibitive. T-way combinato-

rial testing is a heuristic-based alternative approach to exhaustive testing [71] where all

combinations of any t  p parameters have to be covered. The most common type of t-way

testing is pair-wise testing [15].

In combinatorial testing literature, a large number of techniques employ heuristics to

generate minimal set of test combinations. Pair-wise testing has shown to be an e↵ective

heuristic for reducing the number of combinatorial tests [12, 72]. Approaches such as [73,

74] propose using greedy or heuristic algorithms to generate minimal sets of tests for a

given combinatorial criteria. Some newer algorithms, use meta-heuristic search techniques

(such as genetic algorithms) to optimize selection samples [75]. However, the problem

of generating minimal sets of test cases that satisfy a given combinatorial criteria is NP

complete and the optimal solution cannot be obtained in non-trivial cases [76].

Combinatorial testing has shown to be an e↵ective approach in GUI-based testing [77].

Nguyen et al. [19] proposed an approach that leverages manually constructed behavioral

models of an app in pairwise testing of GUI-based applications. While using models that

are generated manually by the engineers has some advantageous (such as more complete

and accurate models), not automating model generation severely restricts the applicability

of this approach.

Kim et al. [78] introduced the idea of using static analysis to filter irrelevant features

when testing software product lines. Petke et al. [79] showed that higher strength of t-way
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testing can be practical and more e↵ective in the presence of constraints. Other areas of

interest for combinatorial testing include data-intensive system, system configurations and

software product lines (e.g., [78, 80, 81] ).

This work di↵ers from these approaches as it (1) specifically targets Android apps,

(2) automatically extracts the models through program analysis, (3) uses prime paths to

generate the sequences of events, (4) relies on a number of heuristics to determine the

interacting widgets in order to reduce the number of tests without degrading the coverage,

and (5) uses program analysis to determine the best values to represent the input domain

partitions of each widget.

23



Chapter 3: Research Problem

With well over a million apps [82], Android has become one of the dominant mobile plat-

forms [3]. Android app markets, such as Google Play, have created a fundamental shift in

the way software is delivered to consumers, with thousands of apps added and updated on

a daily basis. The majority of these apps are developed at a nominal cost by entrepreneurs

who do not have the resources for properly testing their software. Hence, there is an in-

creasing demand for applicable automated testing techniques. One key obstacle towards test

automation for Android apps that are heavily GUI-driven is the lack of practical techniques

for generation of test cases.

While there has been tremendous progress in Android testing at both unit-level and

GUI testing, random testing still remains the major player in automated system testing of

Android apps [36]. Monkey [37], a popular fuzzing tool provided by Google generates ran-

dom touchscreen presses, gestures, and other system-level inputs. Dynodroid [8] performs

more e↵ective event-aware random testing, through inferring representative set of events

and employing certain heuristics. Other techniques [5–7, 9, 46] mainly focus on testing the

program through GUI elements. System behaviors dependent on data values, though, have

not been adequately considered to a large extent, as data widgets are abstracted away,

which may cause shallow code coverage.

System testing of interactive applications, such as Android apps, can be broken down

into two distinct, yet interwoven problems. The first is to generate sequences of unique

events, where each sequence represents a particular app use-case and causes a change in

the state of the app. Here, the whole set of sequences exhaustively cover all possible use

scenarios. The second is to generate proper values for GUI data widgets that take user

inputs, such as textboxes. Here, the input domain can be quite large.
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Figure 3.1: Screenshots for a part of ERS app: (a) when total days is 1, the check-boxes
for Last Day Meals are disabled, and (b) when the total days is greater than 1, the check-
boxes for Last Day Meals are enabled.

The reminder of this chapter uses an example to describe the details of the research prob-

lem. This is followed by presenting the problem statement, and enumerating the research

hypotheses.

3.1 Motivating Example

For illustrating the proposed approaches, a simple Android app, Expense Reporting System

(ERS), is used in this document. The ERS app allows a user to submit meal expenses

incurred during a trip on an Android device. Figure 3.1 depicts two of ERS’s Activities:

NewReportActivity and ItemizedReportActivity.

The NewReportActivity is the main Activity, i.e., it is the first screen presented to

the user when an app is invoked. From the NewReportActivity, the user can select the
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Destination, enter an allowable expense Amount, the Currency, and initiate the creation of

two types of reports: Itemized Report and Quick Report. The ItemizedReportActivity allows

the user to enter an itemized list of meal expenses, including (1) the total days of the trip,

and (2) the number of meals purchased on the trip’s first and last day. When Total Days

is 1 (i.e., the first and last days are the same), the check-boxes corresponding to the last

day meals are disabled (see Figure 3.1a). On the other hand, the QuickReportActivity (not

shown in Figure 3.1 for brevity) allows the user to provide an aggregate number for the

meal expenses incurred on a trip. As explained in Chapter 2, the widgets on each activity

should be defined in an XML layout file. Listing 3.1 presents a snippet of the layout file for

NewReportActivity.

Listing 3.2 shows code snippets realizing one of the functionalities provided by this

app. When the ”Quick Report” button (see Figure 3.1) is clicked, the onClick method is

called by the ADF. Subsequently, if the amount is less than $500, an Intent is sent to the

QuickReportActivity including as payload the amount, currency and destination accounts.

Recall that testing of Android apps, such as ERS, can be broken down into problems

of generating sequences of unique events and augmenting those sequences with values for

GUI data widgets. Model-based testing helps us to understand and test the event-based

nature of a system under test [10, 11]. In other words, we can capture the GUI screens

of an app and the events that result into transitions between the screens in the form of a

finite state machine (FSM ). This FSM can be used to generate sequences of unique events.

Each path in the FSM can potentially result into a viable test-case. For example the path

{a
0

onClick(QuickReport)��������������! a
1

}, is a conceivable sequence for a test case that brings up the

screen corresponding to NewReportActivity, and clicks on ”Quick Report” button. But

this test case needs to also include values for the data widgets on NewReportActivity, i.e.,

amount, currency, and destination.

Existing model-based approaches (e.g., [11]) take the paths in the model and complete

them with either manually-defined or random values. Here, the main problem is that these

approaches neither consider: (1) the possible constraints on the values that correspond to
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<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

...

<TextView

android:id="@+id/amountLbl"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Amount"

android:textAppearance="?android:attr/textAppearanceMedium" />

<EditText

android:id="@+id/amountId"

android:layout_width="match_parent"

android:layout_height="wrap_content">

<requestFocus />

</EditText>

<Button

android:id="@+id/quickReportBtn"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=Quick Report />

...

</LinearLayout>

Listing 3.1: snippet from QuickReport.xml layout app.

individual widgets, nor (2) the interactions among data input widgets. Thus, they might

result in shallow coverage and miss faults that are result of interactions among some input

values. For example, in the case of ERS, consider the constraint in the code that the amount

cannot be more than $500 for quick reports. In current model-based approaches, there is no

systematic way of generating tests that cover both possible paths following the constraint.

Symbolic execution and combinatorial testing are two input generation techniques that

have shown to be quite e↵ective for generating values that properly represent the input

domain of a system under test [13–15]. Symbolic Execution [13] is a well-known program

analysis technique that can be used to generate appropriate values for constrained inputs to
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public class NewReportActivity extends Activity {

...

public class QuickReportButton implements OnClickListener {

public void onClick (View v) {

...

EditText amount = (EditText)findViewById(R.id.amountId);

amountValue = Integer.parseInt(amount.getText().toString());

if (amountValue <= 500) {

...

Intent intent = new Intent(this, QuickReportActivity.class);

intent.putExtra("amount", amountValue);

intent.putExtra("currency", currency);

intent.putExtra("destination", destination);

startActivity(intent);

} else {

throw new AmountException(Limit for Quick Report Exceeded)

}

}

}

...

}

public class QuickReportActivity extends Activity {

...

public void onCreate (Bundle savedInstanceState) {

...

Intent intent = getIntent();

int amount = intent.getExtra("amount");

...

}

...

}

Listing 3.2: Code snippets from NewReportActivity and QuickReportActivity app.

28



explore all possible execution paths in a program. For example, by using symbolic execution

for the path {a
0

onClick(QuickReport)��������������! a
1

} in ERS, we can generate two values of $501 and $1

for amount textbox.

Although symbolic execution itself is well understood and performing symbolic execution

on simple programs is straightforward, e�cient and automatic symbolic execution of real-

world programs at the system-level is usually not achievable [4]. As a result symbolic

execution is mainly used at unit level. Moreover, symbolic execution cannot e�ciently deal

complex constraints that involve interaction of input parameters (which would result into

complex path conditions).

On the other hand, combinatorial testing techniques deal with the problem of exercising

relevant combinations of values for input parameters of a program [15]. Exhaustive varia-

tion of combinatorial testing is often viewed as impratical due to the explosion of possible

combinations [15]. A more practical alternative is t-way combinatorial testing [15], where

all combinations for only a subset of input parameters (i.e., t) are considered [20]. But

even under t-way testing, the number of generated test cases could grow rapidly. Moreover,

without a systematic approach to determine the dependencies, arbitrary selection of t wid-

gets to be combinatorily tested is bound to be less e↵ective than an exhaustive approach

in terms of both code coverage and fault detection.

Although combinatorial testing has shown to be promising for testing GUI application

its success depends on how well the input domain of widgets are partitioned. For example,

in ERS app if the input domain for amount is manually partitioned into three classes of

{1000, 10000, 100000}, the value combinations will only exercise one path and ignore the

other. Here, a program analysis technique such as symbolic execution in a relatively small

scale, i.e., an activity, can be used to systematically generate values that represent the input

classes for unbounded data-widgets in Android apps.
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3.2 Problem Statement

The problem caused by lack of automated techniques to e↵ectively test Android applications

can be summarized as follow:

There has been an explosive growth in the number of new apps for mobile plat-

forms, such as Android. Due to poor quality of the submitted apps, we are

witnessing a high ratio of app removal from the app markets. Not surprisingly,

there is an increasing demand by developers, consumers, and market operators

for practical techniques to generate test inputs that can rapidly assess and test

the robustness of apps submitted to online app markets.

3.3 Research Hypotheses

This research investigates the following hypotheses:

• While model based testing is shown to be promising for generating sequences of actions

in event-driven environments such as Android, it lacks the ability to systematically

generate the input data required by such sequences. The input domain of proper

values for GUI data widgets can be quite large. As a result random values can be

quite ine↵ective. For example, in a numeric textbox that accepts 5 unsigned digits

and involves a conditional statement satisfied when the input value equals a certain

integer, random input generation has only 1

5

10 chance to reach the state satisfying

that condition. Symbolic execution [13] is a program analysis technique that can be

used to systematically generate values for exploring all the paths in a program.

Hypothesis 1: Symbolic execution can be used in combination with a

model-based approach to generate system-level test-cases for Android ap-

plication.

• An opportunity to automate the testing activities in Android is presented by the fact

that apps are developed on top of an Application Development Framework (ADF).
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The Android ADF ensures apps developed by a variety of suppliers can inter-operate

and coexist together in a single system (a phone), as long as they conform to the

rules and constraints imposed by the framework. The Android ADF constrains the

lifecycle of components comprising an app, the styles of communication among its

software components, and the way in which GUI widgets (e.g., buttons, check-boxes)

and other commonly needed functionalities (e.g., GPS, camera) can be accessed. An

underlying insight in this research is that the knowledge of these constraints along

with the metadata associated with each app can be used to automate many software

testing activities, specifically combinatorial testing of application.

Hypothesis 2: By using only widgets and activities that have dependencies

on one another as candidates for t-way combinatorial testing, an e�cient

alternative approach for exhaustive combinatorial testing that achieves com-

parable code coverage can be developed.

• Combinatorial testing is shown to be e↵ective for testing various combinations of

parameters [15]. Commonly, predefined sets of input classes are used for testing

unbounded parameters. The number of input classes has an exponential impact on

the number of final test inputs. By determining the input classes more systematically

using program analysis and constraint solving, a fewer number of inputs can achieve

identical or even improved code coverage.

Hypothesis 3: A program analysis technique can be devised to determine

the input classes for unbounded data-widgets in combinatorial testing of An-

droid apps to improve the e↵ectiveness of test inputs in terms of code cov-

erage.
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Chapter 4: Model Extraction

As mentioned in Chapter 1, testing of interactive applications, such as Android apps, is

comprised of two parts: generating sequence of events (e.g., button clicks) and selection of

input values (e.g., drop-down menu choices) [14]. A model-based approach can be used to

generate sequences of unique events, where each sequence represents a particular app use

and causes a change in the state of the app [47, 83, 84]. Here, the whole set of sequences

exhaustively cover all possible use scenarios.

Android apps are built using a common application development framework (ADF) that

ensures apps developed by a wide variety of suppliers can interoperate and coexist together

in a single system (e.g., a phone) as long as they conform to the rules and constraints

imposed by the framework. An ADF exposes well-defined extension points for building

the application-specific logic, setting it apart from traditional desktop software that is often

implemented as a monolithic independent piece of code. Android also provides a container to

manage the lifecycle of components comprising an app and facilitates the communication

among them. As a result, unlike a traditional monolithic software system, an Android

app consists of code snippets that engage one another using the ADFs sophisticated event

delivery facilities. This poses a challenge to test automation, as the app’s control flow

frequently interleaves with the ADF. On the other hand, the knowledge of ADF along with

the metadata associated with each app can be used to automate many of the software

testing activities, in particular test input generation, as illustrated in this document.

Using the specification of the app and Adroid ADF, Model Extraction extracts two types

of models for each app: Interface Model (IM) and Activity Transition Model (ATM). In the

remainder of this chapter, each model and its extraction process is described in details. As

it is shown in Chapters 5 and 6, these model are used to generate sequences of events that

represent possible use cases for the system can be produced by exploring the ATM.
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4.1 Interface Model

The IM provides information about all of the GUI inputs of an app, such as the widgets

and input fields belonging to an Activity. More formally, the IM is defined as follows:

Definition 1. The IM of an app is a tuple hA,E,W, Ii, where

• A is a finite, non-empty set of Activities of the app.

• E is a finite set of event handlers of the app (e.g., onClick() is the handler for a button

click). Each Activity a 2 A has a set of event handlers eHandlers(a) ✓ E.

• W is a finite set of GUI widgets of the app (e.g., a check-box, radio-button, drop-down

menu, and etc.). Each Activity a has a set of widgets widgets(a) ✓W .

• I is a finite set of input classes for widgets of the app. Each widget w has a set of

input classes ic(w) ✓ I. Each input class is a partition of the input domain of each

widget. For instance, input classes of a check-box are checked and unchecked, while

input classes of a drop-down menu are its choices.

Model Extraction obtains the IM by analyzing the information contained in the meta-

data included in an Android APK file, namely its XML-based manifest and layout files.

More specifically, Model Extraction determines all the Activities comprising an app from its

manifest file. Subsequently, for each Activity, Model Extraction identifies the corresponding

layout file1. It then parses the layout file (e.g. Listing 3.1) to obtain all information for

each widget, such as its name, id, input type, etc. Our current implementation extracts the

input classes for widgets that provide users with a list of options, such as check-boxes and

drop-down menus, directly from the layout files. Model Extraction uses the same layout files

to divide the domain space of text-boxes into di↵erent classes based on the limits imposed

on the text box values (e.g., max length). For unbounded text boxes, and other unbounded

widgets, Model Extraction uses a configurable set of input classes that can be defined by

the user.
1The corresponding layout file of an activity is set by the setContentView() method of the class that

defines the activity [18].
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As will be explained in Section 6.4, the IM is used to determine the GUI widgets and

their properties as well as events comprising each activity for the generation of test cases.

4.2 Activity Transition Model

An ATM represents the high-level behavior of an app’s GUI in terms of its Activities and

the transitions resulting from invocations of its event handlers. More formally, the ATM is

defined as follows:

Definition 2. The ATM of an app is a finite state machine represented as a tuple hA, a
0

, E, F i,

where

• A is a finite, non-empty set of Activities.

• a
0

is the starting Activity (i.e., main Activity), defined in an app’s manifest file.

• E is a finite set of directed transitions from the starting Activity to final Activities,

labeled by event-handler names. Each transition represents an event handler and

denoted as ai
ek�! aj , where ai, aj 2 A and ek is an event handler.

• F is a finite, non-empty set of final Activities in the ATM.

Figure 4.1 shows the ATM for the ERS app. To obtain an ATM such as this, Model

Extraction first determines the Activities A = {a
0

, a
1

, a
2

, a
3

, a
4

} comprising the app from

its manifest file. To determine the transitions between the Activities, Model Extraction

first generates the call-graph of the app using Soot. It then performs a depth-first traversal

of main2 Activity’s call-graph starting from its onCreate() method, which we know from

Android’s ADF specification to be the starting point of all apps. In the context of ERS, this

corresponds to NewReportActivity ’s onCreate() method. For each encountered node in the

call-graph, Model Extraction checks whether it would result in an activity transition, and

if so, adds it to set E. This is done by identifying the nodes where implicit method3 calls

2If there are more than one activity defined as the main activity in app’s manifest file, only the first one
is considered.

3Implicit calls are method calls that are handle via Intent messaging system of Android ADF. Hence,
they do not appear in the static call-graph generated by Soot.
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Algorithm 1: Implicit Call Extraction
Input: CG : set of activity call graphs,  : set of implicit callers
Output: ⌥ : implicit calls

1 foreach c 2 CG do
2 rootNodes c.getRoot()

3 foreach c 2 CG do
4 lNodes c.getImplicitCalls()

5 foreach l 2 lNodes do
6 if l 2  then
7 d l.getDestination()

8 if d 2 rootNodes then
9 ⌥.Add(l, d)

are initiated. These nodes would have to be method calls that either set an event handler,

start other activities, send Intent messages, or handle system events. System event handlers

deal with notification events, such as when a call is received, network is disconnected, or

the battery is running low.

Based on Android’s specification, we know that the links would have to be from leaf

nodes of the call-graph to other nodes. For example, in ERS there is an implicit call

from startActivity in NewReportActivity to ItemizedReportActivity ’s onCreate(). Al-

gorithm 9 shows how implicit calls are extracted, given a set of call-graphs each of which

belongs to an activity and the set of caller methods that initiate implicit calls. These meth-

ods are defined by Android’s specification. As new call-graphs are linked and connected,

they are traversed in a similar fashion. By doing so, Model Extraction is able to connect

the entire call-graph of the application, from beginning to end. The call -graph model is

updated with the newly found information.

A call may result in a transition in two ways:

1. Inter-component transition: these are implicit calls that result in the transfer of con-

trol from one Activity to another Activity. For instance, in the example of ERS in Figure 3.1,
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Figure 4.1: Activity Transition Model for the ERS app

when the Itemized Report button is clicked, the corresponding handler calls Android’s star-

tActivity method, which sends an Intent message resulting in the transfer of control to Item-

izedReportActivity ’s onCreate() method. In this case, Model Extraction extracts the destina-

tion from the Intent, and add the following transition E = E [ {a
0

onClick(ItemizedReport)����������������! a
2

}.

2. Intra-component transition: these are implicit calls to GUI event handlers in an

Activity that result in a transition back to the same Activity. For instance, the Itemize-

dReportActivity has a Click event associated with its Reset button. This event is handled

by the Activity’s onClick() method that is registered with that button. In this case, Model

Extraction adds the following transition to the model: E = E [ {a
2

onClick(Reset)���������! a
2

}.

Upon traversing the call-graph of a
0

, the above process repeats for all of the Activities

remaining in A. Finally, Model Extraction populate the set F with the Activities that do

not have any outgoing inter-component transitions, and if they do, it is only to nodes that

precede them.

The Model Extraction component is implemented on top of Soot, a static-analysis frame-

work for Java [85]. To analyze an Android app, it utilizes the Dexpler transformer [86] to

translate Android’s Dalvik bytecode to Jimple, Soot’s intermediate representation. By
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leveraging Soot and Dexpler, this approach works with an app’s source code as well as

its APK file. The model generator can handle most listeners for common widgets such as

onClickListener, onLongClickListener,onOptionsItemSelected, and so on.
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Chapter 5: Input Generation for Android Applications Using

Symbolic Execution

Symbolic execution is a promising automated testing technique that can e↵ectively deal

with constraints. While symbolic execution has proven to be e↵ective for unit level testing,

our goal is to utilize symbolic execution for end-to-end system testing of Android apps.

Symbolic execution of programs that are developed on the top of an ADF, however,

has always been challenging due to problems such as path-divergence that occurs when a

symbolic value flows outside the context of the program to the context of the underlying

ADF [87]. In addition, Android is an event-driven system, which makes symbolic execution

highly dependent on sequence of events; the symbolic execution engine has to wait for the

user to interact with the system and tap on a button or initiate some other type of event for

the program to continue the execution of a certain path. Furthermore, although Android

apps are developed in Java, they run on Dalvik Virtual Machine (DVM) [22], instead of the

traditional Java Virtual Machine (JVM). This is problematic, as current symbolic execution

engines that are targeted at Java cannot be used for Android apps.

This chapter, presents SIG-Droid, an automated System Input Generation framework

for Android apps that tackles these challenges [83]. SIG-Droid combines program analysis

techniques with symbolic execution [13] to systematically generate inputs for Android apps

that achieve high code coverage. SIG-Droid leverages both ATM and IM to capture the

behavior of an app.

SIG-Droid uses the ATM and the IM to exhaustively pinpoint possible ways an app

can receive inputs. It then exchanges all concrete inputs with symbolic values, and gathers

the constraints around those inputs. To determine the execution paths that should be

symbolically analyzed, it automatically generates sequences of event handler methods from
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the inferred ATM. These sequences are called Drivers. Furthermore, to enable our symbolic

execution engine to run the apps on JVM, and to resolve any possible external method

calls resulting in path-divergence, models of Android library classes are created. After

symbolically executing the app using the drivers, the solved values are used along with the

corresponding events to create test inputs. The experiments corroborate SIG-Droid’s ability

to systematically generate test cases for end-to-end testing of Android apps that achieve

high code coverage.

To summarize, the main contributions of the work presented in this chapter are:

• Symbolic Execution for Android framework: I provide solutions to solve the challenges

of symbolic analysis for Android framework, and extend Symbolic Pathfinder (SPF)

[65] to support Android apps (§ 5.2).

• Implementation: I develop a working implementation of SIG-Droid that automatically

generates executable Robotium[31] test cases that include, among other things, event

sequences and data inputs for testing of Android apps (§ 6.4).

• Experiments: I conduct experimental evaluation of our approach on both a collec-

tion of real-world Android apps and a benchmark-suite designed to assess the impact

of input constraints and app’s complexity on the e↵ectiveness of system-level test-

ing techniques. The results corroborate SIG-Droid’s ability in achieving significantly

higher code coverage compared to existing automated testing tools for Android (§ 6.5).

5.1 Overview of SIG-Droid

Figure 5.1 depicts a high level overview of SIG-Droid, which is comprised of three major

components. The first component is the Model Generator that takes an app’s source code

and outputs two models, the ATM and the IM, as explained in details in Chapter 4.

The second component of SIG-Droid is the Symbolic Execution Engine. SIG-Droid is

built on top of JPF, which uses the byte-code interpretation of the program under test.
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Hence, the app’s source code has to be compiled with Java compiler, instead of Android’s

Software Development Kit. This task is achieved by replacing platform-specific parts of

the Android libraries that are needed for each app with stubs. These stubs are created in

a way that each component’s composition and callback behavior is preserved. This allows

SIG-Droid to execute an Android app on JPF virtual machine without modifying the app’s

implementation.

The symbolic execution engine heavily utilizes the two generated models. The ATM is

used to generate the app Drivers (i.e., use cases), while the IM is used to mark the input

values that have to be exchanged with symbolic values. Furthermore, prior to running the

symbolic analysis, the code is instrumented in order to track the sequence of events that

occur in each path. The results are stored in the symbolic execution report that is used

later in generating test cases.

Finally, the third component of SIG-Droid is the Test Case Generator. It takes the IM

along with the symbolic execution report as inputs and generates test cases that can be

executed on top of Robotium [31], which is an Android test bed. The focus of this Chapter

is on generating test cases that achieve high code coverage, not on whether the test cases

have passed/failed. Currently, collect two types of results are collected from the execution

of tests: any exceptions that may indicate certain software faults as well as code coverage

information. EMMA [88], an open source toolkit, is used for obtaining the statement

coverage information. The next two sections describe the components of SIG-Droid in more

detail.

5.2 Symbolic Execution for Android

Since Android apps are (1) event-driven, (2) prone to path-divergence, and (3) compiled

into Dalvik byte-code, to build a symbolic execution engine for Android three major chal-

lenges have to addressed. This section explains how SIG-Droid’s symbolic execution engine

addresses these challenges.

40



Figure 5.1: High level overview of SIG-Droid.

5.2.1 Handling Event-Driven Challenge

As Android is an event driven system, symbolic execution is highly dependent on events

and their sequencing; meaning that the symbolic execution engine has to wait for the user

to interact with the system and tap on a button or initiate some other type of event for

the program to continue the execution of a certain path. Furthermore, the system itself or

another application can initiate an event and cause the app to behave in a certain way.

To address this issue, symbolic execution engines, such as SPF [65], provide a mechanism

to specify a Driver, which in the case of SPF is a Java program with a main method that

contains the sequence of methods (event handlers) that should be used in a single run of

the engine for determining the parts of the code that should be analyzed for gathering

constraints. To generate the Drivers for Android apps, SIG-Droid uses the ATM as a finite

state machine and traverse all the unique paths that do not contain a loop using a depth

first search algorithm. This results in generating many possible sequences of events that

represent possible use cases for the app.

As an example, using theATM in Figure 4.1, if we start at NewReportActivity.onCrea-

te() and follow through with QuickReportAtivity.onCreate() and Next.onClick(), we

arrive at a plausible sequence. Clearly, if the app is comprised of more than one Activity

and many events, the generated Driver would be more complex. Listing 5.1 illustrates a
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sample Driver for ERS generated in this way using the sample ATM of Figure 4.1. It

contains two sequence of events, i.e., creates a QuickReportAtivity object by calling its

constructor following by calling the onCreate method that triggers the start of the activity.

Consequently, it simulates the action of user tapping on the ”Quick Report” button by

calling onClick method.

Note that since the ATM does not model the program’s constraints, not all generated

Drivers are necessarily valid sequences of events (i.e., can actually occur when the program

executes). As will be detailed in Section 6.4, SIG-Droid does not use the Drivers for the

purpose of generating the test cases, but only for the purpose of guiding the symbolic

execution and solving the constraints on input values.

5.2.2 Handling Path-Divergence and Davlik Byte-Code Challenges

The second challenge is an Android program’s dependence on framework libraries that make

symbolic execution prone to path-divergence, and more so than traditional Java programs.

In general, path-divergence occurs when a symbolic value flows outside the context of the

program that is being symbolically executed and into the bounding framework or any exter-

nal library [87]. Path-divergence leads to two major problems. First, the symbolic execution

engine may not be able to execute the external library, as a result extra e↵ort may be needed

to support those libraries. Second, the external path may contain its own constraints that

result in generating extra test inputs attempting to execute the diverged path rather than

the program itself. This creates a scalability problem, as it entails symbolically executing

parts of the Android operating system every time there is a path-divergence.

Indeed, in Android, path-divergence is the norm, rather than the exception. A typical

Android app is composed of multiple Activities and Services communicating extensively with

one another using Intents. An Intent is used to carry a value to another Activity/Service

and as a result that value leaves the boundaries of the app and is passed through Android

libraries before it is retrieved in the new Activity/Service.

Furthermore, Android apps depend on a proprietary set of libraries that are not available

42



outside the device or emulator. Android code runs on Dalvik Virtual Machine (DVM) [22]

instead of the traditional Java Virtual Machine (JVM). Thus, Android apps are compiled

into Dalvik byte-code rather than Java byte-code. To symbolically execute an Android app

using SPF, the app has to be transformed into the corresponding Java byte-code represen-

tation first.

To tackle the path-divergence problem and compile Android apps to Java byte-code,

SIG-Droid provides its own custom built stub and mock classes. The stub classes are used

to compile Android apps into JVM byte-code, while mock classes are used to deal with the

path-divergence problem. I developed stubs that return random values within a reasonable

range, when the return type of a method is primitive, and return empty instances of the

object, when the return type is a complex data type. Dealing with Android platform, not

only do I need to provide stub classes to resolve the byte-code incompatibility with JVM,

but I also need to address the lack of Android logic outside the phone environment. Android

uses its library classes as nuts and bolts that connect the di↵erent pieces of an app together.

A common instance of path-divergence in Android occurs when one Activity is initiated

from another one and a value is passed from the source to the destination Activity. This

process is performed by utilizing an Intent message (recall from Section 2.1 that in Android

inter-component messaging is achieved through Intents). In the case of ERS, as shown in

Figure 3.1, NewReportActivity uses the startActivity method of the Android library

class Activity.java to start the app’s QuickReportActivity. It creates an Intent in

which the source and destination activities along with the values to be carried are specified.

In this case, I provide the appropriate logic for Activity.java mock, such that when its

startActivity method is called, the control flow moves to the onCreate method of the

recipient activity.

Moreover, I create a mock for the Intent.java to address the path-divergence problem

in cases where the payload is a symbolic value. As shown in Listing 3.2, an instance of

Intent is passed to startActivity. If this Intent encapsulates a symbolic value for variable

amountValue, it would result in path-divergence. To deal with this issue, I provided my
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public static void main(String[] args) {

try {

View v = new View(null);

NewReportActivity newReport = new NewReportActivity();

QuickReport i = newReport.new QuickReport();

newReport.onCreate();

i.onClick(v);

}

catch (Exception e) {

e.printStackTrace();

}

}

Listing 5.1: Sample Driver for ERS app.

own implementation of putExtra and getExtra methods in the mock implementation of

Intent.java, such that the symbolic value of those variables is preserved. Android uses a

hashMaphString, Objecti to store and retrieve the payload of an Intent, making it di�cult

to reason about a value stored as Object symbolically. To solve this problem, I provide

my own implementation of a hash map that holds primitive values. Consequently, in our

implementation of the putExtra and getExtramethods, I use our hash map implementation

to enable the symbolic execution engine to reason about values that are exchanged using

the Intent messages.

The last step prior to running symbolic execution of each app is to identify which values

need to be executed symbolically. These are the values that the user can input using

the GUI, e.g., the amount in the ERS app. As an example, for each input box in the

IM, the source code of the corresponding activity is explored and the value of that input

box, retrieved by calling inputBox.getText(), is exchanged with a symbolic value. It is

important to keep a mapping between each introduced symbolic value and its corresponding

widget on the screen. At the same time, the code is instrumented to record the sequence

of actions taken. The mapping along with the sequence of actions captured in the Drivers

are used by the test case generator to reproduce the values and actions in each test case.
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<?xml version="1.0" encoding="utf-8"?>

<Report>
<Path id="1"

<Activity name=NewReportActivity>

<MethodCall name=QuickReport.onClick()">

<SoldvedVariable name="amountValue" value="1" />

</MethodCall>

</Activity>

</Path>

<Path id="2"

<Activity name="NewReportActivity"

<MethodCall name="QuickReport.onClick()">

<SoldvedVariable name="amountValue" value="501" />

</MethodCall>

</Activity>

</Path>

</Report>

Listing 5.2: Symbolic Execution report for Driver in Listing 1.

5.3 Test Case Generation

Following the extraction of models and symbolic execution of an app, SIG-Droid automat-

ically generates test inputs that can be executed on an actual phone or emulator device.

Running symbolic execution with each Driver results in a symbolic execution report. Each

report specifies the concrete values that are obtained by solving the gathered symbolic

conditions.

Each Driver representing a single path in the ATM may contain several constraints,

thus it may result in multiple execution paths. For instance, if amountValue is a symbolic

value in NewReportActivity in Figure 3.1, the Driver in Listing 5.1 would result in two

di↵erent execution paths: One where the amountValue is less than $500, and another where

it is greater. Hence, the report for each Driver may result in several tests.

Moreover, as mentioned in Section 4.2, the ATM for each app only contains information

about the possible chains of method calls regardless of constraints. As a result, the Drivers

that are generated using the ATM may be invalid sequences of events, meaning that the
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public class NewReportActivityTest_1 extends

ActivityInstrumentationTestCase2<NewReportActivity> {

private Solo solo;

...

@smoke

public void testMethod() throws Exception {

solo.enterText(0,"501");

solo.clickOnButton("Quick Report");

}

...

}

Listing 5.3: Code snippet of a Robotium test automatically generated by SIG-Droid for
NewReportActivity.

constraints may prevent the execution of certain events. In order to make sure that I

only generate valid sequences of events in each test case, the code is instrumented to track

the actual method execution sequence during the symbolic execution. Thus, the symbolic

execution report contains the sequence of called methods as well. Listing 5.2 shows the

symbolic execution report for the Driver of Listing 5.1.

Since the report contains only the event handlers and not the actual event generators

(e.g., the ID of the buttons on a screen), to generate test cases SIG-Droid uses the IM

to determine the event generator corresponding to each event handler in the report. For

example, QuickReport.onClick handler method in Listing 5.2 is the handler for the ”Quick

Report” button on NewReportActivity screen of Figure 3.1.

Listing 5.3 illustrates one of the Robotium test cases generated by SIG-Droid that

corresponds to the report shown in Listing 5.2. Solo is a Java class provided by Robotium

that executes the test (essentially represents the user of the app). This test case inputs

5001 in the amount text box, which has the index of zero, meaning it is the first text box

on that activity, and then clicks on ”Quick Report” button.
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5.4 Evaluation

To evaluate SIG-Droid, three research questions are formulated:

• RQ1: Is SIG-Droid capable of generating test cases for real-world Android apps?

• RQ2: How well does SIG-Droid perform? Can SIG-Droid achieve a better code

coverage than state-of-the-art Android system testing frameworks?

• RQ3: How scalable is the approach in generating test cases for complex applications,

i.e., apps involving highly constrained input values?

For investigating RQ1, I apply SIG-Droid to several real-world apps from an open-source

repository, called F-Droid [89]. These apps are picked based on the following criteria: (1)

the source code for the applications must be available (2) the app only uses standard

GUI widgets that are included in Android API and does not use any third party widgets,

and (3) the apps should capture the di↵erent application categories, such as productivity,

entertainment, and tools. Moreover, SPF does not handle anonymous classes. As a result, I

refactored the source code of the apps to ensure they do not contain any anonymous classes.

Table 5.1 lists these apps. LOC, Activities, and Category columns report lines of code,

number of activities of each app, and category of each app, respectively. 1

For addressing RQ2, I compare SIG-Droid with two approaches: Android Monkey [37]

and Dynodroid [8]. I also considered other testing tools for the evaluation, but were not able

to include them for various reasons. Some focus on other objectives (e.g., A3E [41] focuses

on discovering Activities by covering a model of an app and does not report statement

coverage), while there were practical di�culties with others (e.g., SwiftHand [5] exits with

an exception when used on our apps).

For answering RQ3, I develop a benchmark-suite that entails a collection of synthetic

1Per our study of 100 F-Droid apps, average number of activities for an app is 4.
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Table 5.1: Open-source apps used in the evaluation.

App LOC Activities Category
CalAdder 276 2 Productivity
Tipster 501 1 Tool

MunchLife 631 2 Entertainment
JustSit 849 4 Productivity
AnyCut 1095 4 Tool

TippyTipper 2953 6 Tool

apps in di↵erent levels of complexity. To measure apps’ complexity, I use three well-

established complexity metrics from literature, namely Method Call Sequence Depth, Mc-

Cabe Cyclomatic Complexity, and Block Depth per Method. I then measure the impact of

input constraint and complexity on scalability of our technique.

All experiments were conducted on an Apple iMac machine with 8GB memory and a

dual core 2.4GHz processor. I used Android Virtual Devices (Android emulators) with 1GB

RAM and 2GB SD Card. A fresh emulator was created for each app along with only default

system applications. During the experiments, I used EMMA [88] to monitor the statement

coverage. The reported line coverage is gathered by running all of the generated test cases

on each app.

5.4.1 Experiment 1: Open-Source Apps

In our first set of experiments, I measured and compared the source code statement coverage

achieved using the test cases generated by SIG-Droid, Monkey, and Dynodroid. Android

Monkey, developed by Google, is essentially a fuzzing tool that sends random inputs and

events to the app under test. Dynodroid improves on the number of inputs/events Monkey

uses, thus achieves a similar coverage with less generated events. Since both Dynodroid

and Monkey treat both data widget inputs and events as input events, to achieve a fair
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comparison among Android Monkey, Dynodroid, and SIG-Droid, I ran each tool with the

same number of events. To be more specific, I counted the number of events used in SIG-

Droid generated test cases, and used that number as the number of inputs for Monkey

and Dynodroid. As both Monkey and Dynodroid are based on random approaches, using

the same low number of events that are generated by SIG-Droid may not be fair for a

comparison. To address that, I also run both tools with 2,000 input events, which is the

maximum number possible for Dynodroid [8].

The line coverage results are summarized in Table 6.2.2 Column # of Events represents

the number of input events in Robotium test cases generated by SIG-Droid. An event in a

Robotium test case can be either an action, such as a button click, or entering an input value

into a widget like a text box. The next six columns then represent the line coverage and the

time taken to generate and execute test cases for SIG-Droid, Monkey, and Dynodroid, given

the number of input events shown in the first column for each app. Columns Monkey(2000

Events) and Dynodroid(2000 Events) represent the same information, but when Monkey

and Dynodroid are given 2,000 events.

In terms of the total code covered for each app, SIG-Droid easily outperforms both

Dynodroid and Monkey, achieving higher coverage for all apps. Given the same number

of input events shown in the first column for each app, SIG-Droid’s coverage on average

outperforms Monkey and Dynodroid by a 57% and a 41% margin, respectively. Even

when the other tools are allowed to use more events, the code coverage achieved by them

is still clearly outperformed by SIG-Droid’s. In addition, SIG-Droid runs 2X faster than

Dynodroid, and about 3X slower than Monkey. This is not surprising, given that Monkey

is a completely random testing tool. More specifically, when Monkey traverses a path, it

does not backtrack or use any other systematic way to test the app. Therefore, Monkey’s

test coverage does not considerably improve even with significantly higher number of input

events. In contrast, SIG-Droid relies on the ATM to generate input events, thereby leads

to unique sequences of events that cover nodes captured in the ATM.

2I could not run Dynodroid on CalAdder and TippyTipper as Dynodroid runs on Android 2.3 and it does
not support apps developed with newer APIs.
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Although SIG-Droid performs significantly better than the two mentioned methods, it

fails to achieve complete code coverage. In some cases this could be due to unreachable

code or pieces of code that handle specific events while the app is running, such as phone

unlock. It is also partially attributed to the fact that the current implementation does not

handle loops in the ATM as well as well-known symbolic execution shortcomings in dealing

with non-primitive data-types. Additionally, our program analysis does not support all

possible ways that Android apps could be developed. For instance, there are many ways

of handing events in Android, and one of those is through inline class declarations, which

SIG-Droid does not support. The results show that SIG-Droid is significantly more e↵ective

than existing system testing techniques targeted at Android apps.

5.4.2 Experiment 2: Benchmark Apps

In practice, symbolic execution is predominantly known to be su↵ering from scalability

issues caused by problems such path-explosion [90]. To assess SIG-Droid’s performance and

scalability, I needed a way of selecting benchmark apps that are nontrivial. Finding real-

world apps that fall into a variety of categories defined by a number of complexity metrics is

nontrivial. As shown previously [91,92], an e↵ective way to address this problem is to write

benchmark applications that satisfy the requirements. Similarly, I built an Android app

generator that produces apps with di↵erent levels of complexity for our experiments. These

apps provide us with a controlled environment, i.e., these apps do not contain features,

such as loops in their control flow, that are not fully supported by symbolic execution tools,

including SPF. By using these apps for benchmarking the performance and scalability of

SIG-Droid, I can remove the impact of such known limitations and only concentrate on the

impact of app complexity. However, I also needed a way of ensuring the synthesized apps

were representative of real apps.

To that end, I first conducted an empirical study involving real world apps and analyzed

approximately 100 apps chosen randomly from F-Droid repository [89]. The selected apps

were in various categories, such as education, communication, gaming, etc. I analyzed these
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Figure 5.2: Android complexity metrics distribution from a random sample of 100 apps.

apps according to three major complexity dimensions that could impact SIG-Droid: (1)

Method Call Sequence Depth — the longest method call sequence in the app, (2) McCabe

Cyclomatic Complexity — the average number of control flow branches per method, and

(3) Block Depth per Method — the average number of nested condition statements per

method. Figure 5.2 shows the distribution of these complexity dimensions among the 100

Android apps from F-Droid. Our app generator is able to synthesize apps with varying

values in these three dimensions.

I then defined complexity classes for generating subject apps in our experiments. For
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Table 5.3: Benchmark apps.

App Max Method McCabe Cyclomatic Nested Block Symbolic Exec. Overall Exec.
Call Sequence Complexity/Method Depth/Method Time(sec) Time(sec)

1 15.00 1.6590 1.2929 2 40
2 23.60 1.8506 1.4018 2 37
3 27.10 1.9332 1.4742 4 175
4 32.00 2.0416 1.5216 4 135
5 38.00 2.1945 1.5650 6 30
6 41.40 2.3606 1.6860 5 60
7 50.10 2.5575 1.7761 5 299
8 62.20 2.8956 1.8850 6 596
9 90.80 3.2287 1.9867 6 446

that, I aggregated the data collected through our empirical study, as shown in Figure 5.2,

and produced the overall app complexity classes ranging from 10th to 90th percentile, shown

in Table 5.3. For instance, the 10th overall complexity in Table 5.3 corresponds to the 10th

percentile in all of the three dimensions shown in Figure 5.2. Essentially this means that an

app belonging to a lower class is less complex with respect to all three dimensions compared

to an app from a higher class.

I used SIG-Droid to test one generated app from each of the nine complexity classes. I

evaluated SIG-Droid by measuring the execution time and the resulting statement coverage.

By conducting this experiment, I were able to measure the impact of input constraint and

complexity on performance of our technique.

Table 5.3 shows the symbolic execution time as well as the overall execution time, which

includes the symbolic execution time and the time it took to generate and execute the tests.

As one would expect, the increase in the app complexity results in a modest increase in

the symbolic execution time, since more constraints need to be solved. I also notice an

increase in the overall execution time, due to the higher number of generated test cases and

consequently the time needed for their execution. The results demonstrate that SIG-Droid

is capable of scaling to even the most complex Android apps. Although not the focus of

this experiment, it corroborates our earlier assertion that SIG-Droid’s inability to obtain
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Figure 5.3: Coverage for Benchmark Apps.

complete code coverage in the case of real apps is due to the existence of unreachable code

as well as incomplete model of app behavior. More advanced program analysis techniques

for obtaining complete model of app behavior could reduce the gap between SIG-Droid’s

actual code coverage in real apps and its theoretical potential in synthesized apps.

Finally, SIG-Droid is benchmarked against Monkey and Dynodroid using the synthetic

Android apps. Figure 5.3 shows the coverage results for this experiment. As the com-

plexity of the apps increases, the coverage for both Android Monkey and Dynodroid drops

significantly. However, SIG-Droid’s code coverage does not su↵er from the increase in app

complexity. This is mainly because it uses the ATM to generate unique sequences of events

along with symbolic execution to solve the input constraints. Accordingly, the increase in

the app complexity has no negative impact on the performance of SIG-Droid.
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5.5 Conclusion

This chapter presented SIG-Droid, a novel framework for automated testing of Android

apps. The key contributions of this work are (1) a symbolic execution engine that supports

Android apps, (2) combining model-based testing with symbolic execution to systematically

generate test inputs for Android apps, and (3) a supporting framework that generates

e↵ective system level test inputs for Android apps.

Although SIG-Droid has shown to be significantly better than random tools for auto-

mated testing it is not free of shortcomings. First, expanding support for Android libraries

through the development of additional stubs and mock classes requires significant manual

engineering e↵ort. Moreover, SIG-Droid’s program analysis does not support inline declara-

tion of event handlers to generate more accurate model of app behavior. Finally, SIG-Droid

currently only focuses on generating values for basic GUI data-input widgets. Hence, there

is a need for a more comprehensive technique that can be applied to a more diverse set of

apps. The next chapter aims to address these limitations by employing another well-known

input generation technique for Android apps.
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Chapter 6: Input Generation for Android Applications Using

Combinatorial Testing

Testing of GUI-driven apps requires utilizing a large number of event sequences. These

sequences are often generated by GUI interactions involving radio-boxes, check-boxes, drop-

down lists, etc. Exhaustive combinatorial testing [20], tries all possible GUI combinations

which is often computationally prohibitive. Although t-way testing produces a smaller

number of tests, it is also less e↵ective than exhaustive testing in terms of both code

coverage and fault detection. For instance, when pairwise testing is used, the parts of code

that depend on the interaction of three or more GUI widgets may remain uncovered.

To illustrate the challenges of combinatorial testing, consider a situation in which the

user clicks on the ItemizedReport button of NewReportActivity and subsequently on the

Next button of ItemizedReportActivity (see Figure 3.1). NewReportActivity contains the

Destination drop-down list with 10 choices, and the Currency check-box with 3 exclusive

choices. Let us also assume two values of 100 and 0 have been identified as proper input

classes for the Amount field. This would result in a total of 10⇥ 3⇥ 2 = 60 unique combi-

nations for NewReportActivity. Similarly, ItemizedReportActivity contains the Total Days

drop-down list with 6 choices, the First Day Meals and Last Day Meals, each of which has

3 inclusive choices, resulting in a total of 6⇥ 23 ⇥ 23 = 384 unique combinations.

Since the widget values selected on one Activity could impact the behavior that is

manifested in subsequent Activities, for GUI system testing, I also need to consider the

interaction of widgets across Activities. Thus, the number of all unique tests for the above

use case is 60 ⇥ 384 = 23, 040. The number of tests would continue to grow if I consider

the other Activities comprising this app. This approach is infeasible in practice, in terms of

both the e↵ort required to execute the tests and the e↵ort required in assessing the results.
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The main goal of the research presented in this chapter is to drastically reduce the

number of tests for achieving a comparable coverage as exhaustive GUI testing. The insight

guiding this research is that not all GUI widgets and actions interact with one another.

To that end, the control- and data-flow dependencies among the GUI widgets, event

handlers, and Activities of an app, can be statically extracted. This can be done without

access to the source code, and rather from the app’s APK file.

An example of GUI widget interaction can be gleaned from Figure 3.1a. Here, I can

see that when Total Days obtains a value of 1, Last Day Meals check-boxes are disabled,

thus indicating a dependency between these two widgets, implying that their combinations

should be tested. On the other hand, if the analysis indicates that Total Days and First Day

Meals are indeed independent of one another, I can safely conclude that their combinations

do not need to be tested. Such dependencies, provide the basis for combinatorial generation

of tests.

To appreciate the significant reductions possible this way, consider the use case of ERS

described earlier. By identifying the dependencies between the input-widgets in the code,

I can only generate max{(6⇥ 23), 23} = 48 tests for the ItemizedReportActivity when the

Next button is clicked. That represents a reduction of 336 combinations compared to the

exhaustive approach. The dependencies imply that the (6⇥ 23) = 48 possible combinations

for Total Days and Last Day Meals are independent of the 23 = 8 possible combinations for

First Day Meals. Since I can use combination of independent widgets in the same test, the

dependent widgets with the biggest number of unique combinations determine the number

of generated tests. Here, the 48 combinations for Total Days and Last Day Meals are merged

with the 8 combinations for First Day Meals to produce 48 widget combinations for the

ItemizedReportActivity. For testing both activities together, only 60⇥ 48 = 2, 880 tests are

produced, representing a reduction of 20, 160 tests compared to the exhaustive approach.

Assuming the static analysis has produced an accurate representation of dependencies,

the reduced set of tests generated using this technique would be as e↵ective as exhaustively

generated tests in terms of their coverage and fault detection power.
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This Chapter presents TrimDroid (TestingReduced GUI CoMbinations for AndDROID),

a fully-automated combinatorial testing approach for Android apps [93]. Given an Android

APK file, TrimDroid employs static analysis techniques that are informed by the rules and

constraints imposed by the Android ADF to identify GUI widgets that interact with one

another.1 Thus, the set of interacting widgets become candidates for t-way combinatorial

testing. By avoiding the generation of tests for widgets that do not interact, TrimDroid is

able to significantly reduce the number of tests. For identifying the interactions, TrimDroid

statically analyzes the control- and data-flow dependencies among the widgets and actions

available on an app. Finally, TrimDroid uses an e�cient constraint solver to enumerate the

test cases covering all possible combinations of GUI widgets and actions.

The evaluation results for TrimDroid show that it achieves the same coverage as exhaus-

tive combinatorial testing, but reduces the number of test cases by 57.86% on average and

by as much as 99.9%. This reduction is important, as it not only reduces the time it takes

to execute the test cases, but also significantly decreases the e↵ort required to inspect the

test results, which is often performed by a human engineer.

6.1 Approach Overview

Figure 6.1 depicts a high-level overview of TrimDroid, which is comprised of four major

components: Model Extraction, Dependency Extraction, Sequence Generation, and Test-

Case Generation. Together, these components produce a significantly smaller number of

test cases than an exhaustive combinatorial technique, yet achieve a comparable coverage.

Similar to our previous work [47], Model Extraction produces two types of models by

statically analyzing an Android app:

• Interface Model (IM ) provides a representation of all the GUI inputs of an app,

including the input widgets and events (actions) for each Activity. TrimDroid uses

the IM to determine how a GUI screen can be exercised in order to generate the tests

1An APK file is a Java bytecode package used to install Android apps.

58



for it.

• Activity Transition Model (ATM ) is a finite state machine representing the event-

driven behavior of an Android app, including the relationships among its Activities

and their event handlers (transitions). Since my research targets GUI testing, I only

extract information that is related to Activities, not other Android components (e.g.,

Services). Figure 4.1 depicts the ATM for the entire ERS app.

These models are represented in Alloy [21], a formal specification language based on first

order relational logic. Alloy specifications can be analyzed using Alloy Analyzer, thereby

allowing us to systematically explore the combinatorial space with the help of a constraint

solver.

In a step parallel to Model Extraction, Dependency Extraction identifies GUI-induced

dependencies among app elements using a combination of control- and data-flow analysis

techniques. Dependency Extraction identifies three types of dependencies (1) when one GUI

widget depends on the value of another widget, e.g., a drop-down menu is disabled, because

a check-box is not selected, (2) when a GUI event handler depends on a widget value, e.g.,

a button handler method uses the selected value of a check-box, and (3) when an Activity

depends on the widget values from a preceding Activity, e.g., the widget values from a

preceding Activity are included in the payload of an Intent starting a new Activity.2 These

dependencies are also represented in the form of Alloy specifications and used by Test-Case

Generation in a later step for pruning the combinatorial space of tests.

Sequence Generation uses the Alloy Analyzer to synthesize sequences of events that

cover the paths in the ATM. Each path in the ATM represents a sequence of events in a

possible use case. A good coverage of the ATM is essential for achieving high code coverage.

TrimDroid covers the paths using the prime path coverage criterion, known to subsume most

other graph coverage criteria [56]. The coverage of a technique t
1

subsumes the coverage of

a technique t
2

if and only if 100% coverage for t
1

implies 100% coverage for t
2

[94].

2All Android components are activated via Intent messages. An Intent message is an event for an action
to be performed along with the data that supports that action.
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Figure 6.1: A high-level overview of TrimDroid

Finally, Test-Case Generation constructs system tests by performing three key steps.

First, it traverses the sequences of events representing the paths produced by Sequence

Generation. Second, for each step in a given sequence, it uses Alloy Analyzer to generate

value combinations for di↵erent GUI widgets. To that end, Test-Case Generation utilizes (1)

the sets of dependent widgets generated by Dependency Extraction and (2) the specification

of each widget in the IM. Lastly, Test-Case Generation merges the value combinations to

create tests that cover the entire sequence of events in each path of the ATM. The generated

tests can then be executed using Robotium [31], an Android test-automation framework.

The next four sections describe the four components of TrimDroid in more detail.

6.2 Dependency Extraction

TrimDroid uses the dependencies among the app elements to determine the combinations

that should be tested, and those that can be safely pruned. To that end, Dependency

Extraction determines three types of dependencies as described further below.
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6.2.1 Widget Dependency

Two widgets w1 and w2 are dependent if combinations of their values a↵ect an app’s control-

or data-flow. Widget combinations that a↵ect the control-flow impact the code coverage of

generated tests; widget combinations that a↵ect the data-flow determine the state of the

system under test. Here are two possible dependencies between w1 and w2 that TrimDroid

detects:

(Case 1) w2’s use depends on the value of w1. This can occur in two situations. First,

a widget w1 is used in a conditional statement, and widget w2 is used along either branch

of that statement. An example of the first case is shown below, where lastBreakFast is

dependent on totalDays:

if((String.valueOf(totalDays.getSelectedItem())).equals("1")) {

lastBreakFast.setEnabled(false);

}

The second situation occurs when the value of widget w1 a↵ects a reference r, and w2’s

use depends on the value of r. An example of this case is shown below, where the use of

totalDays is indirectly dependent on firstBreakfast based on the variable mealsCount:

if(firstBreakFast.isChecked())

mealsCount++;

if(mealsCount > 0)

totalMeals = totalDays.getValue()*3 + mealsCount;

(Case 2) In a conditional statement, widget w1 is used and reference r is defined in its

block, and r is later used in the block of another conditional statement, where w2 is used.
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Algorithm 2: wDep
Input: a 2 A
Output: WD ⇢ P (widgets(a))

1 WD  ;;
2 depPairs  ;;
3 foreach meth 2 a.Methods do
4 foreach w used in a conditional statement stmt

1

of meth do
5 if isAWidget(w) then
6 foreach w

1a used along either branch of stmt
1

do
7 if isAWidget(w1a) then
8 depPairs  depPairs [ {{w

1a, w}};

9 foreach rv defined along either branch of stmt
1

do
10 foreach w

2

2 widgetsWhoseValueA↵ects(rv ) do
11 depPairs  depPairs [ {{w

2

, w}};
12 foreach conditional statement stmt

2

that uses rv do
13 foreach w

1b used along either branch of stmt
2

do
14 if isAWidget(w1b) then
15 depPairs  depPairs [ {{w

1b, w}};

16 WD  merge(depPairs);

17 WD  WD [ isolateRemainingWidgets(WD ,widgets(a));

An example of this case is shown below, where the value combinations of firstBreakfast

and firstLunch impact the value of mealsCount:

if(firstBreakFast.isChecked())

mealsCount++;

if(firstLunch.isChecked())

mealsCount++;

Algorithm 2 defines wDep, which partitions widgets(a) based on the two cases above.

The algorithm takes an Activity a as input and produces WD , a partition for widgets(a)

where WD ⇢ P (widgets(a)).
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For each method, wDep iterates over each reference w that is used in a conditional

statement and determines if w refers to a widget (lines 3–5 of Algorithm 2). To make that

determination, isAWidget(w) traverses the definition-use chain of w to determine if any of

its definitions refers to a widget. At this point, wDep distinguishes the two cases that result

in widget dependencies.

To determine the first situation of Case 1, wDep checks if any other variable w
1a is used

and references a widget (lines 6–7 of Algorithm 2). If so, wDep creates a widget dependency

{w
1a, w} (line 8 of Algorithm 2).

To obtain widget dependencies for Case 2, wDep identifies any variable rv defined after

the conditional statement where w is referenced (line 9 of Algorithm 2). For any rv whose

value is a↵ected by widget w
2

(line 10 of Algorithm 2), wDep creates the widget depen-

dency {w
2

, w} (lines 11 of Algorithm 2). Here, widgetsWhoseValueA↵ects(rv) returns the

widgets used in a conditional statement whose value a↵ects a reference rv by traversing rv’s

definition-use chain.

To identify the second situation of Case 1, wDep further checks if reference rv is used

in a second conditional statement (line 12 of Algorithm 2). If a reference to a widget w
1b is

used along either branch, then wDep creates a widget dependency {w
1b, w} (lines 13–15 of

Algorithm 2).

The widget dependency pairs are then merged (line 16). Two widget dependency pairs

are merged if any of their elements intersect. For instance, two dependency pairs {w↵, w�}

and {w� , w!} are merged, and the resulting set {w↵, w� , w!} is stored in WD . Finally,

widgets that do not interact with any other widget, and thus not part of any dependency

pair set, are each isolated into their own singleton set and added to WD (line 17).

6.2.2 Handler Dependency

To further reduce the number of test cases, Dependency Extraction identifies the dependen-

cies between widgets and event handlers. This kind of dependency occurs when a widget

value is used in an event handler, indicating that all combinations of the widget and the
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Algorithm 3: hDep

Input: a 2 A, e 2 eHandlers(a)
Output: HD ⇢ P (widgets(a))

1 HD  ;;
2 foreach r is used in e do
3 if isAWidget(r) then
4 foreach wd 2 wDep(a) do
5 if r 2 wd then
6 HD  HD [ {wd};
7 break;

event resulting in the invocation of event handler should be tried. As an example of this,

consider the following code snippet, where the value of totalDays is used in the onClick()

method of NextButton in the ItemizedReportActivity of ERS:

public class NextButton implements OnClickListener {

public void onClick(View v) {

totalDaysValue = String.valueOf(totalDays.getSelectedItem());

...

}

}

If an event handler uses multiple widgets, all combinations of those widgets according

to their widget dependencies need to be tested together with the handler’s event.

Thus, the pruning of irrelevant test combinations is achieved through determining the

widgets that are not used by event handlers. For example, the onClick() handler for the

Reset button of ItemizedReportActivity clears the screen regardless of the values of the

widgets. Hence, no value combinations of the widgets on ItemizedReportActivity need to be

tested with the Reset button.

Algorithm 3 defines hDep, which partitions widgets(a) into a set based on handler
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dependencies. The input to the algorithm is an activity a and an event handler e. The

output of the algorithm is HD , a partition of widgets(a) where HD ⇢ P (widgets(a)).

6.2.3 Activity Dependency

The third type of dependency involves the widget values in one Activity that may impact

the behavior of another Activity. If so, we need to test all combinations of those widgets in

a first Activity impacting a second activity with all combinations of widgets in the second

Activity. Since Activities in Android communicate using Intent messages, I say the value

of a widget w in an Activity ai may impact another Activity aj , if it a↵ects the payload of

an Intent that is sent from ai to aj . For example, as shown in the following code snippet,

NewReportActivity sends an Intent that starts the ItemizedReportActivity and passes the

selected value for currencyRB in the payload of the Intent:

public class ItemizedReportButton implements OnClickListener {

public void onClick(View v) {

int selectedId = currencyRB.getCheckedRadioButtonId();

currencyRB = (RadioButton)findViewById(selectedId);

String currency = currencyRB.getText();

Intent intent = new Intent(this,ItemizedReportActivity.class);

intent.putExtra("currency", currency);

startActivity(intent);

}

}

On the other hand, from the above code snippet, we can see that the value of Destination

drop-down menu from NewReportActivity does not impact the Intent sent to ItemizedRepor-

tActivity. Thus, there is no need to test all combinations of widgets on NewReportActivity

65



Algorithm 4: aDep

Input: ai, aj 2 A, e 2 eHandlers(a)
Output: boolean
/* get the intent sent from ai to aj in e */

1 I  ai.getIntent(e, aj)

2 foreach payload 2 I.IntentExtras() do
3 refs getA↵ectedReferences(payload)

4 foreach r 2 refs do
5 if isAWidget(r) then
6 return true;

7 return false;

with the widgets on ItemizedReportActivity. This provides us with yet another opportunity

to prune the tests.

Algorithm 4 defines aDep, which determines whether an Activity has a dependency to

widget values selected in a preceding Activity. The algorithm takes two Activities ai and

aj , corresponding to the source and destination of an Intent, an event handler e, realizing

the transition between the two activities, and returns true if an Activity dependency exists

and false otherwise.

6.3 Sequence Generation

In GUI system testing, a test is comprised of two parts: sequence of events (e.g., button

clicks) and selection of input values (e.g., drop-down menu choices). This section describes

how TrimDroid produces sequences of events that represent possible use cases for the system.

The next section provides the details of how the dependencies are used to determine the

combination of input values for each sequence of events.

TrimDroid’s approach for the generation of event sequences is based on using a formal

language to describe the ATM as well as the coverage criteria for traversing it. TrimDroid

then uses an automated constraint solver to exhaustively synthesize the space of possible

paths. Each path in the ATM represents a sequence of event handlers triggered in a possible
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use case for the system. These paths can be generated using any given coverage criteria

(e.g., node coverage, edge-pair coverage). TrimDroid relies on prime path coverage as it

has been shown to subsume most other graph coverage criteria [56]. A coverage criterion

↵ subsumes coverage criterion �, if and only if 100% ↵ coverage implies 100% � coverage

[94].

TrimDroid represents an ATM in the form of an Alloy model [21]. Alloy is a formal

modeling language with a comprehensible syntax that stems from notations ubiquitous in

object orientation, and semantics based on the first-order relational logic [21], making it an

appropriate language for declarative specification of both application models and properties

to be verified. Listing 6.1 shows (part of) the Alloy specification of ATM, specifically the

signatures for activity, simplePath and primePath. Each Activity has a set of event

handlers (eHandlers), and a field (isStart), indicating whether it is a starting activity

or not. Lines 4–11 present the simplePath signature along with its facts that specify the

elements involved in, and the semantics of, a simple path, respectively. A simple path is a

sequence of transitions from the starting activity (i.e., a
0

), where no activity node appears

more than once, except possibly when the first and last nodes are the same. A prime path

then, as specified in lines 12–14, is a simple path that does not appear as a proper sub-

path of any other simple path. An example of a prime path in the ATM of Figure 4.1 is:

a
0

e1�! a
2

e4�! a
3

e5�! a
4

.

A test path satisfies prime path coverage if and only if it starts from a starting node and

ends in a final node while covering a prime path in a graph [56]. The prime-path criterion

limits visits of each loop to one, since simple paths have no internal loops. It also limits

the number of generated paths, as it only contains paths that are not sub-path of any other

path. The ATM of the running example (see Figure 4.1) thus includes three prime paths,

automatically generated using Alloy Analyzer.
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1 abstract sig activity{
2 isStart: one IsStart, // indicator of a starting activity
3 eHandlers: set activity } // activity’s event handlers
4 sig simplePath{
5 first: one activity, // the starting activity
6 transitions: activity�>activity }{ // sequence of transitions
7 first.isStart = Yes
8 first in transitions.activty
9 all x: activity | lone x.transitions

10 transitions in eHandlers
11 no x: transitions.activity| x !in first.∗(transitions) }
12 sig primePath extends simplePath{ }{ // an activity with no outgoing transition
13 no finalActivity[transitions].eHandlers }
14 fun finalActivity[r: activity�>activity] : one activity {
15 r[activity]�r.activity }

Listing 6.1: Specifications for ATM in Alloy.

6.4 Test Generation

Each system test st 2 ST is comprised of a sequence of activity tests: st = hata0 , ata1 , ..., atani.

An activity test consists of widget value combinations and an event that exercises a partic-

ular Activity and results in a transition, either to itself or to another Activity, according to

ATM.

TrimDroid generates the system tests in two steps. First, it generates the activity tests

using the widget value combinations and events available on each Activity. Afterwards,

it combines activity tests into a sequence that represents a GUI system test to cover a

particular prime path.

To illustrate this process, I use the execution scenario for the ERS app shown in Fig-

ure 3.1. The ATM for ERS (recall Figure 4.1) shows its five activities (denoted as a) and

their transitions (denoted as e). The input classes for widgets on NewReportActivity are

captured in Figure 6.2a, where ic(w) indicates the possible values for widget w. Figure 6.2b

captures the same information for ItemizedReportActivity. In addition, the widget de-

pendencies (recall Algorithm 2), handler dependencies (recall Algorithm 3), and activity
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NewReportActivity
# ic(dest) ic(amount) ic(cur)
1 Rome 100 Euro
2 London 0 Dollar
3 Rome Pound
. .
. .
10 Berlin

(a) input classes of widgets in NewReportActivity.

ItemizedReportActivity
# ic(totalDays) ic(fbf) ic(fl) ic(fd) ic(lbf) ic(ll) ic(ld)
1 1 true true true true true true
2 2 false false false false false false
3 3
. .
. .
6 6

(b) input classes of widgets in ItemizedReportActivity.

Dependencies
wDep(a

0

) = {{dest, cur}, {amount}}
wDep(a

2

) = {{totalDays, lbf, ll, ld},
{fbf}, {fl}, {fd}}

hDep(a
0

, e
1

) = {{dest, cur}, {amount}}
hDep(a

2

, e
3

) = {}
aDep(a

0

, e
1

, a
2

) = true
aDep(a

2

, e
3

, a
2

) = false

(c) dependency sets for
NewReportActivity and
ItemizedReportActivity.

# WC
(dest,cur) WC

(amount)

1 Rome, Euro 100
2 Rome, Dollar 0
3 Rome, Pound
4 London, Euro
5 London, Dollar
. .
. .
30 Berlin, Pound

(d) widget combinations for dependent
widgets in a0 with respect to e1.

# WC
hDep(a0,e1)

1 Rome, Euro, 100
2 Rome, Dollar, 0
3 Rome, Pound, 100
4 London, Euro, 0
5 London, Dollar, 100
. .
. .
30 Berlin, Pound, 100

(e) final set of combinations for
Activity a0 (NewReportActivity)
in the context of event handler e1.

# AT
hDep(a0,e1)

1 {{Rome , Euro, 100}, ItemizedReport}
2 {{Rome , Dollar, 0}, ItemizedReport}
3 {{Rome , Pound, 100}, ItemizedReport}
4 {{London , Euro, 0}, ItemizedReport}
5 {{London , Dollar, 100}, ItemizedReport}
. .
. .
30 {{Berlin, Pound, 0}, ItemizedReport}

(f) generation of Activity Tests for a0 with respect to e1.

Figure 6.2: An example to illustrate TrimDroid’s generation of tests.
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dependencies (recall Algorithm 4) are all denoted in Figure 6.2c.

6.4.1 Activity Test Generation

TrimDroid generate tests for an Activity a in three steps:

(Step 1) For each event e 2 eHandlers(a), TrimDroid uses Alloy Analyzer to enu-

merate over all combinations of widget values in a that are dependent on e. To determine

those combinations, TrimDroid utilizes the set of handler dependencies. Let h 2 hDep(a, e)

represent a set of dependent widgets with respect to an event handler e. TrimDroid calcu-

lates WCh, i.e., the widget combinations for h, using the Alloy Analyzer, as the Cartesian

product of all the input classes for its widgets:

WCh ⌘
|h|O
j=1

ic(wj), where wj 2 h

For instance, in ERS as shown in Figure 6.2c, we can see that hDep(a
0

, e
1

) is comprised

of two sets: {dest, cur} and {amount}. Each one of these two sets indicates a widget

dependency among its members, as well as a handler dependency with respect to e
1

(i.e.,

"ItemizedReport.onClick"). We can determine the combination of their elements as

shown in Figure 6.2d.

(Step 2) To generate tests for Activity a with respect to event e, every widget w 2 h,

where h 2 hDep(a, e), must be assigned a value. To achieve this, all widget combinations,

i.e., all instances of WCh, are combined into one final set. However, since these widgets are

independent from one another, I simply need to merge them, rather than calculate their

cross-product, as follows:

WChDep(a,e) ⌘ merge(H), where H = {h|h 2 hDep(a, e)}

Definition 3 (Merge). Given a set of sets S, let
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m = 8s 2 S,max(|s|), I merge all members of S into C defined as follows:

C = {ci|ci ⌘
[
8s2S

x
(i mod |s|),

where 0  i  (m� 1) ^ xi 2 s}

Thus, considering the widget combination in Figure 6.2d, I can calculate the final set

of combinations for Activity a
0

(NewReportActivity) in the context of event handler e
1

(ItemizedReport.onClick) as shown in Figure 6.2e.

As shown in Figure 6.2a, |ic(dest)| = 10, |ic(cur)| = 3 and |ic(amount)| = 2. Thus,

merging WC{dest,cur} with WC{amount} produces 30 unique possible combinations. Note

that since WC{amount} only has 2 combinations, when I merge it with WC{dest,cur}, which

has 30 combinations, I simply need to ensure all of its unique values are included in the

generated tests. In this case, I chose values 100 and 0 for the first two combinations and

simply chose 100 for all the remaining combinations. Since I know that amount does not

interact with the other widgets, I just need to ensure all of its unique values are included in

the combinations. However, I still need to include a value for amount for all combinations,

as the event handler depends on it.

(Step 3) Given all widget value combinations for an Activity a in relation to an event

handler e 2 eHandlers(a), I can now construct all of the corresponding activity tests

AThDep(a,e). To that end, I simply augment each element of the set WChDep(a,e) with the

action corresponding to the triggering of event handler, i.e., e, as follows:

AThDep(a,e) ⌘WChDep(a,e)

O
e

For instance, in the running example, the set of test combinations for Activity a
0

(NewReportActivity) in relation to e
1

(ItemizedReport.onClick) is represented in Fig-

ure 6.2f. On the other hand, to test Activity a
2

(ItemizedReportActivity) in relation to
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e
3

(Reset.onClick) no value combinations are needed, as WChDep(a2,e3) = {}.

Tests for an Activity a can be calculated as the union of all generated tests in relation

to its event handlers:

ATa ⌘
[

8e2eHandlers(a)

AThDep(a,e)

This section illustrated two ways in which TrimDroid reduces the number of generated

tests. First, since TrimDroid has determined that {dest, cur} is independent of {amount},

instead of calculating all their combinations by taking their cross-product, it simply merges

the two sets of combinations (recall Definition 3). Second, since TrimDroid detects there

are no dependencies between the “Reset” button’s event handler and any of the widgets on

ItemizedReportActivity, it does not generate tests involving any of the widget combina-

tions for that particular event.

6.4.2 System Test Generation

To generate the GUI system tests ST for a given path ai
ep�! aj

eq�! ak in an ATM, I

first generate the activity tests for each transition (event handler) in the manner de-

scribed in the previous section. Next, if ai and aj are dependent with respect to ep (i.e.,

aDep(ai, ep, aj) = true), I enumerate all combinations of AThDep(ai,ep) and AThDep(aj ,eq) by

calculating their cross-product:

ST
ai

ep�!aj
eq�! ⌘ AThDep(ai,ep)

O
AThDep(aj ,eq)

Otherwise, ai and aj are independent with respect to ep, in which case I apply the merge

operator, resulting in a reduction of generated tests:

ST
ai

ep�!aj
eq�! ⌘ merge(AThDep(ai,ep), AThDep(aj ,eq))
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# ST
a0

e1�!a2
e3�!a2

1 h{{Rome,Euro, 100}, ItemizedReport}, {Reset}i
2 h{{Rome,Dollar, 100}, ItemizedReport}, {Reset}i
3 h{{Rome, Pound, 100}, ItemizedReport}, {Reset}i
4 h{{London,Euro, 100}, ItemizedReport}, {Reset}i
5 h{{London,Dollar, 100}, ItemizedReport}, {Reset}i
. .
. .
30 h{{Berlin, Pound, 100}, ItemizedReport}, {Reset}i

Figure 6.3: System tests for the path a
0

e1�! a
2

e3�! a
2

in ERS

Note that for transition aj
eq�! ak that ends with a final Activity ak (e.g., a

4

in Fig-

ure 4.1), ak has no activity tests as it has no outgoing transition, and in turn, contributes

no combinations to the system tests.

To illustrate the process, consider a situation in ERS where the goal is to generate a

system test for the path a
0

e1�! a
2

e3�! a
2

in Figure 4.1. There is an activity dependency

between a
0

and a
2

with respect to e
1

, i.e., aDep(a
0

, e
1

, a
2

) = true as shown in Figure 6.2c.

I thus create all combinations of activity tests for both activities in that transition to build

the system tests ST , as shown in Figure 6.3.

My approach produces a total of 30 system tests for this path, each indicated as a

sequence in the set ST . Following the generation of system tests, Test-Case Generation

transforms each test case to proper Robotium format for execution [31].

6.5 Evaluation

To evaluate my approach, I measure TrimDroid’s ability to reduce test suites, while main-

taining e↵ectiveness. To assess e↵ectiveness, I compare TrimDroid’s code coverage and

execution time against exhaustive combinatorial testing as well as prior Android testing

techniques. Specifically, I investigate the following three research questions:
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• RQ1: How do TrimDroid, exhaustive GUI combinatorial, and pairwise testing com-

pare with respect to the size of generated test suites and their execution time?

• RQ2: How do TrimDroid, exhaustive GUI combinatorial, and pairwise testing com-

pare with respect to code coverage?

• RQ3: How e↵ective is TrimDroid compared to prior Android test automation tech-

niques?

For investigating these questions, I use several real-world apps from an open-source

repository, called F-Droid [89]. Each selected app satisfies the following criteria: (1) its

source code is available; and (2) it uses only standard GUI widgets of the Android Applica-

tion Development Framework, e.g., it is a native mobile app, rather than a web mobile app.

The first criterion ensures that I can properly measure code coverage; the second criterion

is due to the limitation of TrimDroid’s static program analysis that only supports standard

Android libraries and widgets. These apps are selected from di↵erent categories, such as

productivity, entertainment, and tools.

Table 6.1 lists these apps. For each App, Table 6.1 depicts its size as measured using lines

of code (LOC ). I compare TrimDroid’s coverage against exhaustive combinatorial testing,

since its coverage subsumes the coverage of all other combinatorial testing techniques [20].

I used prime path coverage criterion (recall Section 6.3) for both exhaustive testing and

TrimDroid to allow for a fair comparison.

I also compare TrimDroid’s coverage with M[agi]C [19]—a pairwise GUI combinatorial

testing technique that has been applied on Android apps, among others. M[agi]C requires

the user to manually construct two types of models for the software under test: a model

identifying the input classes for all the widgets, and a model that captures the transitions

between the screens. In fact, the former is equivalent to TrimDroid’s ATM, and the latter to

its IM. To ensure a fair comparison, I manually transformed the ATM and IM models that

TrimDroid generated automatically for each app into models that can be used by M[agi]C.

M[agi]C uses a post-optimization algorithm that reduces the number of generated test cases
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after executing them once. This is achieved by removing the input combinations for paths

that share events. Finally, I did not use the optimization option of M[agi]C to ensure the

generated test cases achieve the maximum code coverage.

Although assessing TrimDroid’s fault-detection ability is a primary concern of ours,

currently there is no organized set of open-source Android apps with known defects and

fault reports that can be used to evaluate TrimDroid’s fault detection ability. Alternatively,

mutation testing can be used, where the mutants replicate actual faults. Unfortunately,

there is no support for mutation testing of Android apps to this date. Particularly, no fault

model exists for Android apps, preventing production of mutants that can substitute for

real faults. One of the authors has recently begun to investigate the challenges of mutation

testing for Android applications [95, 96].

All of my experiments were conducted on a machine with 16GB memory and a quad core

2.3GHz processor. I used Android Virtual Devices (Android emulators) with 2GB RAM,

1GB SD Card, and the latest version of Android that is compatible with the app, except

for Dynodroid, whose in-box emulator uses Android 2.3. A fresh emulator was created

for each app along with only default system applications. During the experiments, I used

EMMA [88] to monitor code coverage. Specifically, I measured line coverage by running all

of the generated test cases on each app. TrimDroid, subject apps, and my research artifacts

are publicly available [97].

6.5.1 Test-Suite Reduction

To answer RQ1, I compare the test suites generated by TrimDroid, exhaustive combinatorial

testing and M[agi]C in terms of size and execution time. For each App, Table 6.1 shows the

size and execution time of test cases for both techniques. The table also shows the reduction

of test cases compared to exhaustive combinatorial testing in the right-most column.

I observe that in most cases TrimDroid is able to significantly reduce the number of

generated tests compared to exhaustive testing. TrimDroid, on average, generates 57.86%

fewer tests compared to exhaustive testing. The smaller number of tests that would need
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to be inspected, especially for human engineers, would result in significant savings in time

and e↵ort. By doing so, TrimDroid reduces the time needed to execute the tests by 57.46%

on average. The savings are more pronounced in certain cases. For PasswordGenerator,

TrimDroid eliminates more than 479,000 tests, which is a reduction in tests by multiple

orders of magnitude. Furthermore, exhaustive testing crashes for PasswordGenerator (as

denoted by the dash in Table 6.1) before generating all the app’s test cases, as the massive

size of its generated test suite depletes the machine’s memory.

On average, TrimDroid generates 2 times more test cases than M[agi]C. However, as de-

scribed later, the tests generated by TrimDroid achieve a substantially higher code coverage.

Recall that while TrimDroid adopts t-way testing, where t is determined according to the

dependencies extracted through program analysis, M[agi]C uses a fixed t for all apps, i.e.,

two. Apps for which TrimDroid has produced more tests than M[agi]C, harbor complex de-

pendencies involving three or more widgets. Apps for which TrimDroid has produced fewer

tests are lacking dependencies among their widgets, indicating that the pairwise strategy is

producing unnecessary tests.

6.5.2 E↵ectiveness - Exhaustive and Pairwise

To answer RQ2, I compare the statement coverage resulting from the execution of test suites

generated by TrimDroid, M[agi]C and exhaustive testing. The results are summarized in

Figure 6.4. Each application is identified along the horizontal axis, while the vertical axis

shows the statement coverage achieved by TrimDroid, M[agi]C and exhaustive testing. In

all cases, TrimDroid achieves at least the same statement coverage as exhaustive testing

and the same or better statement coverage than M[agi]C. For the PasswordGenerator app,

exhaustive testing’s failure to complete is depicted as 0% coverage, since the inability to

generate the test suite is e↵ectively 0% statement coverage.

Note that some subject apps (e.g., autoanswer and httpmon) heavily use Service compo-

nents. Unlike Activity components, Service components are responsible for handling events

initiated by the system rather than the GUI. For example, autoanswer provides Services
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that perform a task based on a set of predefined preferences when a phone call is received.

Given that TrimDroid’s focus is on GUI testing, it is no surprise that it does not achieve

good coverage for these types of apps. In fact, when I compare against the highest possible

coverage for a GUI-based testing approach in such apps, namely exhaustive GUI testing,

we observe that TrimDroid achieves the same coverage.

Thus, in comparison to exhaustive testing, the results show that, although TrimDroid

significantly reduces the number of tests, and subsequently their execution time, the result-

ing code coverage is not degraded at all. In principle, however, due to the limitations of

static analysis (e.g., unsupported Android libraries), it is possible for TrimDroid to achieve

less coverage than exhaustive testing, even though my experiments have not yet revealed

such instances.

On average, TrimDroid achieves 13% more statement coverage than M[agi]C. This result

supports the e↵ectiveness of using the proposed dependency-based heuristics for reducing

the number of tests, rather than fixed strategies, such as pairwise testing, that compromise

on coverage.

6.5.3 E↵ectiveness - Other Android Testing

A meaningful comparison of Android test automation techniques is generally di�cult, as

each has its own unique objective. My objective in TrimDroid has been to reduce the number

of tests in combinatorial GUI testing of Android apps without compromising on coverage.

On the other hand, several prior techniques have aimed to maximize code coverage through

search-based techniques, regardless of the number of tests it takes to do so, which could

pose a significant burden when the assessment of whether the tests have passed or failed

entails manual e↵ort. Nevertheless, I compare against the code coverage and execution time

achieved by four prior techniques: Monkey [37], Dynodroid [8], M[agi]C [19] and my prior

work, EvoDroid [47].

Android Monkey, a widely used testing technique developed by Google, represents the

state-of-practice and operates by sending random inputs and events to the app under test.
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Figure 6.4: Statement coverage comparison

Dynodroid uses several heuristics to improve on the number of inputs/events used by Mon-

key, and thus achieves similar coverage with fewer generated events. As both Monkey and

Dynodroid are based on pseudo-random testing, using the same low number of events that

are generated by TrimDroid may not be a fair comparison. To address that, I ran both Dyn-

odroid and Monkey with 2,000 input events, which is the maximum input size for Dynodroid

[8].

EvoDroid is a system testing technique that implements a novel evolutionary testing

algorithm. EvoDroid’s fitness is designed to maximize the statement coverage through

exhaustively exploring the search space for event sequences. Note that EvoDroid is a search-

based testing technique; thus, using the same low number of events that are generated by

TrimDroid is not adequate for the evolutionary search to be e↵ective. On the other hand,

the main goal of TrimDroid is to generate a limited number of tests, which is crucial when

the evaluation of tests (i.e., oracle) involves manual e↵ort. To summarize, EvoDroid is

intended to exhaustively test event sequences; TrimDroid is designed to comprehensively
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test the input space of GUI widgets, using a limited number of event sequences identified

by utilizing prime paths. Consequently, a fair one-to-one comparison of the two techniques

might not be possible. Having said that, I ran EvoDroid for ten evolutionary generations on

all apps, which is the same setup as that used in [47], and compare the resulting statement

coverage.

Few other tools exist, but I were unable to include them in my experiments, as I could

not properly run them after significant consultation with their developers. A3E [41] aims

to discover the Activities comprising an app by covering a model similar to the notion of

ATM. I were unable to run A3E on any of my apps using the virtual machine provided

by its developers. A3E gets stuck when trying to start Troyd [98]—an integration testing

framework for Android utilized by the tool.

I also attempted to run SwiftHand [5]. It uses (1) machine learning to infer a model of

the app during testing, (2) the inferred model to generate user inputs that visit unexplored

states of the app, and (3) the execution of the app on the generated inputs to refine the

model. SwiftHand exits with an exception failing to locate the main Activity of the app.

Based on my analysis, the issue may reside with the custom made instrumentation of the

app under test. My attempts to resolve the issues with the help of the tool developers have

been unsuccessful to date.

The statement coverage and execution time for all five testing techniques are summarized

in Table 6.2. Dynodroid cannot run on TippyTipper and DoF Calculator—denoted by a

dash (-) in Table 6.2—since the newer Android APIs utilized by those apps are not supported

by Dynodroid. I could not run the current version of EvoDroid on DivideAndConquer due

to use of unsupported APIs.

The results show that TrimDroid is able to achieve higher code coverage in most cases.

Note that TrimDroid is targeted at GUI testing, and therefore only generates GUI events,

while Dynodroid and EvoDroid support both system events as well as GUI events. As

a result, for some apps, TrimDroid cannot achieve the same coverage as Dynodroid and

EvoDroid. Nevertheless, TrimDroid’s coverage, on average, outperforms Monkey by 27.36%,
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Dynodroid by 16.33%, M[agi]C by 14%, and EvoDroid by 4%.

In addition, TrimDroid runs 134 times faster than Dynodroid, 78 times faster than Evo-

Droid, 1.5 times slower than M[agi]C, and about 3 times slower than Monkey. TrimDroid’s

slower performance in comparison to M[agi]C and Monkey can be attributed to the analysis

performed for extracting the models as well as the application of heuristics for reducing the

number of tests.

6.5.4 The Curious Case of Duplicate Test-cases

Although Alloy constraint solver employs a heuristic algorithm to eliminate as many isomor-

phic solutions as possible, removing isomorphic solutions is essentially an NP-hard problem

[21]. As a result, Alloy does not guarantee that the produced solution set is minimal

and does not contain any duplicates [99]. To deal with this issue TrimDroid employs a

mechanism to filter-out the redundant test-cases by identifying the duplicate paths and

combination of values from the SAT solver results.

The statement coverage and execution time for test-cases that contain no duplicates

are summarized in Table 6.3. The results illustrate that although removing the duplicates

will result into less number of test cases for both exhaustive approach and TrimDroid, the

average reduction in the number of test cases remains almost the same.

6.6 Conclusion

This chapter presented a fully-automated approach for generating GUI system tests for

Android apps using a novel combinatorial technique. This approach employs program anal-

ysis to partition the GUI input widgets into sets of dependent widgets. Thus, the GUI

widgets with dependencies become candidates for combinatorial testing. Then, an e�cient

constraint solver is used to enumerate the test cases covering all possible combinations of

dependent GUI widgets. The experimental evaluation shows that TrimDroid is able to

significantly reduce the number of tests in comparison to exhaustive combinatorial testing,

without any degradation in code coverage.
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Recall from Section 6.4 that the current implementation of TrimDroid uses a predefined

set of input classes for unbounded widgets. The next chapter, provides the details for an

extension of TrimDroid that uses symbolic evaluation to systematically derive the input

classes for those widgets.
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Chapter 7: Systematic Input Partitioning

It can be said that the main goal of test input generation is to select the best candidates

from the domain of all possible values for an input parameter. As shown in the previous

chapter, if the input domain for a parameter is bounded and contains a relatively small

number of values, all values can be considered as candidates for test combinations. But in

the case of unbounded domains, such as real numbers or, even very large bounded domains,

such as integer numbers, the input space is quite large. Hence, considering all the values

in those domains is technically impossible in practice. Traditionally, combinatorial testing

approaches assume that the input classes for each input parameter are defined in either

the software specification or manually by the human tester [15]. In practice, most Android

apps lack such detailed specification. On the other hand, manually defined domains are

both imprecise and hard to maintain as they have to be kept updated with any changes in

the app itself.

Several techniques have been proposed to target the problem of input domain partition-

ing. Equivalence partitioning breaks down the input domain into equivalent partitions by

either using the software specifications or certain heuristics [56]. Boundary value analysis

only considers the boundary values as test inputs [100]. Finally, random sampling proposes

selecting random values based on a statistical distribution model for each domain [4].

Input space partitioning suggests that each input domain can be partitioned into classes

that are assumed to contain equally useful values from a testing perspective. As a result, a

smaller collection of values that produces the same results as the whole domain would be

just as good. For example, in the ERS app, the input domain for amount can be broken

down into two classes, where amount > 500 and amount < 500. In this case, only two

values (i.e., 1 and 501) are needed to represent the whole input domain. Hence, selecting
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values that are representative of each partition of the input domain results in more relevant

combinations for testing the software.

As mentioned, input domains are broken down into classes using some sort of information

about a program, e.g., documented specifications on features of the code, or the knowledge

of a programmer about the code. However, to the best of my knowledge, no prior research

has explored a fully automated program analysis approach to extract the input classes

for the input parameters of a program. This is mainly due to the known ine�ciencies of

program analysis techniques, such as symbolic execution especially in dealing with real-

world programs [4].

Mahmood et al. [47] show that Android applications can be sliced into separate segments

each of which can be used a chromosome for evolutionary testing of Android apps. The

same concept of segments, can be used to slice the app into smaller parts that are targeted

by program analysis. In this case, the required program analysis is limited to an Activity

and is not context sensitive. As a result, there would be no need to analyze the external

Android libraries and the program analysis would be able to support real apps without any

additional e↵ort.

This chapter presents a light weight program analysis technique that is used along with

an SMT solver to produce the input classes for unbounded input widgets automatically.

The extracted input classes are added to the IM and then used by TrimDroid to generate

the test inputs. The experiments corroborate that this approach improves the statement

coverage for TrimDroid. Hence, it can be used as a viable substitute for symbolic execution

for testing Android application.

7.1 Approach

Figure 7.1 depicts a high-level overview of the process for extracting the input classes. This

process is comprised of three major step. First is to identify all unbounded data widgets
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Figure 7.1: High-level overview of input class extraction.

using the app’s IM and perform data-flow analysis to extract the definition-use chain 1 of

each widget. Next, the constraints around all variables in the widget’s definition-use chain

are collected. Finally, an e�cient SMT solver it used to enumerate the result values for

each constraint. Theses values are used to define the input classes in TrimDroid.

In order to determine the input classes for unbounded data widgets, I first use the

IM to identify such widgets in each activity of the app. This is followed by performing

data-flow analysis to explore the definition-use chain of each widget. The definition-use

chain information of each widget is stored in appropriate data structures in a way that each

reference, r, can be easily associated to the widget it uses.

An example of this is shown in Listing 7.1, where R.id.amount represents the id for the

amount text-box on NewReportActivity. In this case, the data-flow analysis will determine

the set of references that use the amount widget as {amount, amountValue, total} :

The next step is to explore the code and extract the constraints for every unbounded

widget of each activity. Algorithm 5 defines the process of extracting the constraints for

references to unbounded widgets. The algorithm takes an Activity a as input and produces

pairs(w,C), a map of unbounded widgets w to a set of constraints C.

For each method, the constraint extraction algorithm iterates over each reference r

that is used in a conditional statement and determines if r refers to a widget (lines 2–4 of

1Definition-Use Chain is a data structure consisting of a definition of a variable and all the uses reachable
from that definition
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public void onClick (View v) {

...

EditText amount = (EditText)findViewById(R.id.amountId);

int amountValue = Integer.parseInt(amount.getText().toString());

if (amountValue <= 500) {

...

int total = amountValue + totalDays * dailyAllowance;

}

...

}

Listing 7.1: sample code code snippet from NewReportActivity in ERS.

Algorithm 5). To make that determination, isAWidget(r) traverses the definition-use chain

of r to determine if any of its definitions refers to a widget. At this point, the widget id

w associated with the reference r is acquired (line 5). Finally, the algorithm uses the IM

to check if widget w is an unbounded widget (recall from Chapter 4 that the IM extracts

and stores the information about every widget of each activity such as name, type, and etc.

from the layout files). In that case the constraint of the conditional statement c is added

to the map of constraints associated with w i.e., pairs(w,C) (lines 6–8 of Algorithm 5).

For the the sample code in Listing 7.1, the constraint extraction algorithm iterates

over all conditional statements of onClick() method. Then, it tries to associate each

reference used in conditional statements (i.e., amountValue ) to an unbounded widget, i.e.,

R.id.amoundId. Finally, the constraint for the widget is added to the result map i.e.,

{R.id.amoundId, { amountValue <= 500 } }.

The data-flow analysis and the constraints analysis components are implemented on

top of the Soot framework [85]. Although Soot framework was initially created as a Java

compiler test-bed it has advanced to support analysis of Java bytecode. Furthermore,

Soot has been integrated with the Dexpler transformer [86] to translate Android’s dalvik

bytecode into the Soot’s intermediate representation language, called Jimple. Currently,

Soot supports major library classes of Android (such as Intent, Context, Application and

88



Algorithm 5: Constraint Extraction
Input: a 2 A
Output: pairs(w,C) where w 2 widgets(a) and C ⇢ constraints(a))

1 pairs(w,C) ;;
2 foreach meth 2 a.Methods do
3 foreach r used in a conditional statement of meth with constraint c do
4 if isAWidget(r) then
5 w  getWidget(r) ;

6 if isUnbounded(w) then
7 pairs(w ,C ) pairs(w ,C [ c);

8 break;

so on) and creates a phantom class2 for each reference that it cannot resolve.

Finally, I use an o↵-the-shelf SMT solver, Z3 [57], to compute the test inputs for satis-

fiable constraints for each widget. For each unbounded widget, the generated input classes

are added to the IM to be used by TrimDroid. These values are transformed to Alloy

representations in the same fashion as described in Chapter 6 and are used by TrimDroid

for generating the test combinations.

The main di↵erence between this approach and symbolic execution is that here the

constraints are considered individually, whereas in symbolic execution each constraint is

a part of a path-condition. As a result, in this approach the SMT solver only deals with

simple individual constraints instead of complex path-conditions. Accordingly, the acquired

values from each constraint are used as input classes for widgets in combinatorial testing.

To illustrate this approach, consider the Java program shown in Figure 2.4a, where S0,

S1, S2, S3, and S4 denote statements that can be invoked in di↵erent paths of the program.

As explained in Chapter 2, symbolic execution solves all the paths in the tree resulting in

the pairs shown it Table 7.2a.

Although in theory symbolic execution can produce the minimal set of values for ex-

ploring all execution paths of a program, as mentioned in Chapter 5 symbolic execution

of real-world programs is not always possible. Recall from Chapter 5 that current SMT

2Phantom references are the weakest level of reference in Java [101].
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Path Condition Generated Value
!(X > 0) X = 0
X > 0 && Y == 5 X = 1, Y = 5
!(X > 0 && Y == 5) X = 1, Y = 6
X > 3 && Y < 10 X = 4, Y = 11
!(X > 3 && Y < 10) X = 3, Y = 10

(a)

Individual Generated
Constraint Value
x > 0 X = 1, X = �1
y == 5 Y = 5, Y = 6
x > 3 X = 4, X = 3
y > 10 Y = 11, Y = 10

(b)

Figure 7.2: Values for X and Y generated by (a) symbolic execution, (b) constraint solv-
ing and combinatorial testing

solvers fail to solve complex path-conditions. Moreover, symbolic execution relies on a

more complicated inter-procedural program analysis for constructing the path-conditions.

As a result, developing a symbolic execution approach that can be applied to a large set of

Android apps would require a lot of engineering e↵ort to model the Android libraries that

the apps depend on.

To address the above issues, we can solve the constraints individually (as shown in

Figure 7.2b) to partition the input domains of X and Y independent of each other. In that

case we end up with four di↵erent values for IC(X) and four di↵erent values for IC(Y ).

The cross-product of the IC(X) and IC(Y ) will generate 16 combination of values which

result in the execution of same branches. Although, this approach results in more test

inputs for exercising all execution paths of an app compared to symbolic execution (i.e., 16

instead of 5), it uses a more e�cient and scalable program analysis technique than symbolic

execution.

7.2 Evaluation

To assess e↵ectiveness of using the extracted input classes for unbounded data widgets,

I measure improvements in TrimDroid’s statement coverage as well as the overhead of

performing the additional analysis. Specifically, I investigate the following two research

questions:
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• RQ1: How do manually defined and automatically extracted input classes a↵ect

TrimDroid’s statement coverage?

• RQ2: How does extracting the input classes automatically a↵ect the performance of

TrimDroid?

For investigating the above research questions, I use the same real-world apps from F-

Droid [89] that are used to evaluate TrimDroid in Chapter 6. All of my experiments were

conducted using the same setup as the experiments in Chapter 6. A fresh emulator was

created for each app along with only default system applications. I used EMMA [88] to

monitor statement coverage for this experiment.

7.2.1 E↵ect on Statement Coverage

To investigate RQ1, I compare TrimDroid’s coverage in two cases: (1) using two manually

defined values for unbounded widgets (i.e., 0, 1000) and (2) using automatically extracted

input classes.

The results show that in apps where conditional statements are defined on top of un-

bounded GUI widgets (i.e., Tipster and DoF Calculator), the statement code coverage is

improved. At the same time, the results support the findings in the empirical study in

Chapter 5 that many Android apps at the moment do not have complicated constraints on

the GUI widgets. Further study of these apps showed that even in apps that have some

conditions on the input values, the conditional blocks are relatively small compared to the

rest of the source-code in terms of lines of code (only few lines that are in the block). Hence,

the added coverage is not that significant. In future, as Android devices would become more

computationally powerful and apps grow in complexity, I expect the technique described

here to have a more substantial impact on the results.
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7.2.2 E↵ect on E�ciency

To answer RQ2, I capture the program analysis overhead for extracting the input classes. To

calculate this overhead, I log the time stamp right before calling the input class extraction

component and after the extraction process finishes. Table 7.1 illustrates the results from

this experiment. The results show that the overhead is insignificant for all subjects.

7.3 Conclusion

The success of combinatorial testing depends on how well the domain spaces for input

parameters of the system under test are partitioned [15]. As mentioned in Chapter 6,

TrimDroid uses the layout XML files to define the input classes for bounded widgets such

as check-boxes, radio buttons and so on.

This chapter presented a systematic approach for partitioning the input domain of un-

bounded GUI widgets in Android apps. This approach employs a light-weight program

analysis technique to extract the constraints for unbounded widgets. It then uses an e�-

cient SMT solver to generate proper values to satisfy those constraints. These values are

used by TrimDroid to generate the test combinations for the app.

Unlike symbolic execution, the presented approach does not require excessive time and

resources for solving complex path conditions. Moreover, the proposed program analysis

does not require any engineering e↵ort for modeling Android API classes. Hence, it can

be easily extended to support a vast category of Android applications. The experimental

evaluation shows that the proposed approach improves TrimDroid’s statement coverage

while not enforcing a significant overhead.
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Chapter 8: Conclusion

Pervasiveness of smartphones and the vast number of corresponding apps have underlined

the need for more practical automated software testing techniques. In spite of the wealth of

research that has been focused on either unit or GUI testing of smartphone apps, random

testing remains to be the state of practice [36]. Applying automated input-generation

techniques such as symbolic execution and combinatorial testing to new environments such

as Android has shown to be challenging. This dissertation presents two new techniques,

SIG-Droid and TrimDroid, to facilitate the automation of test-input generation for Android

applications. Both techniques are backed with automated program analysis to extract app

models from the the app’s byte-code. They leverage two automatically extracted models:

Interface Model and Activity Transition Model.

SIG-Droid solves the three important problems for symbolic execution of Android apps,

(1) Dalvik byte-code (2) event-based nature of Android apps, and (3) path-explosion. It

uses the IM to find values that an app can receive through its interfaces. Those values are

then exchanged with symbolic values to deal with constraints with the help of a symbolic

execution engine. The ATM is used to drive the apps for symbolic execution and generate

sequences of events.

On the other hand, TrimDroid introduces a novel approach for t-way combinatorial

testing to address the combinatorial explosion of test cases. TrimDroid is a framework for

GUI testing of Android apps that uses a novel strategy to generate tests in a combinatorial,

yet scalable fashion. It is backed with automated program analysis and formally rigorous

test generation engines. It relies on program analysis to extract formal specifications. These

specifications express the app’s behavior (i.e., control flow between the various app screens)

as well as the GUI elements and their dependencies. The dependencies among the GUI
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elements comprising the app are used to reduce the number of combinations with the help

of a solver.

Finally, a novel approach for combining these two techniques is proposed. In this ap-

proach, the main goal is to use the strengths of program analysis and constraint satisfaction

to address a known weakness of TrimDroid in dealing with unbounded input parameters.

It uses light weight program analysis to identify constraints around the variables associated

with unbounded GUI widgets. Consequently, a constraint solver is used to generate the

values that represent the input classes for those widgets .

The experiments have corroborated that e↵ectiveness and e�ciency of both techniques

in terms of maximizing the code coverage with a small number of test-cases. They show SIG-

Droid is able to achieve significantly higher code coverage than existing automated testing

tools targeted for Android and TrimDroid’s ability to achieve a comparable coverage as that

possible under exhaustive GUI testing using significantly fewer test cases.

8.1 Research Contributions

This dissertation first elaborates the scope of the research problem and an overview of two

approaches to address this problem. Then it defines the related concepts and enumerates

the related work. Finally, it provides the details of the work done, along with the respective

evaluation results which support the e↵ectiveness of the proposed approach. The following

is the concrete list of contributions in this research:

• Model extraction: I developed a program analysis technique that automatically

builds models of the Android apps. These models capture the event-driven behavior

of the apps and are used to derive the sequences of events as well as identifying the

GUI widgets.

• Symbolic execution framework for Android: I provided solutions to solve the

challenges of symbolic analysis for Android framework, and extend Symbolic Pathfinder

(SPF) [65] to support Android apps. The symbolic execution engine is used to prune
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the input domain for the unbounded data-widgets.

• Reduced combinatorial testing for Android: I developd a fully-automated ap-

proach for generating GUI system tests for Android apps using a novel combinatorial

technique. This approach employs program analysis to partition the GUI input wid-

gets into sets of dependent widgets. Thus, the GUI widgets with dependencies become

candidates for combinatorial testing.

• Systematic input domain partitioning: I proposed an automated approach for

systematically partitioning the input domain for unbounded data-widgets into input

classes. This approach employs program analysis and constraint satisfaction to pro-

duce input values that represent the domain of inputs for widgets. These values are

used as input classes for combinatorial testing.

• Tools and implementation: I have developed a working implementation of SIG-

Droid and TrimDroid that automatically generates executable Robotium[31] test cases

that include, among other things, event sequences and data inputs for testing of

Android apps

8.2 Limitations and Future Work

Although SIG-Droid has shown to be significantly better than existing tools for automated

testing of Android apps, there are several avenues of future research and improvement.

Currently, I generate the sequence of events through a depth first search on the ATM,

which does not guarantee to generate all possible sequence of events. For instance, consider

a situation in which a particular execution path is taken only when the same button is

clicked several times. Covering such sequences requires the depth-first search algorithm to

include loops in its search for all unique sequences of events, the space for which is infinite.

In our previous work [47], we have developed an evolutionary testing technique for Android

apps to support generation of more complex sequences. I plan to use both techniques in

tandem to complement the shortcomings of each. The symbolic execution engine presented
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in this dissertation will be used to solve the constraints in the code, while the proposed

evolutionary algorithm will be used to find sequences that reach a particular location in

code.

Moreover, the Model Extraction currently depends on a fully static approach to inferred

the models. Although, all proposed approaches in this document are decoupled from the

mechanism that is used by the Model Extraction, the ability to achieve high code coverage is

only possible if the inferred models are accurate. In practice, due to the potentially complex

interactions with the app (e.g., long click, rotate, press key etc.) and dynamically defined

GUIs, it is di�cult to extract complete models of the app. To address this issue, I plan

to explore other static (e.g. Gator [102]) and dynamic approaches (e.g. dynamic EvoDroid

[103]) to improve the accuracy of the extracted models.

While the proposed program analysis heuristics have shown to be quite e↵ective in

pruning the test combinations, they have some known limitations. For example, the IM is

constructed by analyzing the layout XML files statically, which does not handle cases where

the Activity views are defined dynamically. In addition, our static analysis is subject to false

negatives in certain rare cases, e.g., dependencies due to widget values being stored/read

from the SD card, or dependencies occurring through global variables. My future research

would involve improving the analysis to support such cases.

The premise of this is that the only available resource for automated testing is an app’s

APK file. If an app’s specification is also available (e.g., in a formal machine-interpretable

format), one could investigate the extraction of interactions from the app’s specification as

well as its implementation for combinatorial test generation. In practice, most apps on the

market lack specifications that can be used e↵ectively for automated testing. However, this

means that if two widgets should have a dependency according to the intended specification

of the software, but the implemented software does not have such a dependency, possibly

because the developer failed to correctly realize the specification, TrimDroid would not

generate tests to exercise those combinations.

In this work, I have focused on automatic test input generation, rather than automatic
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test oracle construction, resulting in oracles that determine whether test cases pass or fail.

Test-oracle construction, especially in an automated way, is a significant challenge that is

beyond the scope of this dissertation, but certainly an avenue of future research interests. I

believe that it will be necessary to have the user in the loop to generate oracles that assess

intended app behaviors. Hence, reducing the number of test cases to be inspected is certainly

beneficial. Moreover, the ability to generate tests that can achieve high code coverage

has applications beyond testing for functional defects: Energy issues, latent malware, and

portability problems are important concerns in the context of mobile devices that are often

e↵ectively detected by executing the code.
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