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Abstract

MANAGEMENT OF UNCERTAINTY IN SELF-ADAPTIVE SOFTWARE

Naeem Esfahani, PhD

George Mason University, 2014

Dissertation Director: Dr. Sam Malek

The ever-growing complexity of software systems coupled with the need to maintain

their quality of service (QoS) characteristics, even under adverse conditions and highly

uncertain environments, have instigated the emergence of self-adaptive software systems

[57]. A self-adaptive software system has the mechanisms that automate and simplify the

management and modification of software systems after they are deployed, (i.e., during

run-time) to achieve certain functional or QoS goals.

While the benefits of such systems are plenty, their development has shown to be sig-

nificantly more challenging than static and predictable software systems [14, 59]. One key

culprit is that self-adaptation is subject to uncertainty [14,59]. Uncertainty can be observed

in every facet of adaptation, albeit at varying degrees. It follows from the fact that the

system’s user, adaptation logic, and business logic are loosely coupled, introducing numer-

ous sources of uncertainty [16]. This challenges the confidence with which the adaptation

decisions are made. A key observation is that while the level of uncertainty could vary, no

self-adaptive software system is ever completely free of it.



This is precisely the challenge I addressed in this research. I have presented a general

quantitative approach for tackling the complexity of automatically making adaptation de-

cisions under uncertainty. I redefined the conventional definition of optimal solution to one

that has the best range of behavior. In turn, the selected solution has the highest likelihood

of satisfying the system’s quality objectives, even if due to uncertainty, properties expected

of the system are not borne out in practice.

In this dissertation, I begin with describing the problem and providing an overview of the

solutions. Then, I define what I mean by uncertainty and position the approach with regard

to the related work. Next, I provide the theoretical detail of the approach, which includes the

formal specification of the problem and two (combinatorial and evolutionary) optimization

techniques. I also describe some techniques for quantifying uncertainty and required step

for effecting adaptation decisions at run-time. Finally, I discuss the implementation details

of the framework. My experience with the approach, including experimental evaluation and

porting the framework to a new problem domain, has been very positive. The evaluation

results have strongly corroborated my hypotheses.



Chapter 1: Introduction

Self-adaptation is an effective approach in dealing with the changing dynamics of many

application domains, such as mobile and pervasive systems. In response to changes in the

environment or requirements, a self-adaptive software system modifies itself to satisfy certain

objectives [14,57,59]. While the benefits of such systems are plenty, their development has

shown to be more challenging than traditional software systems [14,59]. One key culprit is

that self-adaptation is subject to uncertainty [14, 59].

Currently, in the field of software engineering, uncertainty is considered as a second-order

concept [41] and it is believed that by applying a set of practices the effect of uncertainty

can be removed to allow focusing on the normal behavior. Although, it is generally true

that having more information decreases the amount of uncertainty in a system [7], it is not

possible to eliminate uncertainty altogether as it is not practical nor desirable to collect

all the information about a system. In fact, no matter how much information is at hand,

some things about the system may not be known. A key observation is that while the

level of uncertainty could vary, it is rarely the case that a self-adaptive software system is

completely free of uncertainty.

Uncertainty can be observed in every facet of adaptation, albeit at varying degrees.

The key reason behind uncertainty is the fact that the system’s user, adaptation logic,

and business logic are loosely coupled, introducing numerous sources of uncertainty [16].

Consider that users often find it difficult to accurately express their quality preferences,

sensors employed for monitoring often have uncontrollable noise, analytical models used for

assessing the system’s quality attributes by definition make simplifying assumptions that

may not hold at run-time, and so on. These factors challenge the confidence with which

the adaptation decisions are made. In spite of the fact that the uncertainty is prevalent in

self-adaptive software systems, it is not studied in detail. Therefore, the term ‘uncertainty’

1



has a very vague definition in the community; this affects the ability to work collaboratively

to change the status quo.

The first contribution of this research is defining what I mean by uncertainty and de-

scribing what are the sources of uncertainty in self-adaptive software. This provided a

common terminology for looking at the problems and communicating ideas. Moreover, I

provided some background information that are required for understanding the solutions

provided in this thesis. I also positioned my approach to the problem with regard to existing

work in the community through providing the literature review.

The second and main contribution of this research is a general quantitative approach

for tackling the complexity of automatically making adaptation decisions under uncertainty.

I redefined the conventional definition of optimal solution to one that has the best range

of behavior. This approach considered risks and opportunities associated with adaptation

decisions to select the solution. In turn, the selected solution has the highest likelihood of

satisfying the system’s quality objectives, even if due to uncertainty, properties expected of

the system are not borne out in practice.

These goals depend on collecting information at run-time for decisions-making. There-

fore, I also provided a framework for quantifying uncertainty as a proof of concept. This

paved the way for introducing the analysis technique that I used to make the decision in

the face of uncertainty as part of the second contribution. I adopted a possibilistic analysis

technique called Possibilistic Linear Programming (PLP) [50] to make such decisions. I also

implemented an evolutionary version of the analysis, based on genetic algorithm, to deal

with PLP’s scalability problems.

I have applied this research to a dynamically reconfigurable robotic software system.

The software components comprising this system are customizable, meaning that they can

be configured to operate in different modes of operation. The configuration of a software

component determines its quality attributes (e.g., response time) and resource usage (e.g.,

memory), which could also impact the properties of the entire system. However, as I

mentioned earlier, these impacts are uncertain. The evaluation results demonstrate the

2



ability to deal with uncertainty by making adaptation decisions that are superior to those

of the conventional approach. I also used the same framework to deal with the problem of

making early architectural decisions. Porting the framework to this new domain was a very

successful experience.

The rest of this dissertation is organized as following. I first provide a motivating

example in Chapter 2. In Chapter 3 I describe the problem and specify the scope of this

thesis. Then I provide the overview of my approach in Chapter 4. In Chapter 5, I discuss

the uncertainty in self-adaptive software. I provide the background and enumerates on

the related work in Chapters 6 and 7 respectively. I formalize the problem in Chapter 8

and then describe how I quantified uncertainty in Chapter 9 as a prerequisite to solving

the problem. I describe combinatorial optimization and evolutionary optimization as two

possible techniques for finding the optimal solution in Chapters 10 and 11. In Chapter 12,

I discuss how I realize an optimal solution in a running software. In Chapters 13 and 14, I

describe the implementation of the framework and my experiments respectively. Finally, I

conclude this dissertation with the description of a different problem domain that can benefit

from the framework in Chapter 15 and the summary of the contributions in Chapter 16.

3



Chapter 2: Motivating Example

To demonstrate the ideas and help the discussion I used a robotic software system, that

was developed in previous work [32], as a running example. The robotic software is part of

a distributed search and rescue system [62] called Emergency Deployment System (EDS).

EDS is aimed at supporting the government agencies in dealing with emergency crises (e.g.,

fire, hurricane). Figure 2.1b provides an abridged view of the robotic system’s architecture.

The software components comprising the robotic system range from abstractions of the

physical entities, such as software controlled sensors and actuators on board the robot,

to purely logical functionalities, such as image detection and navigation. The bold path in

Figure 2.1b indicates the Maneuver execution scenario, which aims to safely steer the robot.

The Camera feed is sent to Obstacle Detector, which runs an image processing algorithm

to identify obstacles. Obstacle information is used by Navigator to plan the direction and

speed of movement, which are then put into effect by the Controller.

The software components comprising this system are customizable, meaning that they

can be configured to operate in different modes of operation. Figure 2.1a shows some of

the available configuration dimensions. For instance, Power is a configuration dimension

for the Controller component. A Controller could operate in either Energy Saving or Full

Power mode. A component may have many configuration dimensions.

The configuration of a software component determines its quality attributes (e.g., re-

sponse time) and resource usage (e.g., memory), which could also impact the properties of

the entire system. For instance, given the resource-constrained nature of the mobile robots,

the configuration decisions of each component have a significant impact on the system’s per-

formance as well as its battery life. Such decisions can only be effectively made at run-time,

since the system properties (e.g., available bandwidth) are often not known at design-time

and may change at run-time.

4
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fined in terms of quality attributes.

5



As shown in Figure 2.1c, for making run-time decisions, utility functions capturing the

user’s satisfaction with different levels of quality attribute (e.g., availability) are used. The

adaptation logic uses analytical models to estimate the effect of configuration decisions on

the system’s quality attributes, and in turn the resulting utility. For example, given the

configuration of the robot’s components, an analytical model, such as a Queueing Network

model [68], may be used to quantify the response time of a particular scenario. The objective

is to find a configuration that achieves the maximum overall utility.

The above approach is rather myopic, since it does not consider the uncertainty of

information used in making adaptation decisions. Consider that almost every facet of the

approach outlined above faces some form of uncertainty:

• Uncertainty in System Parameters: The monitoring data obtained from a run-

ning system rarely corresponds to a single value, but rather a distribution of values

obtained over the observation period. For instance, a sensor monitoring the available

network bandwidth may return a slightly different number every time a sample is

collected. This variation could be either due to actual changes in the bandwidth or

the error (noise) in the employed probes.

• Uncertainty in Analytical Models: Analytical models often make simplifying as-

sumptions, and thus provide only estimates of the system’s behavior. For instance,

an analytical model quantifying the system’s response time may account for the dom-

inant factors, such as execution time of components, and ignore others, such as the

transmission delay difference between TCP and UDP. Response time estimates pro-

visioned by such a formulation are not only error-prone, but also the magnitude of

error varies depending on the circumstances.

• Uncertainty in User Preferences: Eliciting user’s preferences in terms of utility

functions, such as those depicted in Figure 2.1c, is a well-known challenge [14]. Often

users have difficulty expressing their preferences and thus the overall accuracy of the

utility functions remains subjective, making the analysis based on them prone to

6



uncertainty.

The uncertainty in these elements challenges the system’s ability in making decisions

that bring about the intended effects. Note that I picked these few sources of uncertainty

among the many to describe the problem. I have provided a more detailed discussion of the

sources of uncertainty in self-adaptive software in Section 5.2.
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Chapter 3: Research Problem

In this chapter, I present the problem that I solved. In the following subsections, after

describing the problem statement, I enumerate my research hypotheses.

3.1 Problem Statement

Self-adaptation endows a software system with the ability to satisfy certain objectives by

automatically modifying its behavior. While many promising approaches for the construc-

tion of self-adaptive software systems have been developed, the majority of them ignore the

uncertainty underlying the adaptation decisions. This has been one of the key inhibitors to

widespread adoption of self-adaption techniques in risk-averse real-world settings, in which

uncertainty is prevalent.

In my research, I focused on the improvement of software quality (i.e., non-functional

requirements) through self-adaptation (recall Chapter 2). Therefore, I have scoped my

study of uncertainty to how it affects the quality of software, or for that matter, adaptation

decisions that are made based on the quality of software. In this scope, the uncertainty

shows itself in inability to determine a single value for a property of interest. I refer to

this as the ‘uncertainty in self-adaptation parameters’. I summarize the problem caused by

uncertainty as following:

Due to uncertainty in a self-adaptive software system’s parameters, the system

may exhibit a range of behavior. Therefore, when uncertainty in the knowledge

(models) used for making adaptation decisions is not accounted for in a self-

adaptive software system, it may fail to satisfy the system’s objectives. As the

amount of the uncertainty in the knowledge used for decision-making increases,

the chance of system failing to satisfy its objectives increases.
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Figure 3.1: The utility of a self-adaptive system based on an adaptation decision depicted
as a range.

Figure 4.1 depicts the problem with uncertainty. The system is initially executing with

utility U1 prior to time T1. At time T1, due to either an internal or external change, the

system’s utility drops to U2. By time T2, the self-adaptation logic detects this drop in

utility, finds and effects an optimal configuration, which is conventionally defined as the

one achieving the maximum utility. As shown in Figure 3.1, this corresponds to U3, which

represents the expected utility of the best configuration for the system.

However, the actual utility of the system may be different from the expected utility in

practice. Figure 3.1 depicts the fact that the actual utility may vary between the Upper

and Lower bounds, representing the likely positive and negative consequences of uncer-

tainty (i.e., opportunity and risk) during T3; by not accounting for the uncertainty in

self-adaptation parameters in making decisions, the approach is vulnerable to gross overes-

timation of the utility. The following subsections discuss these ideas in more detail.

3.2 Research Hypotheses

This research has investigated the following hypotheses [30]:
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• The uncertainty in the knowledge and information used to make adaptation decisions

is inevitable. There are several mathematical approaches for dealing with uncertainty

by considering a range of behavior instead of point estimates. These approaches have

been successfully used in other fields (e.g., control theory, economics, and statistics).

Hypothesis 1: Considering ranges of uncertainty instead of point esti-

mates, in decision making, results in adaptation decisions that transition

the corresponding system into a state with higher quality after adaptation.

• Uncertainty in making adaptation decisions is neglected partially due to the miscon-

ception that dealing with uncertainty is computationally expensive. However, there

are modern mathematical approximation techniques that can deal with uncertainty

efficiently.

Hypothesis 2: Uncertainty can be incorporated in the decision-making

process in a manner suitable for execution at run-time.

• Precisely quantifying uncertainty is a difficult task. Quantifying uncertainty “as it is”

is a very hard task if not impossible.

Hypothesis 3: Incorporating partial information about the uncertainty in

analysis allows for more accurate decisions compared to having no informa-

tion about uncertainty at all (i.e., considering only point estimates).
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Chapter 4: Approach Overview

Figure 4.1a shows the typical behavior of a self-adaptive system that does not incorporate

uncertainty in its analysis. I abstractly refer to this as the traditional approach. The

centerpiece of my approach is the reconceptualization of what is traditionally considered

as the optimal solution, such that the uncertainty is incorporated into the analysis. I

illustrate the insights underlying this approach using Figure 4.1b. Similar to the scenario of

Figure 4.1a, a new configuration is effected at time T2, except my strategy is to select the

configuration that concurrently satisfies the following three objectives: (1) maximizes U3,

which represents the most likely utility for the system under uncertainty; (2) maximizes the

positive consequence of uncertainty, which represents the likelihood of the solution being

better than U3; and (3) minimizes the negative consequence of uncertainty, which represents

the likelihood of the solution being worse than U3.

I transformed these three concurrent objectives into a PLP problem, which is an in-

stance of a multi-objective problem. To solve the PLP problem using commonly available

linear programming solvers, I first transformed it to an equivalent single-objective prob-

lem. This was necessary to allow me to reason about the objective trade-offs. Intuitively

the transformation process entails (1) normalizing the objective functions, (2) combining

the objective functions, and (3) if necessary, specifying priorities among the objectives.

This transformation was also necessary for solving the PLP problem using evolutionary

optimization.

The details of the approach, including how the likelihood of each objective is calculated,

are described in Chapters 9, 10, and 11. Nevertheless, I can make a general observation.

As depicted in Figure 4.1, concurrent satisfaction of the three objectives may result in a

smaller value of expected utility (i.e., U3) in the approach compared to that of the traditional

approach. But since the information used to estimate the expected utility is uncertain,
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Figure 4.1: The utility of a self-adaptive system based on the decision using: (a) tradi-
tional approach, where the uncertainty is not considered and (b) my approach, which con-
siders uncertainty.

expected utility is not guaranteed to occur in practice. I argue the true quality of a solution

is determined by the range of possible utility. As depicted here and evaluated in Section 14,

the objective has been to find solutions with a better range of behavior.

Based on this overall idea, I have developed a general quantitative approach for tackling

the complexity of automatically making adaptation decisions under uncertainty [32]. In this

framework, estimates of uncertainty in the elements comprising a self-adaptation problem

are incorporated in possibilistic analysis of the adaptation choices. Therefore, I called this

approach POssIbilistic SElf-aDaptation (POISED). Unlike any other related work, POISED

adopts a possibilistic method to assess the positive and negative consequences of uncertainty

in its analysis. The centerpiece of my work is the reconceptualization of what is typically

considered to be the optimal solution as one that has the best range of possible behavior

(as depicted in Figure 4.1). In turn, the selected solution has the highest likelihood of

satisfying the system’s quality objectives, even if due to uncertainty, properties expected of

the system are not borne out in practice.
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Chapter 5: Uncertainty in Self-Adaptive Software

In this chapter I clarify as what I mean by uncertainty in self-adaptive software systems.

I define the concept of uncertainty in self-adaptive software systems and then enumerate

several sources of uncertainty in such systems. Finally, I provide a characterization of the

presented sources of uncertainty.

5.1 Definition of Uncertainty

Making the adaptation decision is the centerpiece of a self-adaptive software system. There-

fore, uncertainty in self-adaptive software means the lack of enough information or insight for

making certain adaptation decisions. The adaptation decision can be made with certainty

when all of the required information for making such decisions are available completely.

However, usually some information are lacking during the decision making. Moreover, the

available information may be according to approximate models, expert opinion, rules of

thumb, and even pure intuition and hence inaccurate. In general it is hard to have the right

amount of exact information at the right time. The sources of uncertainty indicated above

more or less correspond to this definition.

All sources of uncertainty do not have the same characteristics. Although there are

some philosophical debates about true distinction between different types of uncertainty

(e.g., [90]), it is commonly agreed that it is useful to categorize different types of uncertainty

in practice. This is due to the fact that the approaches for modeling different kinds of

uncertainty are completely different. For instance, it is a mistake to model the uncertainty

in the behavior of the system with a changing context over time as simple random process.

In this scenario, resources, that are spent on collecting samples for estimating the random

behavior, would be wasted as the pattern in the behavior of the system based on the
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execution context is ignored. Therefore, In the following subsections I enumerate different

characteristics of uncertainty.

5.1.1 Reducibility versus Irreducibility

When something is inherently unknowable, the uncertainty associated with it is irreducible.

On the other hand, the uncertainty associated with knowable things which are unknowns at

the given time is reducible. Sometimes distinction between these two kinds of uncertainty

becomes a philosophical problem, which depends on the point of view. One of the main

reasons behind irreducible uncertainty is intractable complexity of phenomena with existing

progress in science. For instance, it is a known fact that the physical world behaves in a

non-linear fashion; however, there is little known about non-linear mathematics. Instead,

non-linear phenomena are modeled using linear mathematics and hence the models have

irreducible uncertainty. One may argue that this kind of uncertainty is not inherently

irreducible as it can be mitigated by studying non-linear mathematics. I stay away from

philosophical debates as I want to study the practical aspects of uncertainty.

5.1.2 Variability versus Lack of Knowledge

From a different perspective uncertainty can be categorized as aleatory or epistemic [7]. The

root of aleatory is the Latin word ãleãtor, which means gambler, while the root of epistemic is

the Greek word epistemé, which means scientific knowledge. Aleatory uncertainty captures

the uncertainty that is caused by randomness and is usually modeled using probabilities.

On the other hand, epistemic uncertainty corresponds to lack of knowledge and sometimes

is referred to as parameter uncertainty. This distinction is motivated by the location of the

uncertainty — in the decision-maker or in the physical system. [7] In other words, variability

is considered as uncertainty in the studied system, while lack of knowledge is considered as

uncertainty on the decision-maker’s side.
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Figure 5.1: The horizon of uncertainty based on the knowledge, adapted from [7].

It may be tempting to map variability to irreducibility and lack of knowledge to re-

ducibility. However, this is not generally true; for instance, if irreducible uncertainty di-

rectly implies variability, the next recipient of Turing Award, which in not known right now,

would be a random phenomenon! Similar to the philosophical argument about reducibility

versus irreducibility, there are arguments about distinction between aleatory and epistemic

uncertainties. For instance, some argue that variability observed is the world is due to

limitation of scientific models and hence lack of knowledge [90]. While these arguments

are true, I want to mention that these distinctions are relative and depend on the point of

view. In other words, it is true that sometimes a phenomenon, which is uncertain due to

variability from a given point of view, can be uncertain due to lack of knowledge from a

different point of view; but, this does not mean that variability is not a characteristics of

uncertainty.

5.1.3 Adopted definition

Figure 5.1 depicts the horizon of uncertainty. Current Information falls anywhere between

Ignorance and Certainty. The range between the Current Information and Certainty is

the Imprecision. Complete Information indicates the threshold where all the knowable

are known and falls anywhere between the Current Information and Certainty (i.e., inside

Imprecision). In a sense, the Complete Information is a limit for the Current Information

indicating the maximum amount that the uncertainty can be reduced. Therefore, the

range between the Current Information and the Complete Information is the Reducible
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Uncertainty. On the other hand, the range between the Complete Information and Certainty

indicates the Irreducible Uncertainty.

Based on the nature of a given system, the length of any of these ranges (i.e., imprecision,

reducible uncertainty, and irreducible uncertainty) can be zero. For instance, when the

complete information and certainty point to the same spot, there will be no irreducible

uncertainty. This definition also implies the fact that, as the current information increases

and approaches the complete information, the imprecision becomes mainly due to irreducible

uncertainty. Usually as the current information gets closer to the complete information,

increasing the knowledge becomes more expensive. Sometimes increasing the knowledge

may not even worth spending resources, as the added value becomes limited. I will come

back to this issue in the next section.

Both the reducible and irreducible uncertainties can have aleatory and epistemic com-

ponents. In other words, aleatory and epistemic represent the essence of uncertainty, while

irreducible and reducible represent the managerial aspect of uncertainty. Managerial aspect

of uncertainty does not give more insight into the its nature. Therefore, in the following

subsection I only use the other aspect (i.e., the essence of uncertainty) to categorize the

sources of uncertainty.

5.2 Sources of Uncertainty

Figure 5.2 depicts the high level view of a self-adaptive software system according to FORMS

reference model [88]. In this model, the self-adaptive software system is broken down into

two parts: Meta-Level and Base-Level. The base-level subsystem provides the main func-

tionality of the software, while the meta-level subsystem manages the base-level subsystem

by reflecting on it. Inside the meta-level subsystem there is a feedback control loop according

to MAPE-K reference architecture [52] from IBM.

The other two entities in Figure 5.2 are User and Environment. The user uses the

services of base-level subsystem and provides her expectations from the base-level subsystem

to the meta-level subsystem by specifying objectives. For instance, Figure 2.1c shows users’
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Figure 5.2: High level view of self-adaptive software.

expectation for the robotic software system in terms of two QoS parameters (i.e., Response

Time and Reliability) of the Maneuver execution scenario; these expectations are depicted

using utility functions. The self-adaptive software system operates in an environment and

hence base-level subsystem constantly interacts with elements of that environment. Since

the meta-level subsystem is responsible for keeping the base-level subsystem on track, it also

needs to monitor the environment. For instance, in the robotic software system depicted

in Figure 2.1, the meta-level subsystem uses sensors to estimate the amount of light in the

operational environment to adjust the Camera accordingly.

The entities in Figure 5.2 are loosely coupled. The meta-level subsystem needs to use

models of other entities in Figure 5.2 as their abstractions to make adaptation decisions.

Therefore, one of the main places that the uncertainty lives is the interfaces of the meta-

level subsystem with the other components. I discuss these sources of uncertainty as well

as others in the following:

• Uncertainty due to simplifying assumptions: This source of uncertainty is re-

lated to the “Manages” interface in Figure 5.2 and is due to inaccuracy in the analyt-

ical models representing complex base-level subsystem. These analytical models are

used to reason about the impact of adaptation choices on system’s quality attributes.
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The error in those estimates is magnified when the modeling abstractions become

inaccurate representation of the system. One of the reasons for inaccuracy is the fact

that sometimes the assumptions underlying the model are not held at run-time. For

instance, an analytical model quantifying the system’s response time may account for

the dominant factors, such as execution time of components, and ignore others, such

as the transmission delay difference between TCP and UDP. Response time estimates

provisioned by such a formulation are not only error-prone, but also the magnitude

of error varies depending on the circumstances.

• Uncertainty due to drift: This source of uncertainty is also related to the “Man-

ages” interface. Another reason for inaccuracy in the analytical models is adaptation

itself; the base-level subsystem may not enact the changes exactly as meta-level sub-

system requested causing a drift from the models. For instance, in the same example,

consider the scenario that the meta-level subsystem requests the base-level subsys-

tem to change the protocol from TCP to UDP. However, the base-level subsystem

fails to enforce this change, leaving the analytical models in the meta-level subsystem

inconsistent with the behavior of the base-level subsystem.

• Uncertainty due to noise: This source of uncertainty corresponds to “Is Moni-

tored” interfaces and is due to variation in a phenomenon, such as a monitored sys-

tem parameter, which rarely corresponds to a single value, but rather a set of values

obtained over the observation period. Consider that a sensor monitoring the available

network bandwidth may return a slightly different number every time a sample is

collected, while the actual value of the bandwidth may be fixed in the source. This

type of uncertainty is referred to as noise to indicate the error in the employed probes.

• Uncertainty of parameters over time: This source of uncertainty is also related

to “Is Monitored” interfaces and is due to the actual changes in the monitored phe-

nomenon (e.g., bandwidth). In contrast to the previous source of uncertainty, consider
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the case that the actual bandwidth changes over time. Moreover, if the effects of adap-

tation alternatives in the future are not considered in decision making, the adaptation

decision may behave unexpectedly in the future. For instance, I mentioned that the

robotic software system may use sensors to measure the amount of light, which may

change as the robot moves in the environment. This change can be predictable based

on the trajectory of robot movement. If the robotic software system does not con-

sider the prediction and make decision only based on the current amount of light, the

adjustments to the Camera will not result in the expected improvement as the robot

is moving.

• Uncertainty due to human in the loop: Self-adaptive software systems are in-

creasingly permeating a variety of domains, including medical, industrial automation,

and emergency response. This is partially caused by a paradigm shift from kinds of

software deployed on isolated servers to the kinds of software that engages human

users in their daily activities. These new breeds of software systems intensively inter-

act with human and depend on correct human behavior. However, human behavior is

inherently uncertain [41,85], which in turn creates uncertainty in the software system.

This type of uncertainty is related to “Uses” interface between the base-level subsys-

tem and the user. For instance, in the case of the robotic software system depicted

in Figure 2.1, it is expected for the robot to interact with the rescue crew to fulfill

its assignment. However, as described before the behavior of the crew may be very

unpredictable.

• Uncertainty in the objectives: This type of uncertainty corresponds to the “Spec-

ifies Objectives” interface and is due to the complexity of users’ requirements and

preferences. In a large-scale multi-user system, users often have multiple concerns,

some of which may be conflicting with one another. However, accurately eliciting and

representing the users’ preferences is a challenge. Thus, the overall accuracy of such

preferences remains subjective, making the analysis based on them prone to uncer-

tainty. For instance, eliciting user’s preferences in terms of utility functions, such as
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those depicted in Figure 2.1c, is a well-known challenge [14] as the users often have

difficulty expressing their preferences using mathematical functions.

• Uncertainty due to decentralization: In a self-organizing system several meta-

level subsystems manage different base-level subsystems [59]. They build up a de-

centralized software system, where the knowledge is scattered among all the entities

comprising the system. These entities can only access the interfaces of other entities

and can hardly control the actions of other entities. In such a setting, the meta-level

subsystems are expected to work collectively and collaboratively to reach the sys-

tem’s objectives. In other words, in self-organizing software systems, the meta-level

subsystem is distributed among different entities, which makes the system prone to

uncertainty. For instance, in the case of robotic software system, different robots may

collaborate with each other to devise and update a plan for searching an area (e.g., a

building that is damaged due to an earthquake) for victims with the goal of covering

all the area as fast as possible. In other words, although the robots are autonomous

and use self-adaptation to achieve their own functionality, they may need to collab-

orate with other robots to achieve the same goal. This high-level collaboration adds

to uncertainty as the knowledge is decentralized.

• Uncertainty in the context: Many self-adaptive software systems are intended to

be used in different contexts. To that end, it is expected from the meta-level subsys-

tem to detect the change in the context and adapt the base-level subsystem to behave

appropriately. Portable and embedded computing devices (e.g., cell-phones) are rep-

resentative oof this class of systems. Here, software developers are forced to cope

with additional sources of complexity introduced by the growing class of mobile and

pervasive software, which are innately dynamic and unpredictable. The performance

of these software systems heavily depends on availability of the resources [41], which

is subject to change as the context of execution changes. For instance, in the robotic

software system, a robot may move into a place in which a barrier shields its signal
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and prevents it to communicate with other robots; this makes the status of that robot

unknown to the rest of system.

• Uncertainty in cyber-physical systems: As the computation becomes cheap and

widespread, software and physical components become increasingly intertwined and

cooperate more tightly. Therefore, it is expected from the meta-level subsystem to

be able to manage physical entities as well. As a result, physical concepts, such as

space and time, should also be considered in decision making. This increases non-

determinism and uncertainty in the software due to the fact that the physical world

itself is inherently uncertain. For instance, in the case of the robotic software system,

assessment of distances from the obstacles is required for steering the robot safely.

However, such assessments are physical in nature and can be uncertain.

To mitigate uncertainty in self-adaptive software systems one should consider its sources

enumerated above. Some of these sources (e.g., cyber-physical systems) have been observed

in other fields of science and there are well-established approaches for addressing them.

On the other hand, some of these sources (e.g., drift) are relatively new and specific to

self-adaptive systems, hence new approaches may need to be devised for addressing them.

I define the scope of this thesis with regard to the sources of uncertainty described here.

Some of these sources are completely covered in this thesis and some are left for the future

work. This thesis mainly address the uncertainty caused by Simplifying assumptions, Noise,

and Objectives. I do not directly deal with the uncertainty related to Drift, Human in the

loop, Decentralization, Context, and Cyber-physical systems. However, POISED can use the

information provided about those sources of uncertainty to make adaptation decisions. In

other words, although I do not provide any mechanism for quantifying uncertainty of those

sources, POISED is general enough that it can use such provided information for making

adaptation decision.
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Table 5.1: Characteristics of different sources of uncertainty.
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5.3 Characteristics of the Sources of Uncertainty

Table 5.1 characterizes the sources of uncertainty based on their nature. To that end, I

specify if a source of uncertainty is due to variability or lack of knowledge.

Uncertainty related to Simplifying assumptions, Drift, Human in the loop, Objectives,

Decentralization, and Cyber-physical systems happens due to the lack of knowledge. Be it

for the complexity of the models, loose coupling, ambiguity, or distribution of knowledge,

the lack of complete knowledge makes the adaptation decisions prone to uncertainty.

On the other hand, uncertainty related to Noise, Parameters over time, and Context is

due to the variability. In this case, uncertainty is rooted in the fact that the behavior of

the system may change after the adaptation decision is made.
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Chapter 6: Background

In this chapter I provide an overview of some fundamental concepts that knowing them is

required for understanding this work.

6.1 Representing Uncertainty

The first step towards managing uncertainty is to represent it explicitly. Before representing

uncertainty two important questions should be answered: (1) What is the right represen-

tation? and (2) How much information is required to build the representation?. These

questions can be answered by considering the benefits and costs. The representation that

has more information has less uncertainty. However, collecting information and building

the representation is often an expensive task. Therefore, building complex representation

only makes sense if the benefits exceed the costs of building such representation. To that

end, similar to any other concept in software engineering, the appropriate level of abstrac-

tion should be considered in building the models of uncertainty. A good model contains

enough information for making decisions without containing unnecessary information. In

other words, the goal here is to build useful models of uncertainty for making informed

decisions.

I start by exploring the second question first. Figure 6.1 depicts two hypothetical set-

tings; in each setting an adaptation decision based on the quality metrics (e.g., reliability)

of the base-level subsystem should be made. There may be several (in this case two) al-

ternatives for an adaptation decision. The outcomes of an alternative (i.e., its effect on

the quality metric) is uncertain, hence the quality under each alternative is a range rather

than an exact number. Figure 6.1 depicts the ranges of the quality metric for different

alternatives in the two hypothetical settings. Figure 6.1a shows the setting in which the

23



Alternative 1

Alternative 2

Quality Metric GoodBad

Alternative 1

Alternative 2

Quality Metric GoodBad

(a) (b)

Figure 6.1: Comparing the quality metrics of an adaptation decision in the base-level sub-
system for two alternatives in two hypothetical settings: (a) the model is precise enough
and (b) the model needs to be refined with more information.

models are accurate enough for making the decision. As we can see the range of quality for

Alternative 1 is better than the range of quality for Alternative 2 ; this makes Alternative 1

a better (e.g., more reliable) alternative for the decision. On the other hand, in the setting,

which is depicted in Figure 6.1b, due to large amount of uncertainty, it is hard to distinguish

between the two alternatives. Therefore, a meaningful decision requires more information

to reduce the uncertainty.

Having said that, it may be the case that the quality of both alternatives in Figure 6.1b

are above an acceptable threshold (e.g., both of them are reliable enough); this makes the

selection between the two alternatives a less critical decision. This, in turn, may not justify

spending resources for acquiring more information. Moreover, it may be the case that the

uncertainty is irreducible and even acquiring more information would not help in making

the trade-off between the two alternatives in Figure 6.1b.

In the following subsections I focus on the first question (i.e., what is the right repre-

sentation?). To that end, I first describe how I quantify uncertainty in POISED and then

I provide an overview of widely used mathematical approaches for modeling uncertainty in

the literature.

6.1.1 Probability Theory

Probability theory [11] is the most widely used approach to represent uncertainty. Humans

have long observed that some events are to some extent predictable. Mathematical prob-

abilities, which are dated from 18th century, were an approach to study the regularities

in the games of chance. Nowadays, probability is learned mainly through Kolmogorov’s
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axioms [55], which allows for adoption of probability theory in broader class of problems

(e.g., physical, social, industrial, etc.). Most researchers are familiar with the mathematics

of probability but quiet few are aware of philosophical debates regarding different inter-

pretations of probability. Therefore, here I focus on interpretations of probability. The

prominent interpretations of probability until late twentieth century were classical and fre-

quentist interpretations.

Probability theory was originally conceived with the classical interpretation. As I men-

tioned, probability was originally rooted in the games of chance, and so was the classical

interpretation. A fundamental assumption in classical probability is the fact that all the

outcomes of a phenomenon are equally probable. This assumption is shown to cause in-

consistencies when it is used in more general problems (i.e., beyond games of chance).

Motivated by the limitations of the classical interpretation, the frequentist interpretation

was developed. In this interpretation the probability of an event is defined as limit of its

relative frequency in large number of trials, hence the name of this interpretation is fre-

quentist. Although this definition goes beyond classical definition, it narrows the scope of

the frequentist interpretation to repeatable, random phenomena.

Bayesian theory [48] is based on subjective interpretation of the probability. In this

interpretation the probability is defined as an expression of a rational agent’s degrees of

belief about uncertain propositions. The scope of this interpretation is more general than

frequentist interpretation as it extends the definition of probability by allowing probability

assignment to a single experiment regardless of whether it is part of a larger number of

experiments or not. Therefore, Bayesian could be used in the problems in which there is

not enough data for frequentist interpretation. For instance, frequentists cannot analyze

a new disease for which enough data is not available, while Bayesians can use subjective

information based on related diseases to analyze the new disease.

Bayesian inference is as old as probability. However, it was disfavored due to positive

orientation of Western nineteenth and twentieth century science, which was considering

subjectivity to be non-scientific. Moreover, complex Bayesian models require large amount
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of computation, which were not possible until late twentieth century. With computational

advances in the late twentieth century there has been a resurgence towards Bayesian ap-

proaches as they are a unified theory for both data-rich and data-poor problems. Many

modern machine learning methods are based on Bayesian principles.

6.1.2 Fuzzy Sets and Possibility Theory

Fuzzy set theory [91] is an extension of classical set theory. In classical set theory, the

membership of an element in a set is a binary condition: the element is either in the set

with membership value of 1 or it is not in the set with the membership value of 0. However,

in fuzzy set theory, the membership of an element in a set is not a binary condition, but

rather a “sort of” concept. To that end, the membership value of an element with regard to

a set is any value between 0 and 1. The higher the membership value is, the more likely that

element belongs to the set. Therefore, the boundary of a fuzzy set is not clearly defined,

whereas the boundary of a classical set is crisply defined.

Fuzzy sets can be applied to domains where the information is incomplete or imprecise.

For instance, fuzzy sets have been used in linguistics to deal with vagueness and ambiguity

of the statements. For instance, temperatures that are considered to be cold and warm are

not uniquely defined and they may be different from person to person. In fact, there are

some temperatures that can be considered both cold and warm to some extent. A program

that tries to understand written text can use the fuzzy definition of coldness and warmness

to have a better understanding of the text.

Possibility theory [92] is a theory for handling incomplete information, which is based

on fuzzy sets. Among several interpretations of possibility theory, the basic interpretation

is the most common one. This interpretation defines possibility as a mapping from the

power set of sample space to any value between 0 and 1. In other word, any event, which

is a subset of sample space, has a possibility defined by this mapping. One of the reasons

that fuzzy logic is adopted in engineering is the simplicity and efficiency of its operations.

While probability theory deals with the statistical characteristic of data, possibility
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theory focuses on the meaning of data. There are several studies [18, 24–26] about the

relationships of the two theories. Although, sometimes the two theories can be used inter-

changeably, it has been shown that the two theories are different. Some researchers have

described the usability of two theories using an spectrum: possibility theory is useful when

there is little information, however, when more information becomes available it is better

to use probability theory.

6.2 Analysis under Uncertainty

The discussion in Chapter 4 assumes one could quantify the range of utility under un-

certainty. As I described in Section 6.1, there are two general techniques to estimating

uncertainty: probability theory and possibility theory. Probability theory is concerned with

the analysis of random phenomena and forms the foundation of statistics. Possibility theory

is founded on the concept of fuzzy set [92]. In a fuzzy set, the elements have a degree of

membership. Degree of membership is a value between zero and one: a value of zero indi-

cates the element is certainly not a member of the set, a value of one indicates the element

is certainly a member of the set, and a value in between indicates the extent of certainty

that the element is a member of the set. In possibility theory, the concept of possibility

is defined as the degree of membership, which plays a similar role as that of probability in

statistics. The most optimistic and most pessimistic values have a degree of membership

of zero, while the most possible value has a degree of membership of one. While the notion

of probability and possibility are related, it is important to note that the two concepts are

distinct. Probability theory deals with the statistical characteristic of data, while possibility

theory focuses on the meaning of data [92].

For an illustration of this difference, see Figures 9.1 and 9.2 in which the uncertainty

in available network bandwidth is modeled using possibility and probability distributions,

respectively. The details of how such functions can be obtained in the first place are

described in Section 9. Possibility distribution models a fuzzy variable, while probability

distribution models a random variable. Possibility distribution in Figure 9.1 returns the

27



degree of membership, while probability distribution in Figure 9.2 returns the probability

density.

While uncertainty can be represented using both approaches, the ability to make adap-

tation decisions is significantly impacted by the representation. The operations research

technique for making decisions under probability theory is called stochastic programming [2].

When all the probability distributions follow normal distribution, by applying the central

limit theorem [44], the problem can be solved effectively [50]. Central limit theorem al-

lows for the definition of commonly used algebraic operations on the normally distributed

variables. However, as further demonstrated in this paper, uncertainty in self-adaptive soft-

ware systems rarely follows a normal distribution, which severely limits the application of

stochastic programming.

When some of the probability distributions are not normal, the problem is broken down

into two parts and solved iteratively in two stages: a certain part, solved in the first stage,

and an uncertain part, solved in the second stage. The two stages are executed iteratively

similar to two nested loops. Given an assignment for the decision variables corresponding to

the certain part, the remaining decisions variables corresponding to the uncertain part are

solved, and the expected value of the objective function is calculated. In other words, for

any given candidate solution to the first stage, an instance of the second stage optimization

is configured and solved [4]. This approach is challenged by the following: (1) handling

uncertain parameters in constraints of a stochastic programming problem is a matter of

research (e.g., see [10]), and there is no generally applicable approach; (2) for each candidate

solution to the first stage, an instance of second stage problem, often an NP-hard problem,

needs to be solved; (3) calculating the expected value, which is required in the second stage

is computationally expensive (e.g., requires integration over random distributions), and in

some cases not even feasible, as shown in [4].

An alternative approach that does not suffer from the same shortcomings is possibilistic

programming, which is founded on possibility theory. Possibilistic programming is widely

used for making decisions under uncertainty in many fields of engineering, including control

28



theory, robotics, and artificial intelligence. Advantages of possibilistic programming are

twofold: generality and efficiency. Unlike stochastic programming, where simple algebraic

operations require special considerations (e.g., central limit theorem), and not even always

possible, in possibilistic programming, fuzzy variables can be simply operated on using

traditional algebraic operators. This is true even if the distributions are complex and unique.

Possibilistic programming problems can be solved much more efficiently than stochastic

programming problems [50], making them desirable in many practical engineering problems,

including self-adaptive systems. For these reasons I have adopted possibilistic programming

as the technique for achieving the objectives.

While the characteristics of the problem made possibility theory a better fit, probability

theory has shown to be suitable in many areas of software engineering. Thus, the conclusions

made here are only with respect to the objectives. A more comprehensive analysis of the

differences between the two theories can be found in the extensive body of literature [18,

24–26].
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Chapter 7: Related Work

The research community has made great strides in tackling the complexity of constructing

self-adaptive software systems [14,57,59]. However, as corroborated by others [14,59], there

is a dearth of applicable techniques for handling uncertainty in this setting. The literature

in this area of research is extensive. I refer the reader to existing surveys for a comprehensive

analysis of the state-of-the-art in self-adaptation [77] and autonomic computing [49]. Here

I describe the seminal and closely related work.

7.1 Foundations of Self-Adaptive Software

IBM’s Autonomic Computing initiative advocates a reference model known as MAPE-

K [52], which is structured as hierarchical levels of feedback-control loops. In each loop,

there are four types of activities that operate on the managed subsystem and are devoted

to Monitoring, Analysis, Planning, and Execution (MAPE ). MAPE activities share various

models using what is known as Knowledge (MAPE-K ). At run-time, the activities, which

build the feedback-loop, are performed in the following logical flow:

• Monitor: Collects data through instrumentation of the running system. If a func-

tional failure or a violation of QoS objective is detected, it correlates the data into

symptoms that can be analyzed.

• Analyze: When a problem is detected, it searches for a configuration that resolves

it. It may perform a trade-off analysis between multiple conflicting goals.

• Plan: Chooses a path of adaptation steps towards the target configuration. The path

has to abide by the system constraints. In addition, adaptation steps must not cause

further failures in the system.
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• Execute: Takes the required actions to effect the changes delineated in the plan.

This may require adding, removing, and replacing the components and the way they

are interconnected in the running architecture.

Previous studies have shown that a promising approach to resolve the challenges of

constructing complex software systems is to employ the principles of software architec-

ture [74, 79]. Software architectures provide abstractions for representing the structure,

behavior, and key properties of a software system. They are described in terms of soft-

ware components (computational elements), connectors (interaction elements), and their

configurations. A given software architectural style (e.g., publish-subscribe, peer-to-peer,

pipe-and-filter, client-server) further refines a vocabulary of component and connector types

and a set of constraints on how instances of those types may be combined in a system [39].

Software architecture has also been shown to provide an appropriate level of abstraction

and generality to deal with the complexity of dynamically adapting of software systems [57].

This observation has led to research on architecture-based adaptation, which is the process of

reasoning about and adapting a system’s software at the architectural level [57,72]. Oreizy

et al. pioneered the architecture-based approach to run-time adaptation and evolution

management in their seminal work [72]. Tajalli et al. proposes an ADL based approach

for dynamic planning and re-planning in response to unexpected circumstances using AI

techniques [80]. Garlan et al. present Rainbow framework [42], a style-based approach

for developing reusable self-adaptive systems. Rainbow monitors a running system for

violation of the invariant imposed by the architectural model, and applies the appropriate

adaptation strategy to resolve such violations. Kramer and Magee [57] define a three-layer

model (component control, change management, and goal management) to address the

challenges associated with the development of self-managed systems.

7.1.1 Monitoring and Effecting Adaptation

A generally applicable solution to the problem of functional consistency during adaptation

was proposed by Kramer and Magee’s seminal model of dynamic change management [56],
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which provides a separation of structural concerns from application concerns. A transaction

is defined as an exchange of information (e.g., message, event) between two components,

initiated by one of the components. Their work identifies two possible states for a software

component during the adaptation process. Each state defines how a component behaves

during the corresponding phase of adaptation. The two states are, (1) active: A component

can start, receive, and process transactions. (2) passive: A component in this state will

continue to receive and process transactions, but will not initiate any new transactions.

Quiescence is defined as the required property of adapted component for a system to remain

in a consistent state [56]. Quiescence implies that all the nodes that can initiate transactions

on the updated component must be passive. This is known as the passive set [56].

Vandewoude et al. [86] propose Tranquility as a necessary condition for consistent adap-

tation of software systems. Tranquility builds on the notion of Quiescence proposed by

Kramer and Magee, except it relaxes some of the constraints to achieve faster adaptation

times. However, unlike Quiescence, Tranquility is not guaranteed to be reachable. Van-

dewoude et al. extended the Draco middleware [86] to provide support for Tranquility.

However, Draco relies on software components to provide the middleware with not only a

list of transactions they have already participated in the past, but also transactions they will

participate in the future. This assumption breaks the black-box treatment of components,

and is not practical, since it is not feasible for a third-party component to know a priori in

which transactions it will participate.

Based on the existing models of dynamic change management [56], an approach [33] is

introduced, which uses the rules and constraints of an architectural style to infer the com-

ponent dependencies for any software system built according to that style. The component

dependencies are in turn used to determine a reusable sequence of changes that need to

occur for placing a component in the appropriate adaptation state. Such a recurring se-

quence of changes, which are coordinated among the system’s architectural constructs (e.g.,

components, connectors) is called an adaptation pattern. An adaptation pattern provides a

template for making changes to a software system built according to a given style without
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jeopardizing its consistency. Moreover, extracting this information from the architectural

style prevents from violation of black box assumption regarding software components, which

is often violated in the relate work (e.g., [56, 86]). In a subsequent work [35], these set of

adaptation patterns are realized and extended on top of an existing middleware platform,

called Prism-MW [65]. Gomaa et al. [46] applied a similar idea to the development of recon-

figuration patterns for software product lines and they later extended their work to service

oriented systems [45].

Prism-MW [65] is an architectural middleware, which supports architectural abstrac-

tions by providing implementation-level modules (e.g., classes) for representing each archi-

tectural element, with operations for creating, manipulating, and destroying the element.

These abstractions enable direct mapping between a systems software architectural model

and its implementation. OpenCom [21] is component-based systems-building technology

for building low-level system software. It has a simple, efficient, minimal kernel, which

provides a set of extension mechanisms. A subset of these extensions is the reflective exten-

sion, which provides generic support for inspecting, adapting and extending the structure

and behaviour of systems at run-time. Fractal Component Model [12] is a hierarchical and

reflective model for the development of component based software. A key concept in this

model is membrane. Membrane plays the role of a wrapper for a Fractal component, which

adds facilities beyond the functional behavior of the wrapped component. Membrane can be

customized. The membrane can contain several forms of controllers each of which provides

different reflective features. Life-Cycle controller facilitates reconfiguration; for instance, it

provides support for starting and stopping a component.

7.1.2 Analyzing and Planning Adaptation

Self-Architecting Software SYstmes (SASSY) [63,67] is a model-driven [6,53] framework for

composing service oriented software systems. The domain expert specifies the requirements

using the Service Activity Schema language [34, 37]. With the help of a domain ontology,
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these requirements are translated into the system’s base software architecture. After gener-

ating the base architecture, SASSY instantiates the architecture by discovering the required

services and selecting the ones that maximize a global utility function that depends on the

system’s QoS requirements. SASSY generates alternative architectures by exploring and

applying architectural patterns that increase the utility. For instance, in a situation where

a service provider’s availability causes the utility to be reduced, SASSY may employ a repli-

cation pattern to compose two services in a way that one can be used as a hot standby for

the other. At run-time, SASSY monitors the services and computes the value of the global

utility function. When it is reduced by a given threshold, SASSY re-architects the system

and adapts it accordingly. SASSY uses a meta-controller [38] to configure its optimization

algorithms and their parameters at run-time.

JOpera [73] provides an engine for managing the execution of service providers to satisfy

multiple QoS properties, such as efficiency and latency. JOpera’s objective is on enabling

the service providers to satisfy their SLA requirements, while in SASSY given a set of

service providers, it aims to find an architecture that satisfies the users’ QoS requirements.

MOSES [13] uses a BPEL specification of a software system, to dynamically determine

the best composition of service providers. MOSES uses two patterns: fault-tolerant one-at

a-time, referred to as sequential alternate execution of services, and fault-tolerant first-to-

respond. MOSES uses linear programing to search for an optimal solution.

KAMI [43] allows for investigating how the change at run-time influence dealing with

performance attributes (e.g., response time). Following a model-driven approach, KAMI

uses at design time performance models based on Queuing Networks to drive architectural

reasoning. It also keeps models alive at run-time through automatic re-estimation of model

parameters. This way the models reflect the real behavior of the running system, and hence,

the results obtained from the re-execution of the model is more accurate. In a subsequent

publication [29] to KAMI, another approach is provided to address the same problem (i.e.,

keeping models alive at run time) by feeding a Bayesian estimator with data collected from

the running system, which produces updated parameters.
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Malek et al. present a framework [64] aimed at finding the most appropriate deploy-

ment architecture (allocation of software components to hardware nodes) for a distributed

software system with respect to multiple, possibly conflicting QoS dimensions. For a given

system, there may be many deployment architectures that provide the same functionality,

but with different levels of QoS. The parameters that influence the quality of a system’s

deployment architecture are often not known before the system’s initial deployment and

may change at run-time. This means that redeployment of the software system may be

necessary to improve the system’s QoS properties.

7.2 Uncertainty in Self-Adaptation

A few researchers have recently begun to address uncertainty in self-adaptation. I provide

an overview of those researches in the following subsections.

7.2.1 Rainbow Extension

Cheng and Garlan [16] described three specific sources of uncertainty in self-adaptation

(problem-state identification, strategy selection, and strategy outcome) and provided high-

level guidelines for mitigating them in Rainbow framework [42]. Problem-state identification

is related to Monitoring and Analysis activities from the MAPE loop, while strategy selec-

tion and strategy outcome are related to Planning and Execution activities, respectively.

In other words, they try to mitigate uncertainty in the activities of the adaptation feedback

control loop.

To mitigate uncertainty in problem-state identification, they use running average in

monitoring to counter variability and stochastic properties of the environment. The obser-

vations are then compared with architectural descriptions that are augmented with proba-

bilistic information to detect trend of behavior. Once the problem is detected, an strategy

is selected to resolve the problem. The uncertainty in strategy selection is mitigated by

using the Stitch language. This language allows for modeling uncertainty (the probabilistic
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flavor) in strategies, therefore, when Rainbow wants to select a strategy at run-time, it can

decide based on the expected value (which is capturing the uncertainty) of different strate-

gies. Finally, once a strategy is selected and put into effect, it may succeed or fail. Instead

of dealing with this uncertainty in the next adaptation loop, they consider the uncertainty

in strategy outcome by specifying how long Rainbow should watch the implementation of

the strategy before committing to the change. This can also be modeled using the Stitch

language.

In other words, by augmenting architectural models with probabilistic models, Rainbow

mitigates the uncertainty due to simplifying assumptions and noise. Moreover, by moni-

toring the system after adaptation Rainbow mitigates the uncertainty due to drift in the

architectural models.

7.2.2 RELAX

Whittle et al. introduced RELAX [89], a formal requirements specification language that

relies on Fuzzy Branching Temporal Logic to specify the uncertain requirements in self-

adaptive systems. RELAX allows for explicit expression of environmental uncertainty and

its effect on requirements; depending on the state of environment, RELAX specifies the

requirements that can be disabled or “relaxed”. To that end, RELAX introduces a set of

operators that can be used in forming the requirements. These operators also define how

the requirement can be relaxed at run-time. Moreover, the operators capture the kind of

uncertainty (uncertainty factor) that can initiate the relaxation of requirements.

In a subsequent publication [15], Cheng et al. extended RELAX with goal modeling

to specify the uncertainty in the objectives. They first build the goal lattice and then

use it in a bottom-up fashion to look for sources of uncertainty, which are the elements of

domain/environment and can endanger satisfaction of goals. In their approach, they identify

uncertainty through a variation of threat modeling, which is used to identify security threats

in a system. Once the uncertainty is identified, its impact is assessed to devise mitigation

tactics. The ultimate tactic for mitigating uncertainty (when all other tactics fail) is to add
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flexibility to the goal by “relaxing” it.

7.2.3 FLAGS

Similar to RELAX, FLAGS [8] aims to achieve the basic goal of adaptive systems at the re-

quirement level: mitigate the uncertainty associated with the environment and new business

needs by embedding adaptability in the software system as early as requirement elicitation.

In other words, FLAGS considers self-adaptation as a special kind of requirement, which af-

fects other requirements. These special requirements are called adaptive goals and FLAGS

allows for the definition of counter measures that must be performed if some goals are not

fulfilled as expected (due to predicted uncertainty).

FLAGS also deals with another source of uncertainty in addition to the uncertainty in

the context of the software: the uncertainty in the goals themselves. As satisfaction of

some goals cannot be specified by simple yes–no answer, FLAGS relies on fuzzy goals for

which properties are not fully known, the complete specification is not available, and small

temporary violations are tolerated. Therefore, FLAGS ends up with two sets of goals: crisp

goals and fuzzy goals. It formalizes the crisp goals using Linear Temporal Logic (LTL). On

the other hand, it formalize fuzzy goals using its fuzzy temporal language, which is unified

with the LTL specification. Therefore, all the software requirements can be specified in a

single coherent language.

7.2.4 FUSION

FUSION [27], is a learning based approach to engineering self-adaptive systems. Instead

of relying on static analytical models that are subject to simplifying assumptions, FUSION

uses machine learning, namely Model Trees Learning (MTL) to self-tune the adaptive be-

havior of the system to unanticipated changes. This allows FUSION to mitigate the uncer-

tainty associated with the change in the context of software system as it gradually learns

the right adaptation behavior in the new environment. The result of learning is a set of

relationships between the adaptation actions in the system and the quality attributes of
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interest (e.g., response time, availability). These rules consider the interaction of adap-

tation actions and hence to some extent mitigate the uncertainty caused due to synergy.

The quality attributes of interest could be measured and collected from the running system

through instrumentation of the software or sensors provided by the implementation plat-

form [28]. The adaptation actions correspond to variation points in the software that could

be exercised at run-time.

FUSION has two complementary cycles: learning cycle and adaptation cycle. The learn-

ing cycle relates the measurements of quality attributes to the adaptation actions. The

learning cycle constantly monitors the environment to find possible errors in the learned

relations. Persistence of such errors, which can be either due to drift or change in the con-

text, triggers relearning the new behavior. When quality of software decreases over time

and drops below a certain threshold, the adaptation cycle kicks in and uses the learned

knowledge to make informed adaptation decision to improve the quality attributes. The

quality of the software system is defined as aggregate collection of individual quality at-

tributes. However, since some quality attributes may conflict with each other, the notion

of utility is used to allow for making trade-offs.

7.2.5 Anticipatory Dynamic Configuration

Poladian et al. [76] studied dynamic configuration of resource-aware services, where they

showed how to select an appropriate set of services to carry out a user task, and allocate

resources among those services at run-time. The original work did not consider the un-

certainty in the environment. Subsequently, the work was extended to make anticipatory

decisions [75], and considered the inaccuracy of future resource usage predictions. To that

end, they build on the previous work of one of the authors [70] and used historical profil-

ing to find an application’s resource requirements for different configurations. Considering

resource availability over time mitigates the uncertainty in monitoring as it provides more

accurate models of the environment being monitored.
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By considering the resource availability prediction, the anticipatory model of configura-

tion chooses a configuration that maximizes the cumulative expected value of utility over

time. In other words, the selected configuration performs better in the prediction period.

This reduces the number of possible future reconfigurations and in turn disruption in the

system. In making the adaptation decisions, the cost of switching between the configura-

tions is also considered; if the cost of switching is low, this approach selects a configuration

that performs better at the moment and when the quality of selected configuration drops

the configuration is switched. However, if the cost of switching is high, a temporal under-

optimum configuration is accepted. That is, from the beginning an alternative configuration,

which performs better over time, is selected to prevent switching later on.

7.2.6 RESIST

RESIST [19] uses information from several sources, such as monitoring internal and external

software properties, changes in the structure of the software, and contextual properties to

continuously furnish refined reliability predictions at run-time. The up-to-date reliability

predictions express the reliability of the system in near future using probabilities. These

predictions are then used to decide about changing the configuration of the software to

improve its reliability in a proactive fashion. RESIST is targeted for situated software sys-

tems, which are prominently mobile, embedded, and pervasive. The uncertainty in these

systems are prevalent as they have highly dynamic configuration, unknown operational

profile/context, and fluctuating conditions, yet they are usually deployed in mission critical

environments (e.g., emergency response) and have stringent reliability requirements. RE-

SIST mitigates the uncertainty due to the context and simplifying assumptions by constant

learning. Moreover, slight changes in the reliability are modeled as probability distributions

indicating the noise.

RESIST takes a compositional approach to reliability estimation; the process starts with

analysis at the component level, which in turn makes it possible to assess the impact of

the adaptation choices on the system’s reliability. The component level reliability models
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rely on dynamic learning techniques, specially Hidden Markov Models (HMM), to provide

continuous reliability refinements. Component reliability is estimated stochastically using

a Discrete Time Markov Chain and in terms of the fraction of the time spent in failure

state by the component. Once the reliability of all components is obtained, a compositional

model is used to determine the reliability of specific system configurations. RESIST models

the uncertainty in the learning using probabilities.
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Chapter 8: Formal Specification of Self-Adaptation Problem

In this chapter, I provide a formal specification of the self-adaptation problem introduced

in Chapter 2, which I used to demonstrate and evaluate POISED.

8.1 Configuration

A system like the one depicted in Figure 2.1b consists of several software components, which

I denote as set C. Each component c ∈ C may have several configuration dimensions,

which I denote as set Dc. Configuration dimensions correspond to the knobs depicted in

Figure 2.1a. Each configuration dimension d ∈ Dc may have Ad configuration alternatives.

For example, Video Quality dimension of the Camera component in Figure 2.1 is comprised

of the following alternatives: 60%, 70%, 80%, 90%, and 95%. Configuration alternatives

within the same dimension are mutually exclusive, e.g., Video Quality could be exactly in

one of the 5 possible alternatives at any point in time.

I define the configuration space of component c ∈ C as the Cartesian product of all the

available configuration alternatives for that component:

ConfSpacec ≡ ⊗d∈Dc ⊗a∈Ad
dom(xc,d,a) (8.1)

Where x represents a decision variable with a binary domain and indicates whether an

alternative has been selected or not.

A system may have several execution scenarios denoted as list S ≡ 〈s1, s2, , sn〉, where

each scenario si ⊆ C. A scenario represents a high-level functional capability involving the

services provided by several software components. For example, the four bolded components

in Figure 2.1b form a scenario dealing with the robot maneuvering a terrain. Since the same
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set of components could potentially form different scenarios, I represent execution scenarios

as a list, instead of a set.

Configuration space of each scenario is the Cartesian product of the configuration space

of all the components that participate in it:

ConfSpaceS ≡ ⊗c∈SConfSpacec (8.2)

I use ConfSpace with no subscript to denote the set of all possible configurations of

components in a system (i.e., s = C):

ConfSpace ≡ ⊗c∈CConfSpacec (8.3)

Note that some software components, in particular those that are abstractions of physical

devices (e.g., camera), may not be shared among scenarios. An underlying assumption in

this work is that the system has been implemented in a way that abides to such sharing

constraints. Since the adaptation decisions do not impact the mapping of scenarios to

components, I do not need to model such constraints. On the contrary, as detailed next,

some other types of constraints need to be explicitly modeled.

8.2 Configuration Constraint

Not all configurations for a software system are valid. There may be some constraints among

the system’s configuration dimensions. For example, one may not be able to configure the

robot in a way that Cruise Speed is set to High and Power is set to Energy Saving. Another

class of constraints are among the alternatives in a given configuration dimension, i.e., the

fact that configuration alternatives are mutually exclusive (recall Section 8.1). I represent

these constraints as follows:

ConfConstraints : ConfSpace −→ {0, 1} (8.4)
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Where given a configuration, ConfConstraints returns 0, if at least one constraint is

violated, and 1, otherwise.

8.3 Quality Attribute

I use Q to denote the set of quality attributes, which are quantifiable non-functional prop-

erties of interest (e.g., response time). A quality attribute may take either discrete or

continuous values, e.g., response time may take continuous values bigger than 0, while

security may take an enumeration of discrete values.

The quality attributes of an execution scenario are determined by the configuration of

components participating in that scenario. For example, the response time of the Maneuver

scenario depicted in Figure 2.1b is affected by the configuration of its four components.

Given a configuration of a scenario, a quality attribute is estimated via an analytical formula

(model). These analytical formulas are used by the adaptation logic for making decisions.

I represent an analytical formula estimating the configuration’s impact on quality attribute

q ∈ Q of execution scenario s ∈ S as:

Q̃Es,q : ConfSpaces −→ dom(q) (8.5)

The tilde is the conventional notation for representing uncertainty. Description of analytical

models for estimating quality attributes is beyond the scope of this paper. Numerous

previous studies (e.g., [19, 27, 43, 69]) have developed analytical approaches for estimating

quality attributes in terms of the system’s architectural configuration. Regardless of the

approach, the analytical models provide only estimates, and thus represent a source of

uncertainty.
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8.4 Resource

I use set R to denote the different computing resources (e.g., memory, CPU) utilized by

the software system. For each resource r ∈ R, I use ˜Capacityr to represent the maximum

available computing resource. While in some cases the available resource is a known constant

(e.g., physical memory on a host), in other cases the available resource may fluctuate (e.g.,

network bandwidth), and thus introduce uncertainty.

The configuration of a system determines its resource usage. For example, consider

that in the robotics system, when the Power dimension of the Controller component is

configured to operate at Full Power, the system’s battery consumption increases. I represent

an analytical formula estimating the configuration’s impact on the system’s resource r ∈ R

as follows:

R̃Er : ConfSpace −→ dom(r) (8.6)

The resources are different from quality attributes in two ways: (1) the user does not

define preferences for their values, and (2) resources usually have certain physical limitations

on their maximum usage. Numerous previous studies (e.g., [75, 76, 78]) have developed

resource usage models that can be used in such setting. While sophisticated models may

reduce the inaccuracy, they are not ever completely free of it, challenging the confidence

with which adaptation decisions are made.

8.5 User Preference

Similar to the previous research [27,75,76,87], I use utility functions to represent the user’s

preferences for changes in the quality attributes. A utility function representing the user’s

satisfaction with quality attribute q ∈ Q of an execution scenario s ∈ S is represented as:

ŨP s,q : ran(Q̃Es,q) −→ [0, 1] (8.7)
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A higher value indicates more user satisfaction with the system. Given a vector
−−→
cnf ∈

ConfSpace, I define the overall utility Ũ to be the cumulative satisfaction of all the user

preferences:

Ũ ≡
∑
∀s∈S

∑
∀q∈Q

ŨP s,q

(
Q̃Es,q

(−−→
cnfs

))
(8.8)

Where
−−→
cnfs is defined as the projection of

−−→
cnf from ConfSpace onto ConfSpaces :

−−→
cnfs =

proj−→
Is

(−−→
cnfs

)
, and

−→
Is is the identity vector for ConfSpaces. In other words, since not

every component participates in every execution scenario of interest s, the above projection

removes the unnecessary elements from vector
−−→
cnf to derive

−−→
cnfs. The assumption in the

formulation of Equation 8.8 is that if the user has not specified a preference for a quality

attribute of an execution scenario, the corresponding utility function returns only zero.

8.6 Optimization Problem

The objective of the adaptation logic is to find a configuration that maximizes the system’s

overall utility:

argmax(−−→
cnf∈ConfSpace

)Ũ (8.9)

The solution maximizing the above objective should satisfy two constraints. First,

ensure that the solution satisfies the configuration constraints:

ConfConstraints
(−−→
cnf

)
= 1 (8.10)

Second, ensure that the resource usage does not exceed the available resources:

∀r ∈ R, R̃Er

(−−→
cnf

)
≤ ˜Capacityr (8.11)
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For simplicity, the above formulation assumes the capacity of all resources is uncertain.

But as you may recall from Section 8.4, this may not always be the case.
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Chapter 9: Quantifying Uncertainty

Before uncertainty can be dealt with in the analysis, it needs to be quantified for a given

configuration of the system. The accuracy of POISED depends on the ability to: (1) identify

the sources of uncertainty, and (2) estimate the level of uncertainty. To put it boldly, my

approach addresses known unknowns, not unknown unknowns. However, even if the two

conditions are partially satisfied (i.e., only some sources of uncertainty are identified and

estimated), POISED produces better results than the traditional approach by incorporating

the known uncertainties.

In this chapter, I first describe two ways of estimating uncertainty: eliciting it from the

stakeholders (e.g., user, engineer), and observing it in the system. These techniques are

not intended to be exhaustive, or even generally applicable, but rather concrete examples

to illustrate the feasibility of POISED. I then describe how uncertainty in the individual

elements can be combined to quantify the overall uncertainty for the system. In other

words, the contribution of POISED is mainly in how I use this information to reason about

the uncertainty. A comprehensive framework for estimating all sources of uncertainty falls

outside the scope of my thesis.

9.1 Eliciting Uncertainty from Stakeholders

Stakeholders often provide inputs for different facets of a self-adaptive system. One of the

most crucial and commonly elicited inputs is the user’s quality preferences. It is commonly

agreed that eliciting user’s preferences in terms of complex utility functions is challeng-

ing [14]. The specification of such utility functions is highly subjective and inevitably prone

to uncertainty. Engineers may also provide inputs for certain software properties that can-

not be easily monitored. For instance, the maximum memory consumed by a software
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component is a property that may be available from the component’s source code, but

not easily obtainable through run-time monitoring. Similarly, engineers may provide in-

puts for certain systems parameters, such as the available network bandwidth, based on a

combination of past experiences, hardware specifications, similar systems, etc.

For the inputs provided by the stakeholders, it is also reasonable to ask them to esti-

mate the range of uncertainty based on the expected level of variation in the input. For
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illustration, Figure 9.1 shows how an engineer may estimate the range of uncertainty in the

network bandwidth in the form of a triangular possibility distribution. Possibility distribu-

tion can be modeled in different ways (e.g., Gaussian, Triangular) [94], but for simplicity

I use only triangular distribution in this paper. The horizontal axis marks the network

bandwidth, while the vertical axis marks the possibility (i.e., degree of membership). This

distribution indicates that the range of feasible values for network bandwidth is anywhere

between the most pessimistic, denoted with Capacitypbw, and the most optimistic, denoted

with Capacityobw. In a triangular distribution, as we reach the boundaries, the possibility of

getting the expected value drops to 0. The most possible value is Capacitymbw, which always

has the value of 1.

In the example of Figure 9.1, the engineer sets the most possible value to be the expected

network bandwidth, which may be based on the engineer’s past experiences, similar systems,

etc. The most pessimistic value is set to 0, representing network failure, and the most

optimistic value to the ideal network bandwidth, as advertised by the network provider.

By connecting the most pessimistic and optimistic points with the most possible point, we

arrive at a triangular possibility distribution representing the uncertainty in the network

bandwidth. A similar approach could be used for eliciting and quantifying uncertainty with

the other types of stakeholder provided inputs, such as utility functions.

9.2 Measuring Uncertainty via Monitoring

A self-adaptive software system often relies on monitoring to reason about changes in the

execution condition. Dynamically fluctuating system parameters are one type of phenomena

in this setting that are monitored. For instance, consider that while capacity of certain

resources (e.g., available physical memory) may be known prior to system’s deployment,

other resources (e.g., available battery charge) may change at run-time, and thus would

need to be sampled during the system’s execution. On top of the uncertainty created by

the fluctuations in the monitored phenomenon, monitoring is also impacted by the error in
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the sensors used for data collection. Such an error is in particular unavoidable with digital

sensors that take samples of a continuous physical phenomenon. Even if the observed

phenomenon is constant, the collected data may vary, due to noisy sensors.

System parameters may not be the only elements that need to be monitored. In recent

work [27, 31], I showed that analytical models used for making self-adaptation decisions

are abstractions of the system and by definition make simplifying assumptions, which if not

held at run-time may make the estimates inaccurate. The inaccuracy of an analytical model

could be determined by comparing its estimates (i.e., Q̃E, R̃E) against the actual behavior

of the system. This can be achieved either prior to system’s deployment by benchmarking

the system, or through run-time observation.

The uncertainty corresponding to any monitored phenomenon can be estimated as a

probability distribution. For example, if the engineer is not able to use the technique

from Section 5.1 to manually specify the uncertainty in network bandwidth, an alternative

approach is to estimate it by monitoring the variations and constructing the equivalent

probability distribution. Figure 9.2 shows the probability distribution corresponding to

the data collected for variations in the network bandwidth (i.e., Capacitybw). There are

numerous approaches for deriving a probability density function [44] that represents the

probability distribution of collected data, including Q-Q plot [44] that could be used to

estimate well-known (e.g., normal, beta) distributions, and Quantile-Regression [54] that

could be used to estimate arbitrary complex distributions. In my experiments, I found Q-Q

plot to be sufficient, as monitoring data often follows one of the well-known distributions.

For the parameters that only have monitoring noise, I obtained approximate normal distri-

bution. However, for most parameters, the distributions were skewed and best represented

using beta distribution. As you may recall from Section 6.2, the fact that the majority

of distributions were not normal was one of the primary motivations that led me to use

possibilistic programming, as opposed to stochastic programming.

The majority of existing self-adaptive systems (e.g., [19,27,69,76]) ignore the probability

distribution of the collected data, and simply use the mean value in their analysis. By basing
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the analysis on the mean behavior, they essentially ignore the statistical characteristics of

the data, and thus the underlying uncertainty.

9.3 Quantifying the Overall Uncertainty

From the estimates of uncertainty in the elements comprising a self-adaptive software sys-

tem, I can estimate the overall uncertainty in the system’s ability to satisfy its objectives

(i.e., uncertainty in the overall utility). As mentioned in Section 6.2, for efficient and

effective analysis of uncertainty, I have adopted the possibilistic model of uncertainty in

POISED. However, to quantify the overall uncertainty under the possibility theory, and as

a fuzzy variable, I also need the uncertainty associated with each of the elements to be

expressed as a fuzzy variable.

As you may recall from Section 9.1, the approach for estimating uncertainty in the inputs

provided by the stakeholder already produces fuzzy variables. Recall that a possibility

distribution, such as the one depicted in Figure 9.1, defines a fuzzy variable. On the

other hand, I need to transform the probability distribution representing the uncertainty in

monitored elements to the equivalent possibility distribution.

I demonstrate this transformation via the network bandwidth example. From the prob-

ability distribution of Figure 9.2, I can derive the corresponding possibility distribution of

Figure 9.1 as follows: (1) calculate the confidence interval [44] and mode [44] of probability

distribution (mode is the value that occurs most frequently in a distribution), (2) set the

most pessimistic value equal to the low confidence limit of the probability distribution, (3)

set the most optimistic value equal to the high confidence limit of the probability distri-

bution, (4) set the most possible value equal to the mode of probability distribution, (5)

connect the most pessimistic and optimistic points with the most possible point to arrive

at the triangular possibility distribution of the collected data. This approach could be used

to derive the possibility distribution for all of the monitored elements.

The possibility distribution derived in this way is an approximation of the probability

distribution. This is because the most pessimistic and optimistic values are determined
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based on the confidence limits, which are not the absolute pessimistic and optimistic values

for a probability distribution. While in theory the two may not be identical, in practice,

selecting a large confidence level (e.g., 99%) results in negligible difference.

Using the possibility distributions quantifying the uncertainty in the individual elements

of the problem, I quantify the overall uncertainty in system’s ability to satisfy its overall

utility (see Equation 8.8) via a possibility distribution specified as follows:

Up ≡
∑
∀s∈S

∑
∀q∈Q

UP p
s,q

(
QEp

s,q

(−−→
cnfs

))

Um ≡
∑
∀s∈S

∑
∀q∈Q

UPm
s,q

(
QEm

s,q

(−−→
cnfs

))

Uo ≡
∑
∀s∈S

∑
∀q∈Q

UP o
s,q

(
QEo

s,q

(−−→
cnfs

))
(9.1)

Where
−−→
cnfs ∈ ConfSpace, and Up, Um, and Uo denote the most pessimistic, possible,

and optimistic values for the overall utility of the system, respectively. The insight is

that the most pessimistic overall utility Up occurs when all of the quality estimates QE

and user preferences UP are also pessimistic. Similar insight holds for Um and Uo. For

simplicity, this formulation assumes the utility functions are monotonic, which is often the

case with user-specified preferences [87]. If that is not the case, by taking the derivative of

the functions I could find their extremums; details of which are elided for brevity.
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Chapter 10: Possibilistic Analysis

I now describe my approach for formulating the problem of Section 8.6 as a Possibilistic

Linear Programming [50] problem, and solving it using conventional solvers [1].

10.1 Possibilistic Formulation of the Problem

As you may recall from Chapter 4, POISED manages the uncertainty by finding a solution

that has the best range of overall utility, where the range depends on the level of uncertainty

in the system. Figure 10.1a depicts the intuition behind POISED, which involves pursu-

ing three concurrent objectives: (1) select a configuration that maximizes zm ≡ Um, (2)

minimize negative consequence of uncertainty zp ≡ |Um − Up|, and (3) maximize positive

consequence of uncertainty zo ≡ |Uo − Um|. In essence, the objective is to find a configu-

ration that has the highest likelihood of satisfying the user’s preferences given the level of

uncertainty. I rewrite the objective (Equation 8.9) as a PLP as follows:

argmin(−−→
cnf∈ConfSpace

)zp
argmax(−−→

cnf∈ConfSpace
)zm

argmax(−−→
cnf∈ConfSpace

)zo

(10.1)

Figure 10.1b shows the two possible scenarios that could occur as PLP searches for the

optimal solution among three hypothetical configurations. Each configuration corresponds

to a possibility distribution in Figure 10.1b, which is unlike the traditional approach, where

each configuration would be a point in the utility space. The first scenario occurs when a

configuration is inferior to others with respect to all objectives. For instance, in Figure 10.1b,
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Figure 10.1: Possibilistic Linear Programming: (a) insight, and (b) trade-off between ob-
jectives.

Confa is inferior to Confb and Confc with respect to all three objectives. That is Confa

has a larger zp, and a smaller zm and zo. The second scenario occurs when there are trade-

offs. For instance, Confb and Confc present a trade-off, as Confb is superior to Confc with

respect to zo and zp, and inferior with respect to zm. Section 10.2 describes the process of

transforming the PLP problem to a form in which such trade-offs can be resolved.

The next step is the formulation of constraints with uncertainty, which in the problem

corresponds to Equation 8.11, ensuring the resource usage does not exceed the available

capacity. In Section 9.3, I described how the range of uncertainty in resource estimate and

capacity can be quantified in the form of a triangular possibility distribution. Since I am

dealing with a constraint, I would like to assess it under the worst case. Using the possibility

distributions, I can reformulate Equation 8.11 as follows:

∀r ∈ R,REp
r

(−−→
cnf

)
≤ Capacitypr (10.2)

REp
r is the maximum resource usage, while Capacitypr is the minimum resource capacity.

While both REp
r and Capacitypr represent the most pessimistic points in the corresponding

possibility distributions, the two are semantically inverse of one another. Finally, as you

may recall from Section 8.4, the capacity of certain resources may be a crisp value (e.g.,

available physical memory), in which case Capacitypr = Capacityr.
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10.2 Solving the Possibilistic Problem

The PLP problem is an instance of a multi-objective problem, and to solve it using com-

monly available linear programming solvers, I first need to transform it to an equivalent

single-objective problem. This is necessary to allow me to reason about the objective trade-

offs, such as those depicted in Figure 10.1b. Intuitively the transformation process entails

(1) normalizing the objective functions, (2) combining the objective functions, and (3) if

necessary, specifying priorities among the objectives. In this section, I describe the details

of these three steps.

10.2.1 Normalizing the Objectives

Since the three PLP objectives are defined differently in terms of U , their range may not

be the same. Therefore, to avoid one objective to dominate the other ones as I combine

the three objectives, I first have to normalize them. I use normalizing linear membership

function [58], which is a function µ that maps each objective z to a value between 0 and 1:

j ∈ {p,m, o}, µzj : dom(zj) −→ [0, 1] (10.3)

This allows me to have objective functions with the same range. However, for defining

each function µ, I first need to determine the two extremums for each objective function

z: given a configuration, the extremum maximizing the objective is called Positive Ideal

Solution (PIS), and the one minimizing the objective is called Negative Ideal Solution (NIS).

Note that the definitions of NIS and PIS are reversed when I am dealing with a minimization

objective (i.e., zp in Equation 10.1).
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I can obtain these values by performing the following six single objective optimizations:

zPIS
p ≡ argmin(−−→

cnf∈ConfSpace
)zp

zNIS
p ≡ argmax(−−→

cnf∈ConfSpace
)zp

zPIS
m ≡ argmax(−−→

cnf∈ConfSpace
)zm

zNIS
m ≡ argmin(−−→

cnf∈ConfSpace
)zm

zPIS
o ≡ argmax(−−→

cnf∈ConfSpace
)zo

zNIS
o ≡ argmin(−−→

cnf∈ConfSpace
)zo

(10.4)

I specify µ to return 1 for the PIS value, 0 for the NIS value, and proportionally linear

between the two extremums:

µzp =


1 zp < zPIS

p

zNIS
p −zp

zNIS
p −zPIS

p
zPIS
p ≤ zp ≤ zNIS

p

0 zp > zNIS
p

(10.5)

µzm =


1 zm > zPIS

m

zm−zNIS
m

zPIS
m −zNIS

m
zNIS
m ≤ zm ≤ zPIS

p

0 zm < zNIS
m

(10.6)

Function µzo is specified similar to µzm . Figure 10.2 shows two instances of µzp and µzm

that normalize the possible outputs of zp and zm, respectively. As the definitions of NIS

and PIS are reversed for zp, the normalizing function µzp is decreasing, while µzm and µzo

are increasing. This is to transform the minimization objective (i.e., zp in Equation 10.1)
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into a maximization one.

10.2.2 Combining the Objectives

Given the maximization objectives with the same range, I use a well-known technique1 to

specify the single-objective problem equivalent to PLP problem of Equation 10.1 as follows:

argmax(−−→
cnf∈ConfSpace

)ϕ

Subject to : j ∈ {p,m, o}, µzj ≥ ϕ
(10.7)

In the above formulation, I have reformulated the objective to maximize the auxiliary

1Canonical description of the mathematical technique for translating a maximization multi-objective prob-
lem to a maximization single-objective problem (see [58, 93]): the problem of maximizing a set of objective

functions F = {µ1, µ2, . . . , µn}, where all functions have the same range, is equivalent to the maximization
of auxiliary variable ϕ, where ∀µi ∈ F, µi ≥ ϕ.
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decision variable ϕ ∈ [0, 1] representing the overall satisfaction with the three normalized

objectives µzp , µzm , and µzo . In other words, the auxiliary objective is to find a configuration

that maximizes ϕ, which is constrained by the three normalized objectives, resulting first

in their optimization.

10.2.3 Specifying Priorities

In the above formulation, the three objectives (expressed as constraints) have the same

importance. But in certain domains, some of the objectives may have a higher priority. For

instance, in a mission critical system, minimizing zp may take precedence over maximizing

zo, since a solution capable of providing certain guarantees in the worst case scenario would

be desirable. This may not be necessarily the case in other domains that are willing to

tolerate higher risks with the potential of higher utility.

I achieve this by assigning weights wp, wm, and wo to objectives µzp , µzm , and µzo , re-

spectively. The weights specify the important of each objective, and wp+wm+wo = 1. Thus,

the final complete optimization problem, including the constraints (Equations 8.10 and 10.2),

can be formulated as follows:

argmax(−−→
cnf∈ConfSpace

)ϕ

Subject to : j ∈ {p,m, o}, (1− wj)µzj ≥ ϕ

ConfConstraints
(−−→
cnf

)
= 1

∀r ∈ R,REp
r

(−−→
cnf

)
≤ Capacitypr

(10.8)

To give a normalized objective µzj more priority over others, I make the corresponding

constraint (i.e., µzj ≥ ϕ ) more restrictive than others. For that reason, in the above

formulation, I multiply each normalized objective µzj with 1−wj , where as the value of wj

increases, the related constraint becomes more restrictive.
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Chapter 11: Genetic Algorithm

Possibilistic Linear Programming can find the optimal solution. However, it is an instance

of linear integer programming problem, which is know to be an NP-hard problem [20].

Adaptation decisions are usually made at run-time when timing is very important. Simply

put, slow down due to scalability problems is not acceptable in such settings. Therefore, I

developed an approximation optimization algorithm called genetic algorithm [22]. Genetic

algorithm belongs to the class of evolutionary algorithms and can find a near-optimal so-

lution usually in a fraction of time that takes for integer programming to find the optimal

solution.

In addition to the optimization speed up due to the approximation nature of genetic al-

gorithm, it can also benefit from parallelism to bring down the optimization time. Genetic

algorithm can be designed to run on multiple processors with an insignificant overhead.

Another benefit of genetic algorithm is the flexibility of models. To keep the optimization

tractable, PLP puts some constraints on the models (e.g., Q̃E function in Equation 8.5

should be linear). On the other hand, genetic algorithm allows for more expressive mod-

els without hampering the optimization time. Since genetic algorithm evaluates solutions

programmatically, the models are as expressive as a program. In fact, it is even possible to

connect genetic algorithm to a simulation engine or a queuing network model for evaluation

of solutions in the optimization space (a.k.a. search space). Although this may not be

advised for making adaptation decisions at run-time.

In genetic algorithm, candidate solutions are represented as individuals, which have a

sequence of genes. The structure of the sequence, which is called representation, is derived

from the structure of the problem and the values assigned to different genes determines the

solution. Genetic algorithms start with a set of individuals (usually random) and iteratively
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evolves them towards ideal individuals. The set of individuals is called population and the

population in each iteration is called a generation. Each individual for the next generation

is produced from the current population in three steps. (1) Two or more individuals are

selected from the current population stochastically. These individuals are called parents. It

is more likely for individuals with higher quality (determined by a some fitness functions) to

be selected as parents. (2) The new individuals, which is called offspring, is created based

on the parents (e.g., by crossover between parents’ gene sequences). (3) The new individual

is slightly mutated by random modification to some of its genes.

The performance of genetic algorithm heavily depends on these three steps as well as

the representation of the individuals. It is very important that the three steps carry the

good characteristics of the parents to the newly created individuals. At the same time,

they should prevent the search from sticking into a local optimum by accepting diversity

and randomness. Finally, the individuals (i.e., sequence of genes) should be represented in

a way that the chance of creating invalid individuals from valid parents is very low.

In the adaptation problem (recall Chapter 2), the representation of an individual is

an array of integers. The size of the array is equal to the number of configuration knobs

(recall Figure 2.1a). The genes from the parents are combined through a standard two-point

crossover. In standard two-point crossover, the gene sequence is divided into three parts

based on two random indexes, which are selected within the gene boundaries. The child

inherits the left part (i.e., before the smaller index) and right part (i.e., after larger index)

from the first parent and the middle part (i.e., between indexes) from the second parent.

Finally, each gene is mutated with an independent probability of 0.05. The mutation resets

the value of the gene to a valid alternative.

Figure 11.1 depicts the breeding pipeline for a configuration problem with 10 knobs.

Since the problem has 10 configurations knobs, the representation of the problem also has

10 genes. In Figure, these genes are depicted as G0-G9. Here the two random indexes for

two-point crossover are 2 and 7 respectively. Therefore, G0-G1 and G7-G9 are inherited

from Parent 1, while G2-G6 are inherited from Parent 2 to form the Offspring. Finally,

60



G
9

G
7

G
5

G
3

G
1

7

Parent 1: 4 8 2 9 8 7 5 5

2 4 1 6 3 7 9 6

G
8

G
6

G
4

G
2

G
0

Parent 2:

4 1 3 69 4 5 5 1

9 1

3

Offspring:

4 1 3 6 89 4 5 5 1

3

Mutated:
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the mutation operator changes the value of G6 from 3 to 8 and the result is the Mutated

offspring, which is added into the next generation.

To evolve populations of individuals I need to define a fitness function that evaluates

the quality of each individual. The fitness function returns the minimum possible fitness

if an individual is invalid (i.e., -Float.MAX VALUE). Otherwise, it returns the value of Ũ

(recall Equation 8.8) for the configuration that corresponds to the individual. In the genetic

algorithm, parents go through tournament selection of size 2 based on their fitness. To that

end, per each parent, two random individuals are selected from the population and the

individual with higher fitness value is selected as the parent. In other words, individuals

with higher fitness have higher chance of passing their genetic properties to the future

generations. As a result, in each iteration, the overall quality of population increases.

Modeling each configuration as an independent integer, as opposed to multiple depen-

dent binary variables (recall Equation 8.1), prevents mutation from creating structurally

invalid offspring. Moreover, the mutation operator allows offspring to diverge from the
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parents and slightly encourages exploration to avoid sticking into a local optimum.

The genetic algorithm stops either when the individual with absolute optimum fitness

is found or when a certain limit on the search budget is met. In this case, the algorithm

returns the individual, which has the highest fitness so far, as the solution and terminates

the search. The genetic algorithm also notes the generation in which the search was stopped.

As I alluded to, earlier in this section, PLP has scalability problem and may not be able

to converge to a solution. In this case, I am not able to evaluate quality of the solution

in the genetic algorithm. Therefore, I devised a random optimization as a baseline for the

genetic algorithm, which is a well-known approach for evaluation of the results in the area

of evolutionary algorithms, when other baselines are not available. To that end, I select

a uniformly random valid integer for each gene. This guarantees that random individuals

are structurally valid. To be fair, I made the random optimization visit exactly the same

number of individuals (maybe slightly more), which are visited by the genetic algorithm.

This upper bound on this number can be simply calculated as |Generation|× |Population|.
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Chapter 12: Effecting Adaptation

Finding the ideal configuration (i.e., Chapters 10 and 11) is categorized as Planning accord-

ing to MAPE-K loop (recall Figure 5.2). Once the ideal configuration is selected either by

solving the PLP or through the genetic algorithm, the Base-Level software system should

be changed to move from current configuration towards the ideal configuration. This is the

focus of Execution according to MAPE-K loop.

Execution provides the necessary abstraction for Planning. While Planning can be

developed abstractly and independent of Base-Level software system, Execution has close

ties to the Base-Level software system. Therefore, I needed to select a target platform

for implementation of Execution. I selected Prism-MW [65], which is is an architectural

middleware, and hence, a perfect fit to my research. Note that the contributions of this

work, which have been formalized in Chapter 3, belong to Planning and are abstract enough

to be used in different systems.

In the remainder of this chapter I describe implementation of Execution on top of Prism-

MW for effecting adaptation decisions.

12.1 Challenges with Effecting Adaptation

Typically, middleware support for architecture-based adaptation is realized in the form of

adding, removing, and replacing software components. For instance, replacing a component

in Prism-MW is achieved by a call to remove method followed by a call to add method on the

existing architecture. However, such changes could jeopardize the integrity of a software

system; they could leave the system in an inconsistent state. For instance, consider a

scenario where we would like to replace the Camera component. This could be realized by

removing the old Camera component and adding a new instance of it [72]. This solution,
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Figure 12.1: The sequence of navigation scenario and the corresponding component de-
pendencies in EDS.

however, ignores other components (e.g., Controller) that depend on Camera for delivering

their services.

Let us assume the “Navigation” scenario is according to the sequence diagram depicted

in Figure 12.1. If Camera is replaced in the middle of such a transaction, the scenario may

be start by the Controller and the old Camera and continue with the new Camera. The

effect of this may manifest itself in the form of functional failure: the new Camera, which

has not processed t2 may not be able to process t4, resulting in the system to never respond

to the user (i.e., t4, t5, and t6 do not occur).

At first blush it may seem that buffering events intended for the Camera component

would solve the problem. However, buffering by itself cannot address consistency issues

that may arise. Consider the situation in which Camera component is replaced after it

has responded to t2, but before receiving a request for t4. In this case, it is possible for

the old Map to process t2, and the new Map to process t4, assuming it is buffered for

later processing. However, this may violate Camera’s interaction protocol (i.e., t4 can be
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processed only after t2 has, which would not be the case with the newly installed Camera).

Since the new Camera may not have the correct state, the system may become inconsistent.

Note that even if the component is stateless, inconsistency problems may arise. This

typically happens when a stateless component provides a reverse functionality. For instance,

consider a stateless encryption component that stores/retrieves data from a file using two

interfaces that are reverse of one another: cipher and decipher. Replacing this component

with one that uses a different type of encryption algorithm in the middle of a transaction

could break the system’s functionality, since decipher interface cannot be used on data that

was ciphered using the old component.

By the same reasoning, in the case of stateful components, even if there is support for

state transfer (i.e., ability to extract and set the component’s state externally), the issue

of consistency cannot be fully addressed. The reason is that the consistency of a system

depends not only on the component’s internal state, but also the state of its interaction

with other components.

As I described in Section 7.1.1, a solution to the problem of ensuring consistency during

the run-time adaptation of software was proposed by Kramer and Magee’s seminal model

of dynamic change management, known as quiescence [56]. In this work, a transaction

is defined as an exchange of information (e.g., message, event) between two components,

initiated by one of the components. Each step depicted in Figure 12.1 corresponds to a

transaction. A dependent transaction is defined as a two-party transaction whose comple-

tion may depend on the completion of other consequent transactions. For instance, t1 form

a dependent transaction, while t3 is an independent transaction.

From a theoretical perspective, the approach presented above solves the problem of

ensuring consistency during adaptation. However, applying this approach in real-world

software systems remains a challenge. It is typically left to the application developers to

implement the required change management and coordination facilities. These facilities

would provide the logic that ensures the system’s consistency during adaptation (i.e., the

order in which the various components are activated and passivated).
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The implementation of these facilities is a major burden on the application developers

for the following reasons:

1. Identifying the component dependencies: Determining the changes that need to occur

in the system to place a software component in a particular adaptation state (i.e.,

active, passive) depends on the component dependencies. In event based systems,

which are the focus of my work, component dependencies can be expressed in terms

of transactions. Two components depend on one another, if there is a (dependent)

transaction between the two. However, identifying transactions, in particular depen-

dent transactions, requires understanding the details of the application logic (e.g.,

Figure 12.1), which defeats the purpose of treating components as black boxes and

adapting a system at the architectural level. Identifying the dependency relationships

in a large software system is very difficult.

2. High complexity : Realizing such facilities requires the development of complex state

management and coordination logic.

3. Lack of reuse: Since each component has its own unique set of dependencies with

other components, one component’s state management logic cannot be easily reused

by other software components that may need to be updated at run-time.

4. High coupling : Since the state management logic depends on the component de-

pendency relationships, the resulting software is very fragile. That is as soon as the

software evolves (e.g., components change the way they interact and use one another),

the state management logic needs to be modified.

Traditionally, one method of reducing complexity and increasing the developer’s produc-

tivity is to employ middlewares. The middleware engineers develop the frequently needed

facilities (e.g., data marshalization, remote method invocation, service discovery), and pro-

vide them as reusable modules to any application that is developed on top of the middleware.

Unfortunately, employing the same approach in the context of adaptation is not feasible,
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since the middleware designers cannot predict a priori which software components will be

deployed on top of a middleware, how they will be configured, and what will be their de-

pendencies. Therefore, modern middleware platforms do not provide change management

facilities beyond simple dynamic addition and removal of components.

12.2 Using Architectural Styles to Derive Dependencies

In light of the challenges mentioned above, currently three methods of adapting a software

system are employed: (1) Query the component itself to provide information about its

dependency relationships. This relates to the first problem in Section 12.1, i.e., violates

the black box treatment of components. Moreover, it hinders reusability of components

developed in this manner. (2) Remove the old component abruptly and replace it with a

new one. As exemplified using the EDS application in Section 12.1, this approach could leave

the system in an inconsistent state. (3) Bring down the entire system before adapting it, and

restart it afterwards. This approach results in severe disruption in system’s execution. None

of the existing approaches make use of advances in dynamic change management [56, 86]

and hence are not desirable.

I proposed a new approach that builds on the quiescence model of dynamic change

management. The key underlying insight, established in my work [33,35] is that a software

system’s architectural style could reveal the dependency relationships among the compo-

nents of a given system, even if the components are indirectly connected to one another. The

dependency relationships are critical when adapting a software system, as they determine

the impact of change on the system [56,86].

An architectural style is a named collection of design decision, which constraint the

design to a well-documented subset of possible choices [39]. Some of the most important

properties of a given style are the allowable relationships among its components and con-

nectors. If a given software system adheres to the rules and constraints of a style, I can infer

the dependency relations automatically. To that end, I use the well-documented rules and
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constraints of a given architectural style to infer the component dependencies for the soft-

ware system adhering to that style without needing additional specific information about

the system.

An example of this can be seen in Figure 2.1. Since I already now the style of the

robotic software system, without knowing the details of its application logic, I can derive

dependency relationships between its components. For instance, since Controller depends

on Camera, before doing any change to the latter, I need to make sure that the former is

in a passive state. Note that this relationship is derived only from the style and topology

of the architecture and without using any internal knowledge about the application. In

other words, the proposed approach does not require availability of a detailed model of the

component interactions in the system, such as that shown in Figure 12.1, for reasoning

about quiescence.

The component dependencies are in turn used to determine a reusable sequence of

steps for placing a component of a given style in the appropriate adaptation state. Such

a recurring sequence of changes, which are coordinated among the system’s architectural

constructs (e.g., components, connectors), is called an adaptation pattern. An adaptation

pattern provides a template for making changes to a software system built according to a

given style without jeopardizing its consistency.

An adaptation pattern for a given style is guaranteed to be generally applicable for sys-

tems built according to that style, since (1) quiescence is guaranteed to be reachable [56],

and (2) applications built according to the style must comply with the dependency relation-

ships established in that style. I have enhanced Prism-MW with style-induced adaptation

patterns discussed above. Unlike any existing solution, the middleware ensures the consis-

tency of the adapted software system. Since each style acts according to a predefined set of

rules, which are enforced by the middleware, the adaptation capability can be reused for any

software built according to that style. Therefore, the middleware alleviates the application

developers from implementing the same complex and error-prone functionality.

Figure 12.2 depicts the relationships between the different components in my approach.
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Figure 12.2: Using architectural styles to ensure safe adaptation.
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An application is developed according to a style, which comes from a set of known ar-

chitectural styles. For each style in this set, the related adaptation pattern is derived and

maintained in a repository. An adaptation pattern is used to orchestrate the process of run-

time change in the applications of the corresponding style. This way an application benefits

from the reusable adaptation facilities provided by a middleware once it is deployed on top of

it. Application developers can also extend the set of architectural styles and corresponding

adaptation patterns to account for domain-specific styles. In the following section, I describe

the derivation of adaptation patterns for two complex and well-documented architectural

styles.

12.3 Style-Driven Adaptation Patterns

In this section, I describe the process of extracting adaptation patterns for two representative

and complex architectural styles, C2 [82] and D3 [60]. In extracting such patterns I assume

that a given component has a single style. This does not prevent a software system from

having a composition of different styles as long as the components are not shared among

styles. Note that while the overall approach can be applied similarly to any style, the details

of the patterns, their accuracy, and level of disruption due to adaptation directly depend on

the characteristics of the style. The styles with rich properties and rules inevitably result

in more interesting and effective patterns.

12.3.1 Adaptation Patterns for C2 Style

During normal operation a C2Component receives asynchronous messages from an asso-

ciated C2Connector. The C2 style defines how each of the architectural constructs can

be connected: each C2Component must be connected to at least one and at most two

C2Connectors, while a C2Connector can be connected to as many C2Components and

C2Connectors as required. A software system built in the C2 style consists of layers, where

request events travel upward, while notification events travel downward [82]. Request and

notification events received from bottom and top connectors are evaluated to determine
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Figure 12.3: Life cycle of a C2 Component during normal operation.

which need to be processed (depicted in Figure 12.3). If the event is not intended for the

component, it returns to the Waiting state. Otherwise, the event is processed and additional

request and notification events are generated as needed. After the processing has completed

and the appropriate events are sent, the component returns to the Waiting state.

I chose C2 style [82] due to its intended use in dynamic settings [72], and its rich set of

rules and constraints that form a superset of those in simpler styles (e.g., Client-Server).

Moreover, any C2 software system typically consists of many dependent transactions, mak-

ing it a suitable style for describing adaptation patterns.

Adaptation of a software system requires its constituents (e.g., components, connectors)

to coordinate the changes that need to occur. It is the responsibility of the adaptation mod-

ule to track the adaptation state (e.g., active, passive) of the component and neighboring

architectural constructs. This recurring coordination constitutes the adaptation pattern for

an architectural construct in a given style.

An adaptation pattern could be expressed using statechart models (Figure 12.4). Each

pattern contains one or more statecharts that define the sequence of steps a component goes

through during the adaptation process. In essence, each statechart describes the run-time

behavior of a component type (e.g., Client in Client-Server, Publisher in Publish-Subscribe)

provisioned by a style during the adaptation process.
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Figure 12.4: The statecharts of C2 adaptation patterns: (a) A C2Component that
is being adapted, (b) A C2Connector in the substrate that depends on the adapted
C2Component, and (c) A C2Component in the substrate that depends on the adapted
C2Component.

The adaptation process requires a component that is to be updated to satisfy the quies-

cence property. The statechart in Figure 12.4a presents the transitions that take an Active

C2Component that is being adapted to satisfy the quiescence property. When in the Active

state, component processes received events. The first step toward quiescing the component

can take one of three paths. Let us first consider the scenario where the component has

no bottom connector (i.e., no other components depend on it). In this case, either the

component is currently processing or waiting (idle). If the component is waiting, then it

simply transitions to Quiescent. If the component is processing, it starts Quiescing Itself,

and waits. When the processing has completed, it transitions to Quiescent.

If the component has a bottom connector (i.e., other components depend on it), then the

component sends a Passivate request to the bottom connector to passivate the dependent

components. Once an ACK reply is received from the bottom connector, the component

transitions to either Quiescent if it is waiting, or to Quiescing Itself if it is processing. In the

latter case, the component eventually transitions to the Quiescent when the component has
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completed the work. Note that according to Kramer and Magee [56] a component can only

be in two states (i.e., active, passive). In the adaptation patterns, I am modeling additional

states (e.g., Quiescent), which refer to the intermediary steps during the adaptation process,

and not the state of a component.

Figure 12.4b shows the transitions that take a C2Connector in the substrate (i.e., a

connector that depends on the C2Component that is currently being adapted) from Active

to Passive state. The first step a connector takes is to request all of its bottom compo-

nents to become passivated. Once all of the connector’s bottom components have become

passivated, if it is currently waiting, it transitions to the Passive state. Otherwise, if the

connector is busy handling (routing) messages, it transitions to the Passivating Itself state

and waits for the job to finish before transitioning to the Passive state.

Similar to the previous two adaptation patterns, Figure 12.4c shows the transitions that

take a C2Component in the substrate (i.e., a C2Component that depends on the component

currently being adapted) from Active to the Passive state.

These patterns ensure that once the component/connector transitions to the Quiescence

state, all the components/connectors that may depend on it have also transitioned to Passive

state. This means that the quiescence property holds for the component. By executing

these patterns, the middleware waits until the component that is being adapted achieves

the quiescence state before replacing it. I further detail the middleware’s role in Chapter 13.

The patterns described above, while simple, codify the structural rules and constraints

of C2 style into reusable logic that allows for consistent adaptation of any C2 software

system. Due to space constraints I do not show the adaptation patterns of other generic

styles (e.g., Publish-Subscribe, Client-Server) that I have developed so far.1 While the

overall approach of developing adaptation patterns for other styles is the same as what has

been presented above, my experience suggests that different styles often result in drastically

different patterns.

1Interested reader can access the growing repository of adaptation patterns at
http://cs.gmu.edu/˜smalek/AdaptationPatterns
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Figure 12.5: Layering between component sets in D3 reproduced from [60].

12.3.2 Adaptation Patterns for D3 Style

In the previous section I described a generic architectural style. As another example, in

this section I describe a domain-specific software architectural style, called D3 [60]. Domain-

specific software architecture [3, 47, 84] aims to increase productivity and reuse in the con-

struction of software systems for a particular application domain. It captures the best

practices and experiences from the domain engineers in such a way that guides the future

design of similar systems [81]. An effective method of representing this knowledge is to

define domain-specific component/connector types, and rules that guide their interaction,

in the form of a domain-specific software architectural style.

D3 [60] is an example of a domain-specific architectural style that targets the domain

of Computer Supported Collaborative Design. Software systems developed for this domain

facilitate concurrent construction, sharing, and synchronization of design artifacts among a

distributed group of users. There are three types of components in this domain: (1) Proce-

dure components are stateless functions that mainly perform commonly required transfor-

mations on the data; (2) Object components encapsulate data about design artifacts and

the operations defined on top of them; and (3) Agent components are active entities which

are used to help each designer to work with the system. As depicted in Figure 12.5, the

components are organized in three layers of sets. In each layer a component can depend on

the components that are in the layer below or at the same layer. In other words, An Agent
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component can access (and depend on) other Agent, Object, and Procedure components;

while an Object component can only access other Object and Procedure components; and

finally a Procedure component can only access other Procedure components.

The components communicate with one another via a domain-specific connector, called

TriBus. TriBus connector provisions asynchronous request and response communication.

Furthermore, the TriBus connectors enforce the rules of layering and each connection be-

tween two components should go through it. To that end, components register themselves

and request connections to other components using TriBus which plays the role of mediator

between two components.

The communication between components does not go beyond short term request-response

relationships except communication among Agents; Agents can have long living communi-

cation sessions, which are managed using style-specific messages, such as INFORM, RE-

QUEST, PROPOSE, ACCEPT, and DECLINE. An Agent can voluntarily end any prior

engagement with other Agent components at any time by sending a DECLINE message to

them. However, it should wait for receiving the DECLINE message back from other Agents

before finishing the session.

Figure 12.6 depicts the adaptation pattern for the architectural constructs comprising D3

style. The Procedure component is one-time application of a function on data which makes

the component stateless by definition. Therefore, the adaptation patterns for the Procedure

component (see Figure 12.6a and d) do not need to passivate the dependent components

and simple queuing of received events suffices. Note that this does not contradict with the

argument about stateless components in Section 12.1, as the Procedure components are

applied one-time only and do not provide a reverse functionality. On the other hand, the

patterns for stateful components (see Object and Agent) need to establish the passive set

first (i.e., Figure 12.6b, c, e, and f).

Extra care should be taken for managing long living communication sessions between

Agents. Before adapting an Agent, all the sessions in which the Agent is present should be

finished. This is achieved through sending DECLINE message to all collaborating Agents
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(i.e., Figure 12.6c and f). The information about active sessions is encapsulated in TriBus

therefore broadcasting the DECLINE message is left to adaptation pattern of TriBus (see

Figure 12.6g), which is discussed further below. An Agent may receive DECLINE message

from other Agents; the Agent should process the message and DECLINE back. Note that

receiving DECLINE message cannot happen after the Agent has received an ACK from

TriBus, as all the sessions have already finished.

Figure 12.6g shows the adaptation pattern for TriBus. Note that the pattern only man-

ages the adaptation state related to the part of connector that deals with the connections

between the component being adapted and its dependent components. In other words, the

other connections established through the same TriBus are unaffected. When the TriBus

receives the Passivate request from a component, it looks into its registry to find the depen-

dent components. If the component sending the Passivate request is an Agent component

and there are other Agent components depending on it, TriBus sends them the DECLINE

message and waits for them to acknowledge that by sending a DECLINE message back.

When that is not the case (i.e., no other Agent component is dependent on the one being

adapted), the pattern passivates all the dependent components. Afterwards, the TriBus

transitions into Passive state and sends an ACK to the component that initiated the pro-

cess (i.e., sent Passivate request to the TriBus). As in other patterns, when the TriBus is

(Re)Activated, it also (Re)Activates all of the passivated components.
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Chapter 13: Implementation Framework

As I alluded to in Chapter 12, I implemented POISED on top of Prism-MW [65]. Prism-MW

is an architectural middleware, which supports architecture-based development by provid-

ing implementation-level modules (e.g., classes) for representing each architectural element,

with operations for creating, manipulating, and destroying the element. These abstractions

enable direct mapping between a system’s software architectural model and its implemen-

tation. As a result, in Prism-MW, the architectural models are completely synchronized

with the implementation of the system, which alleviates the problem of architectural ero-

sion. Prism-MW provides three key capabilities that I have relied on to realize POISED. It

provides support for (1) basic architecture-level dynamism, (2) multiple architectural styles,

and (3) architectural reflection.

In this section, I first provide an overview of these capabilities to familiarize the reader

with this middleware. Afterwards, I provide a description of my effort for realizing Planning

(recall Figure 5.2) on top of Prism-MW. Finally, I conclude this section by describing the

enhancements made to Prism-MW to realize Execution (recall Figure 5.2) through style-

aware adaptation of software systems. Note that I mainly relied on Prism-MW’s native

support for Monitoring and Analysis to complete the implementation of MAPE-K loop

(recall Figure 5.2).

13.1 Overview of Prism-MW

Figure 13.1 shows the class diagram view of Prism-MW. The gray classes constitute the mid-

dleware core. Brick is an abstract class that represents an architectural building block. It

encapsulates common features of its sub-classes (Architecture, Component, Connector, and

Port). Architecture records the configuration of its constituent components, connectors, and
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Figure 13.1: Simplified UML Class diagram of Prism-MW: middleware core shown in
gray, style-specific extensions shown in orange, and enhancements for style-aware adap-
tation support shown in blue.

ports, and provides facilities for their addition, removal, and reconnection, possibly at sys-

tem run-time. Events are used to capture communication in the architecture. Components

perform computations in the architecture. The developer provides the application-specific

logic by extending the component class. Connectors are used to control the routing of events

among the attached components. Components and connectors can have an arbitrary num-

ber of attached Ports, which they use to attach to one another and interact. Every Brick

in Prism-MW is associated with the Scaffold class, which provides a number of facilities for

queuing, scheduling, monitoring, and routing of events in a distributed setting.

Prism-MW’s core provides the necessary support for developing arbitrarily complex ap-

plications, as long as one relies on the provided default facilities (e.g., event scheduling,
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dispatching, and routing). The first step a developer takes is to sub-class from the Com-

ponent class for all components in the architecture to implement their application-specific

methods. The next step is to instantiate the Architecture class and to define the needed

instances of components, connectors, and ports. Finally, attaching component and connec-

tor instances into a configuration is achieved by using the weld method of the Architecture

class.

Through the use of the style-specific classes shown in orange in Figure 13.1, the middle-

ware’s default style-agnostic behavior can be modified. This feature of Prism-MW has been

successfully employed to provide support for more than 20 different architectural styles,

including C2, Client-Server, Publish-Subscribe, and Pipe-and-Filter [65]. For instance, a

style-specific component, such as Server, Publisher, or C2Component can be constructed by

sub-classing from the regular Component class and providing the style-specific logic. Sim-

ilarly, as depicted in Figure 13.1, other sub-classes of Brick (i.e., Architecture, Connector,

and Port) can be extended to realize the proper stylistic behavior. Interested reader may

refer to [65] for more details on Prism-MW.

In Prism-MW, Admin Component executes the MAPE-K loop and runs the show for

adaptation. It coordinates Monitoring, Analysis, and Execution, which are implemented

inside Prism-MW. It also contacts implementation independent Planning module. Admin

Component passes the Knowledge to planning Module as an XML file and receives back the

optimal solution.

13.2 Finding the Optimal Solution

I have implemented Planning as an independent module, which can be integrated with

Prism-MW. Planning module loosely integrates with Prism-MW through an XML file. The

XML file describes the search space for Planning by enumerating the components along

with all of their possible configuration. For each configuration, it specifies the impact on

quality attributes. Interested reader can refer to my previous work [27, 31] on automatic

assessment of impact of decisions on quality attributes.
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The XML file also contains a list of constrains (recall Equation 8.4) that form the

search space. The supported constraints are dependencies, conflicts, and limitations. A

dependencies is used to express the situation in which a configuration from one component

requires a particular configuration in another component to be selected. A conflict expresses

a situation in which a configuration of one component cannot be selected when a particular

configuration in another component is selected. A limitations defines a threshold on a

resource usage or a particular quality attribute for overall system configuration.

Admin Component generates an XML file, which corresponds to the software system

deployed on top of Prism-MW, and passes it to the Planning module. I have two paral-

lel implementations for Planning: combinatorial and evolutionary optimization, which are

based on Chapters 10 and 11 respectively. Combinatorial optimization is useful when the

search space is convex and equations are linear. In this case, the optimization can converge

to an optimal configuration. For large search spaces, converging to an optimal configura-

tion may take a long time. On the other hand, evolutionary algorithm can be used to find

a near optimal configuration very fast. Moreover, it does not have the limitations of the

combinatorial optimization (i.e., convexity and linearity). Based on the characteristics of

the search problem at hand one of these optimization algorithms can be selected.

13.2.1 Combinatorial Optimization

The combinatorial optimization is developed on top of Microsoft R©Solver Foundation, which

selects the best solver (e.g., Simplex algorithm [20]) based on the characteristics of the

problem automatically. However, the optimization is still subject to the limitations men-

tioned above (i.e., convexity and linearity). Therefore, the ability to configure the optimiza-

tion algorithm is very limited and the only accepted input is the XML file. Finally, since

Microsoft R©Solver Foundation can only run on Microsoft R©Windows R©, the combinatorial

optimization can only be executed on a machine with Microsoft R©Windows R©.
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Figure 13.2: The architecture of evolutionary optimization framework, which includes
ProblemEvaluator as the extension point.

13.2.2 Evolutionary Optimization

I developed an evolutionary optimization on top of ECJ [61], which is a widely used evo-

lutionary computation framework. ECJ is based on Java, therefore, the implementation of

evolutionary algorithm is portable cross-platforms. Since the evaluation of configurations

(which as you recall from Chapter 11 are represented using individuals) is done programmat-

ically, the evolutionary optimization is not faced with the limitations of the combinatorial

optimization; as long as the models can be expressed using a Java program, the evolutionary

optimization can use them for assessing the overall quality and suitability of the configura-

tions. Moreover, the evolutionary optimization can find a near optimal configuration very

fast, and hence, it is very scalable.

Figure 13.2 depicts the high-level architecture of the evolutionary optimization frame-

work. The main class in the implementation is EvolutionaryOptimizer. It first loads the

XML input through its loadInput method and builds in memory representation of the search

space as an instance of ProblemSpace. EvolutionaryOptimizer communicates with ECJ

through property files that describe the optimization process and search space.
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In addition to the search space, which is expressed using the property files, ECJ requires

a class to assess the overall quality and suitability of each individual during search. This class

should implement the SimpleProblemForm interface and provide the evaluate method. This

is the role of Evaluator class. However, such assessment heavily depends on the structure

of the problem and system at hand. Therefore, Evaluator delegates this responsibility to

the ProblemSpace.

ProblemSpace evaluates individuals using problem specific classes, which implement the

ProblemEvaluator interface. These classes are provided by Admin Component. Admin

Component, which has access to the implementation of the system on top of Prism-MW,

provides both the search space (the XML file) and the problem specific evaluators (the

implementation of ProblemEvaluator interface). Essentially, these two pieces of information

form the Knowledge in MAPE-K loop (recall Figure 5.2).

Finally, once all the required information (i.e., Knowledge) is in place and loaded by

loadInput method, EvolutionaryOptimizer initiates the optimization by calling the main

method of ECJ’s Evolve class. This is done by calling the optimize method in Evolution-

aryOptimizer.

It is worth noting that the architecture of the evolutionary optimization framework

(which is depicted in Figure 13.2) allows extension by providing the ProblemEvaluator inter-

face. I couldn’t provide this facility for the combinatorial optimization due to the limitations

that I described earlier. In other words, while the implementation of evolutionary optimiza-

tion is a framework that can be extended for complex systems and configured according to

their needs, the combinatorial optimization is limited to the current implementation.

13.3 Style-Aware Adaptation Support

In order to support the run-time changes to the application, Prism-MW components and

connectors can be added, removed, and welded during the execution of the system. As

discussed further below, I have enhanced the middleware’s basic dynamism with the style-

driven adaptation patterns to ensure the consistency of the system during such changes.
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I have realized support for the adaptation patterns in Prism-MW through three new fa-

cilities: (1) management and enforcement of the adaptation state (e.g., passive, passivating

dependents, quiescence) of components and connectors, (2) realization of the adaptation

patterns via several pluggable modules, and (3) execution of adaptation patterns and co-

ordination of change management via meta-level components. I describe each of these

enhancements in detail below.

13.3.1 Adaptation State

A status variable is associated with every Brick to determine the adaptation state of com-

ponents and connectors. Recall from Figure 13.1 that both Prism-MW’s Component and

Connector extend the Brick. The Brick abstract class also provides setter and getter meth-

ods for accessing the status of a component and connector. Note that while some existing

middleware platforms may provide information about the “liveness” property of a software

component (i.e., whether or not it is active), most cannot provide additional information,

such as which components are in passive mode and which ones satisfy the quiescent prop-

erty. As further described below, Prism-MW tracks and updates the adaptation state of

each component in the system, alleviating the component’s application logic from managing

its adaptation state.

In Prism-MW, Component class is extended for realizing the application logic. Among

other services, Component class provides the ability to send and receive events to the

application logic. I have used the same mechanism to enforce the components behaving

according to their adaptation status. The Component class provides a wrapper that prevents

“rogue” application logic from initiating a new transaction when in the Passive state. This

also allows the middleware to detect the “rogue” components that ignore the passivate

command and keep the active state for unlimited time. There are different ways of dealing

with such components. In some domains a simple time-out mechanism [40] can solve the

problem. However, in risk-averse domains informing the end-user is the best option, as

this may be the sign of a problem with the component’s functionality and trustworthiness.

84



Currently, Prism-MW could be configured to take either approach.

The third party components can also be wrapped using the Component abstract class

in Prism-MW to enable control over them. This way Prism-MW is able to manage the

component’s lifecycle in the adaptation process. Prism-MW is also compatible with a third

party component that can be used in different applications (e.g., services), as long as the

component manages the separation between usages in different applications (e.g., state

isolation) and provides a separate interface to Prism-MW for controlling the component in

each usage.

13.3.2 Adaptation Module

The adaptation patterns have been realized as pluggable Adaptation Modules, depicted as

blue classes in Figure 13.1. A style-specific Adaptation Module needs to override and provide

an implementation for two methods inherited from Abstract Adaptation Module: establish-

PassiveSet and revive. The first one returns the steps necessary for transitioning a compo-

nent (connector) from active to passive, while the second one returns the same for achieving

the reverse (i.e., from passive to active). These two methods codify state machines that

correspond to the adaptation patterns, such as those described in Sections 12.3.1 and 12.3.2.

Each step represents one of the transition labels in the statechart of adaptation pattern.

Each step is realized as a triplet-tuple of the form ¡condition, state change, action¿.

One of the goals in Prism-MW, which is also something I strived for in providing the

style-aware adaptation support, is the extensibility of the middleware for the needs of ap-

plication developers. One of the ways that developers can extend Prism-MW is the intro-

duction of new architectural styles [65]. My design also allows the developers to provide

adaptation support for a new style by implementing the corresponding Adaptation Module.

Thus, depending on the architectural style of a given application, different instance of Adap-

tation Module is associated with the Architecture object. There is no hidden feature for this

as I use the same approach for providing the adaptation support for the styles currently

supported in Prism-MW.
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13.3.3 Admin Component

As shown in blue in Figure 13.1, I have developed a meta-level component, called Admin

Component, which is in charge of coordinating the execution of adaptation patterns. An

Admin Component is instantiated with every instance of the middleware and coexists with

the application-level components on the same architecture container. Unlike the other

components, however, it has a pointer to the Architecture object. Through this pointer,

the Admin Component is capable of reflecting on both the middleware and the running

application. It can identify the architectural style of the running application, use the style-

specific Adaptation Modules, access the application’s architectural constructs, and use the

setter and getter methods to set their adaptation state.

Admin Component provides three interfaces: quiesce, passivate, and activate. They

are used to place a given component in the appropriate adaptation state before/after the

Architecture’s add, remove, and replace methods are invoked. Given a component to be

quiesced, the Admin Component uses the configuration of the architecture to determine the

affected components and connectors (i.e., those that need to be passivated). It also uses the

Adaptation Module’s establishPassiveSet to determine the sequence of steps necessary for

placing those components and connectors in passive state. Executing these steps may result

in further invocations of the Adaptation Module’s establishPassiveSet on new component.

Admin Component executes the steps by directly invoking the components using the status

setter and getter methods described in Section 13.3.1. A similar process is employed to

activate the components.
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Chapter 14: Evaluation Results

Regarding the quality attributes, I scope the problem only to execution time. By execution

time I mean how long does it take for a scenario (recall Chapter 2) to be executed in the

system. I define POISED general enough so the premise of the approach can be extended to

other quality attributes easily. I reduce the scope of this dissertation only to allow extensive

evaluation to produce results that are statistically strong.

14.1 Experiment Setup

I have evaluated POISED on an extended version of the robotic software system (recall

Chapter 2) that was developed in a previous project [62]. The robotic software used in

my experiments was comprised of different software components/connectors, and different

configurations. POISED treats components and connectors the same, as they are both

configurable. The self-adaptation logic was tasked with satisfying 5 user preferences in

terms of utility expressed as sigmoid functions; therefore, the maximum achievable overall

utility (recall Equation 8.8) was 5. I used an implementation of the robotic software running

on top of Prism-MW [65].

For the experiments I setup a controlled environment that allows me to create and

measure the effect of uncertainty in the system. For that purpose, I controlled the execution

environment of the software running on Prism-MW; I fixed the workload, and configured

the software and hardware properties. I controlled the extent of random changes in the

parameters. However, neither the robotic software nor POISED was controlled, which

allowed them to behave as they would in practice.

The adaptation logic is a three step model: (1) Prism-MW’s Admin Component gener-

ates the XML file that models the search space and passes it up to the Planning module
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along with the ProblemEvaluator class, (2) the Planning module finds the optimal solution,

which is then passed to the Execution, and (3) the Prism-MW orchestrates the Execution

based on the knowledge about the style of the software system. Since the contribution of

my work is mainly in step two, I focused on evaluating that step. To make my evaluation

reproducible, I captured each and every experiment in an intermediate model that describes

the software system deployed on top of Prism-MW. Then I use that model to generate the

XML files and feed the XML files to the Planning module. Finally, I configure the software

system according to the optimal solution obtained during planning, execute it on top of

Prism-MW, and collect my observations.

14.2 Quality Trade-Offs

I compared the quality of solutions selected by POISED with the traditional approach in 10

different experiments. For each experiment, I applied both approaches on the same adapta-

tion problem. As you may recall from Chapter 4, the traditional approach is representative

of the majority of existing literature that ignore the uncertainty in the adaptation decisions

(i.e., base the analysis on purely crisp values obtained by calculating the mean behavior of

the system properties).

I performed two types of comparison: (1) For each experiment, I compared the expected

quality of solutions (configurations) selected by each approach. I refer to these results as

expected, since they are based on the calculated consequences of uncertainty in the solutions

selected by POISED. (2) I then executed the software system in the selected configuration,

and observed the actual quality of solution. I refer to these results as actual, since they are

based on the data collected from the system after the solution was put into effect.

I show the expected results in Figure 14.1a. The triangular possibility distribution

values correspond to the solution selected by each approach. I observe a similar pattern to

what was hypothesized in Figure 4.1. While POISED’s solution may have a slightly lower

mode [44] compared to that of the traditional approach, the overall range is always better
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— POISED’s most pessimistic and optimistic points are higher than that of traditional

approach. This is expected, since traditional approach aims to maximize the mean behavior

of the system, while POISED aims to maximize the range of behavior.

I complemented the expected ranges of the system’s behavior with the actual results

obtained in 30 different executions of the system under each configuration. The results are

shown in Figure 14.1b. For a fair comparison, in each experiment, I fixed the application

workload, as well as the range of uncertainty in the execution context. By fixing the

range of uncertainty I mean controlling the range of random behavior within each source of

uncertainty. Thus, different executions still resulted in different observed behaviors. I can

see that the observed utilities are very closely correlated to the corresponding possibility

distribution in Figure 14.1. The results show that in comparison to the traditional approach,

POSIED is more likely to select a solution with better overall utility. For a meaningful

comparison, in these experiments, I did not specify stringent resource constraints, which

as shown next could significantly influence the outcome of both approaches. These results

corroborate my first hypothesis from Chapter 3:

Hypothesis 1: Considering ranges of uncertainty instead of point estimates, in

decision making, results in adaptation decisions that transition the corresponding

system into a state with higher quality after adaptation.

14.3 Performance Trade-Offs

Figure 14.2 shows the results of benchmarks comparing the execution time of POISED opti-

mization algorithms. In addition to PLP and Genetic Algorithm (recall Chapters 10 and 11),

I implemented a Random optimizer, which selects the optimal configuration among a set of

randomly generated valid configurations. Random optimizer generates as many configura-

tions as generated by the genetic algorithm (i.e., |Generations| × |Population|) and forms

the baseline for comparison among algorithms, as it depicts the case in which the proper

guidance in searching the solution space is not present.
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Figure 14.1: Comparison of POISED with traditional approach in 10 different experi-
ments: (a) possibility distribution for the selected configuration, (b) 30 actual observa-
tions for each selected configuration.
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Figure 14.2: Execution time of optimization algorithms for problems of different size.

PLP is an instance of an NP-hard problem (recall Chapter 11), and hence, its execution

time grows exponentially when the problem size increases. In fact, in the 3 largest problems,

PLP did not converge to the optimal configuration within 30 minutes (this cut-off time is

reasonable for a responsive self-adaptive software). On the other hand, the execution time

of genetic algorithm and random optimizer have a very slow growth. Although it is not

visible in this diagram, the execution of genetic algorithm is slightly higher that random

optimizer due to bookkeeping activities in genetic algorithm. It is worth mentioning that

these experiments were conducted on virtual machine running Microsoft R© Windows 7
TM

with 2 dedicated processor cores and 2 GB of dedicated RAM to mimic resources available

to a mobile robot.

Figure 14.3 shows the optimality of selected configuration by each optimization algo-

rithm, as the other side of the coin. When the problem size is [8, 3] (i.e., 8 component

with 3 different configuration alternatives for each component), the search space is very
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Figure 14.3: Comparison of optimization algorithms for problems of different size: (a)
possibility distribution for the selected configuration, (b) 30 actual observations for each
selected configuration.

small. Therefore, all three optimization algorithms are able to find the “ideal” configu-

ration. However, as the size of the problems grows, the difference of algorithms both in

theoretical expectation (i.e., Figure 14.3a) and actual behavior (i.e., Figure 14.3b) becomes

more clear.
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The quality of configurations selected by random optimizer rapidly diverges from the

ideal configuration as the problems get bigger. This is due to the fact that random optimizer

is not guided. In other words, it does not have any strategy for improving the configurations

from one try to the next. On the other hand, genetic algorithm is a able to find a sub-optimal

configuration, which is very close to ideal configuration. In fact, the difference between

observation for configurations selected by genetic algorithm and PLP (which are depicted

in Figure 14.3b) are not statistically significant. However, by looking at the configuration

selected by genetic algorithm, I know for a fact that genetic algorithm selected a sub-

optimal configuration. This verifies the effectiveness of heuristics used in genetic algorithm

for guiding the search.

It took POISED longer than traditional approach to compute the optimal solution,

which is not surprising, since as you may recall from Section 10.2, POISED requires 6

additional optimizations to calculate PIS and NIS values pairs for the three objective

functions. However, traditional approach faces the very same dilemma; to guarantee finding

the ideal configuration it should rely on an NP-hard problem, which has exponential growth.

In other words, POISED is slower than traditional approach only by a constant factor.

It is true that PLP did not converge on large problems within 30 minutes in my exper-

iments. However, it converged when the problem size was [62, 13] (i.e., 62 component with

13 different configuration alternatives for each component) in 105 seconds. This essentially

entails a total of 1362 = 1.16 × 1069 possible combinations. In my recent work [31], I used

lower number of decisions and options to control a travel reservation system with a repre-

sentative size. Therefore, although PLP has scalability limitations, it is still applicable to

large problems. Moreover, in cases that the problem size is larger, one can rely on genetic

algorithm to find a near optimal configuration in a fraction of time. This corroborates my

second hypothesis from Chapter 3:

Hypothesis 2: Uncertainty can be incorporated in the decision-making process

in a manner suitable for execution at run-time.
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Figure 14.4: Impact of the accuracy of uncertainty estimates on the quality of POISED
solutions.

14.4 Sensitivity to Uncertainty Estimates

I performed a set of experiments to evaluate how sensitive is POISED to the accuracy of

uncertainty estimates. Figure 14.4 shows the results. For all of the experiments I fixed

the range of uncertainty in the system parameters, as well as the workload. I changed the

accuracy of uncertainty estimates used in my analysis. To that end, I simply changed the

confidence level used for transforming the probability distribution corresponding to the mon-

itored data to the equivalent possibility distribution (recall Section 9.3). As one decreases

the confidence level in a probability distribution, such as the one depicted in Figure 9.2,

low confidence and high confidence limits converge to mode, resulting in underestimation of

the range of uncertainty.

The confidence levels shown on the horizontal axis of Figure 14.4 denote the accuracy of

uncertainty estimates. As I decrease the confidence level from 95% to 0%, thereby making

the uncertainty estimates less accurate, POISED selects configurations for which overall
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utilities are not borne out in practice. More specifically, since by decreasing the confidence

level I underestimate the uncertainty, the actual results are lower than the expected utility.

Overestimating uncertainty would have the opposite effect.

Finally, in the experiment with 0% accuracy, the most pessimistic, possible, and opti-

mistic points are overlapping. By not considering the uncertainty, POISED is behaving the

same as the traditional approach. Comparing the results of experiment with 0% accuracy

to others, corroborates my third hypothesis from Chapter 3:

Hypothesis 3: Incorporating partial information about the uncertainty in anal-

ysis allows for more accurate decisions compared to having no information about

uncertainty at all (i.e., considering only point estimates).

14.5 Violation of Resource Constraints

I evaluated POISED’s ability to satisfy the resource constraints under uncertainty, and

compared its results against the traditional approach. I ran both approaches on the same

adaptation problem but with varying levels of uncertainty in the available memory. The

overall utility mode corresponding to the solution selected by each approach is shown in

Figure 14.5. The robotic software system corresponding to each selected configuration was

then executed 30 times. I instrumented the controlled environment to change the memory

limit used by the adaptation logic (i.e., Capacity variable from Section 8.4). Parenthesized

annotations in Figure 14.5 show the number of times a memory violation was observed in

the actual executions of the system.

I can make several observations from these results. POISED incorporates the uncer-

tainty in the resource usage estimates, and aims to satisfy the worst case (most pessimistic)

formulation of resource constraints. Therefore, as the available memory decreases, POISED

continues to select solutions that do not violate the memory constraint, but naturally have

a lower utility compared to those of traditional approach. On the other hand, since the

traditional approach ignores the underlying uncertainty in the estimates, as the available
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Figure 14.5: Impact of uncertainty on the overall utility and resource constraints. Num-
ber of violations is parenthesized.
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memory decreases, the likelihood of selecting configurations that would violate the memory

constraint increases. This pattern persists until the available memory decreases to 80MB,

which is less than the mean of the memory usage estimate for configurations with high

utility. The traditional approach is thus forced to select configurations with a relatively

low utility. But even then, since it does not consider uncertainty, 15 executions violate the

memory constraint.

14.6 Effect of Weights

In previous experiments, I placed the same weight on all objectives (i.e., wp = wm =

wo = 1
3). But as you may recall from Section 10.2, this may not always be the case. I

evaluated POISED’s sensitivity to these weights on an instance of the robotic software. For

a meaningful comparison, with the exception of weights, all other attributes of the system

were fixed, including the range of uncertainty. Figure 14.6 shows the overall utility for the

experiments. The solid bar shows the possibility distribution corresponding to the selected

configuration under each weight assignment. The dots depict the observed utility for 30

executions of the software in the selected configuration. The results show the sensitivity of

solutions found by POISED to the weights placed on each objective.

In the two experiments with high wp, POISED selects a conservative solution, i.e.,

puts more emphasis on minimizing the negative consequence of uncertainty (zp from Sec-

tion 10.1). In the two experiments with high wo, POISED selects a risky solution, i.e.,

puts more emphasis on maximizing the positive consequence of uncertainty (zo from Sec-

tion 10.1). Both approaches come at the cost of achieving mediocre overall utility mode

(zm from Section 10.1). In the two experiments with high wm, POISED selects a solution

with the best utility mode (zm from Section 10.1), while ignoring the negative and positive

consequences of uncertainty. In the last experiment, with a balanced assignment of weights,

the solution achieves neither the best Um, nor does it provide guarantees on the conse-

quences of uncertainty. But since all of the objectives are given the same weight, it achieves
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Figure 14.6: Impact of weights on the selected configuration.
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a balanced set of trade-offs. However, as mentioned earlier, I can envision situations in

which placing emphasis on one of the objectives may be more appropriate, which POISED

allows for naturally.
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Chapter 15: Design-time Decision Making

A system’s early architectural decisions impact its properties (e.g., scalability, dependabil-

ity) as well as stakeholder concerns (e.g., cost, time to delivery). Choices made early on

are both difficult and costly to change, and thus it is paramount that the engineer gets

them “right”. This leads to a paradox, as in early design, the engineer is often forced to

make these decisions under uncertainty, i.e., not knowing the precise impact of those de-

cisions on the various concerns. How could the engineer make the “right” choices in such

circumstances? This is precisely the question I have tackled in my recent work [36].

In this chapter, I describe the overview of the problem of decision making at design-

time. My goal is to show that I could apply the very same techniques developed in my

dissertation to this new problem.

15.1 Design-time Decision Making

A software system’s early architecture is the set of principal decisions made at the outset

of a software engineering project. Early architecture encompasses choices at application,

system, and hardware level that could have an impact on the software system’s properties.

A candidate architecture results from selecting a viable alternative for each and every deci-

sion.1 A common practice is to carefully assess the system’s early architecture for its ability

to satisfy functional and non-functional requirements, as well as other stakeholder concerns,

such as cost and time to delivery.

Early architectural decisions are crucial, as they determine the scope of capabilities and

options that can be exercised later in the system’s life cycle. Given the crucial impact of

1While this is a simplified way of looking at the notion of architecture, I believe it is expressive enough to
capture the essence of architectural decision-making problem. Conventionally, one associates an architectural
diagram as the kind of artifact an architect deals with, but in effect, such a diagram is nothing more than
a collection of decisions.
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early architectural decisions on the system’s properties, changing them in subsequent phases

of the engineering process are often both difficult and costly. At the same time, making

such decisions is a complex task mired with lots of uncertainty. Getting them “wrong”

poses a risk to any software engineering project.

One of the major thrusts of the software engineering research has been to transform

the process of making such decisions from an art form exercised successfully by a select

few to a repeatable process guided through scientific reasoning and formal analysis. A few

notable examples include ATAM [17], CBAM [51], and ArchDesigner [5]. Such efforts have

not aimed to replace the engineer’s experience and knowledge, but to rather augment it

through provisioning of appropriate methods and tools.

While great strides have been made, the existing approaches do not provide adequate

support for dealing with uncertainty in early architecture [41]. In fact, there is no quan-

titative method of even comparing two architectures under uncertainty, let alone selecting

the “right” architecture from the many possible candidates [5, 41].

In my recent work [36], I introduced GuideArch, a quantitative framework and ac-

companying tool aimed at guiding the exploration of architectural solution space under

uncertainty. It allows the architect to make informed decisions using imperfect information.

This alleviates the architect from manually sifting through an often large solution space,

and instead allows her to focus on the decisions that are critical to the system’s success.

Unlike any existing approach [5, 17, 51], GuideArch explicitly represents the inherent

uncertainty in the knowledge and incorporates that in the analysis. It enables an incremental

method of making and refining architectural decisions throughout the engineering process.

As the rough estimates in the early stages give way to precise estimates in the later stages,

GuideArch allows the architect to refine the models and explore other suitable alternatives.

GuideArch employs fuzzy mathematical methods [94] to reason about uncertainty. I used

the very framework introduced in this dissertation to quantitatively compare architectural

candidates under uncertainty.
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Table 15.1: Overview of SAS Case Study.

DecisionsH AlternativesH
Location
Finding

1: GPS
2: Radio triangulation

File Sharing
Package

1: OpenIntents
2: In house

Report
Synchronization

1: Explicit
2: Implicit

Chat
Protocol

1: XMPP (Open Fire)
2: In house

Map
Access

1: On demand (Google)
2: Cached on Server
3: Preloaded (ESRI)

Hardware
Platform

1: Nexus 1 (HTC)
2: Droid (Motorola)

Connectivity

1: Wi-Fi
2: 3G on Nexus 1
3: 3G on Droid
4: Bluetooth

Database
1: MySQL
2: sqlLite

Architectural
Pattern

1: Facade
2: Peer-to-peer
3: Push-based

Data Exchange
format

1: XML
2: Compressed XML
3: Unformatted data

PropertiesH
Battery
Usage

Response
Time

Reliability

Ramp up
Time

Cost

Development
Time

Deployment
Time

15.2 Research Objective

I used a subset of EDS, called Situational Awareness System (SAS ), to motivate, describe,

and evaluate GuideArch. SAS is a mobile software system and is developed in collaboration

with a government agency for the deployment of personnel in emergency response scenarios.

SAS is intended to allow the emergency crew carrying Android devices to share and obtain

an assessment of the situation in real-time (e.g., interactive overlay on maps), and coordinate

with one another (e.g., send reports, chat, and share video streams).

In architecting the SAS application, a team, consisting of academics and engineers from
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Figure 15.1: Architectural Pattern decision along with its alternatives and their impact
on the properties in SAS’s early architecture.

the agency, was formed to decide among the early design decisions. Table 15.1 shows the

decisions and alternatives that comprised the SAS project. The requirements posed by the

entities within the agency sponsoring the project also called for several areas of concern,

which the team derived over several project meetings with the various stakeholders. The

concerns are referred to as properties of the architecture/system. Although not depicted

in the table, some of the decisions depend on one another. For instance, the choice of

Connectivity depended on the selected Hardware Platform.

Figure 15.1 illustrates the relationship between decisions, alternatives, and properties.

Each decision consists of several viable alternatives, the selection of which results in different

candidate architectures. Each architecture in turn exhibit its own unique properties, e.g.,

Response Time and Battery Usage in Figure 15.1 are two such properties. My experiences

with SAS and other systems show that precisely predicting the impact of an architectural

103



alternative on the system’s properties is extremely difficult, particularly in early phases of

engineering. This difficulty is due to uncertainty.

Previous approaches targeted at early architecting [5, 17, 51] have ignored uncertainty,

and assumed the impact of early architectural decisions can be quantified precisely. I

collectively refer to them as the traditional approaches. A body of literature (e.g., [9,23,66])

has investigated the use of probabilistic models for representing uncertainty in the system’s

architecture, but such approaches are only useful in settings where probabilistic information

is available (e.g., at run-time), which is often not the case in the early architecture phase.

The challenge motivating GuideArch is how to enable the architect make informed

decisions in such circumstances? Answering this question requires us to first understand

how the practitioners make these decisions. Although an architect may not be able to

precisely quantify the impact of decisions on the system’s properties, surely she must have

some intuition or rough estimate of their impact, as no successful system comes to existence

through random decisions [83]. This intuition may be based on the data available from

similar designs in other systems, architect’s prior knowledge, manufacturer specification,

scientific publication, expert judgment, etc. For instance, as depicted in Figure 15.1, when

presented with two alternative architectural patterns for the system, the architect may be

able to distinguish between the two by classifying one’s impact on Response Time to be Low,

and the other one as Medium. In some other cases, the architect may have more specific

knowledge of the situation and specify the impact as a range of values. In the example of

Figure 15.1, the architect specifies the impact on Battery Usage as a range. GuideArch is a

novel quantitative framework and supporting tool that given such loosely defined estimates

help the architect with making the best decisions.

15.3 Uncertainty in Design

Before delving into the approach, it is important to clarify what I mean by uncertainty.

The scope of uncertainty here has to do with not knowing the exact impact of architectural

alternatives on properties of interest, i.e., not being able to precisely specify the impact as
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Figure 15.2: Evolution of how the architect expresses impact on properties: (a) enumer-
ated values, where the bold one represents the one that is selected, (b) range of concrete
values, and (c) convergence towards a crisp value.

a crisp value. However, there are other sources of uncertainty in early architecting that are

not tackled in my work. Consider for instance the uncertainty introduced by the following

questions: Have all of the properties of concern been elicited? Have all of the decisions

and alternatives been identified? [71] While the ability to answer such questions is clearly

crucial, they fall outside the scope of my research.

As alluded to in Section 15.2, the architect may estimate the impact of an alternative

on the properties in two ways: (1) Range: When the architect has a rough estimate of the

value, the architect could specify it as a range, e.g., a particular choice is anticipated to

have 10µJ of battery usage, with 8µJ and 14µJ in optimistic and pessimistic situations,

respectively. (2) Enumeration: Sometimes the architect may have no way of quantifying the

impact, even as a range. In such cases, the architect abstractly specifies the impact of an

alternative in relation to other alternatives through enumeration, e.g., certain alternative is

likely to have a Low response time. Here, “Low” may not say much about the actual values

(e.g., seconds), but nevertheless carries useful information that influences the decisions early

on.

These two mechanisms are aligned with the way humans in general conceptualize un-

certainty and provide an intuitive method of modeling the architect’s imperfect knowledge.

The key contribution of GuideArch is the ability to provide quantitative analysis of the

trade-offs given such loose specifications. I achieve this by representing the uncertainty as

a fuzzy value.

I take slightly different approaches to transform the enumerated values and range of
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values to the corresponding fuzzy representations. As shown in Figure 15.2a, the enumerated

value is simply mapped to fuzzy values that divide the normalized domain equally. I do

this because the architect has no way of quantifying the impact of alternatives on the

properties, yet has some intuitions as to how alternatives compare to one another. On the

other hand, when the architect can specify the impact as a range (Figure 15.2b), I assign the

possibility of 1 to the anticipated (most likely) value, and possibility of 0 to the optimistic

and pessimistic, respectively. I let the possibility to decrease linearly from the anticipated

to the optimistic and pessimistic points.

As a software project progresses, the architectural models become more concrete and

enriched with information collected from simulations and prototypes, subsequently increas-

ing the accuracy with which impact of alternatives can be estimated. Thus, as depicted

in Figure 15.2, I expect to see the impact of alternatives expressed mostly through enu-

meration at the outset of a project to give way to ranges of values in later iterations, and

eventually converge to crisp values toward the end.

15.4 Reusing POISED

The problem of making early architectural decisions under uncertainty at design-time is

very similar to the problem of finding an optimal configuration for the software system

under uncertainty at run-time. In both cases, I am dealing with decisions. Moreover, the

impact of these decision on quality attributes of the system has uncertainty. The main

difference between these two problems is how uncertainty quantified; at run-time, there is

an extra step to unify information about all sources of uncertainty under the same theory

(i.e., possibility theory). As you may recall, quantifying uncertainty falls outside the scope

of this dissertation and I focused on it enough to be able to validate my hypotheses. The

only remaining difference is the name of the options selected for decisions at design-time

and run-time. In design-time decision making, the options are called alternatives. On the

other hand, in run-time decision making, the options are called configurations.

This makes it clear that I can use the very same quantitative framework introduced
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in this dissertation at design-time. Essentially, I can port POISED, which is targeted at

run-time decision making, to design-time decision making. This is exactly what I did in my

recent work [36]. The result were very promising and showed success in this transition.

In fact, the problem of design-time decision making is less complex compared to run-time

decision making. As I mentioned earlier, at run-time there is an extra step of bringing all

assessment under the roof of the same theory. Design-time assessments are already under

the same theory (i.e., possibility theory). Moreover, the size of problems usually tend to

be larger at run-time. At design-time, decisions are mainly high-level and abstract. On

the other hand, at run-time, the decisions are mainly detailed. Therefore, the number of

decisions and available options is usually higher. In turn, the search space is larger and

takes more time to find the optimal solution. Finally, decisions should be made quickly at

run-time. Otherwise, system may underperform for a long period of time. On the other

hand, at design-time, there is more time for making decisions. It is desirable to make

decisions quickly at design-time. However, it is not a crucial aspect of decision making at

design-time.

At design-time, architects are mainly interested to answer what if questions to explore

design space. Through this process architects make their assessments more concrete (recall

Figure 15.2). This is not the case at run-time, where the goal is to make automatic decisions

in a timely manner. Therefore, I extended POISED to help architects see the impact of their

decisions. I made the framework more interactive by adding new capabilities. However,

these extensions led to a different version of the framework, which I called GuideArch2.

The detailed description of GuideArch and the extensions are outside the scope of this

dissertation. I encourage the interested reader to read my recent work [36] for detailed

description of these extensions.
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Figure 15.3: Snapshots of GuideArch in action showing the coefficients (back) and critical
decisions (front).
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15.5 Implementation

Figure 15.3 shows two snapshots of GuideArch: in the back we have the screen used for

getting the architect’s input as to the expected range of impact each alternative may have

on the system properties, while in the front we have the screen displaying the critical

decisions and their impact on the properties of the top ranked architectures. The tool

is web-accessible to facilitate sharing, collaboration, and negotiation among the various

stakeholders. I used Microsoft R© Silverlight
TM

as my platform, which has appropriate plug-

ins for mainstream web browsers. The tool is integrated with Microsoft R© Solver Foundation

for optimization purposes. The tool also provides several features to enable exploration of

the architectural space, including color coding to indicate the importance of decisions and

measure the quality of candidate architectures, and ranking of the architectures based on

various tunable parameters.

15.6 Evaluation

Evaluation of software architecture research is difficult, as it often hinges on industry par-

ticipation. I feel fortunate to have had a unique opportunity to employ and evaluate our

research in the context of a real world project. GuideArch was used by a team of engineers

and academics to explore the architectural space of the SAS project.

Figure 15.4 shows the (flattened) triangular fuzzy value of 10 sample SAS architectures

calculated by GuideArch. The horizontal axis marks the architectures’ rankings. In SAS,

I gave equal weights to the satisfaction of each of all three criteria (i.e., wp = wm =

wo = 1/3). Looking at Figure 15.4 we can gain insights into the analysis performed by

GuideArch. For instance, 1st architecture, which is picked as optimal by GuideArch, has

the best combination of three z values, i.e., it has a higher zm, smaller zp, and larger zo

than the majority of candidates. As a result, while 1st architecture may be slightly inferior

to some candidates with respect to one of the three conditions, it achieves the best set of

2Available at http://mason.gmu.edu/˜nesfaha2/Projects/GuideArch
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Figure 15.4: The triangular fuzzy value of 10 architectural candidates in SAS.

trade-offs.

To illustrate the benefits of GuideArch, I compare it against what I call the traditional

approach. Recall that by traditional approach I collectively refer to any prior research that

performs the analysis based on point estimates (i.e., ignores uncertainty). More specifically,

here I compare the results of GuideArch against that of ArchDesigner [5], which has aimed

to solve a similar problem, albeit without considering uncertainty.

I observed that the traditional approach would have selected the 486th candidate in

Figure 15.4 as the optimal solution. Traditional approaches only maximizes the anticipated

value (zm). Comparing the difference between 1st and 486th candidates sheds light on the

contributions of GuideArch. 486th architecture achieves the highest zm among all valid

architectures, including the 1st architecture. However, 486th architecture has a very large

negative consequence of uncertainty, which has been ignored by the traditional approach.

On the other hand, GuideArch selects a solution that has a slightly inferior zm, but with a

better range of uncertainty.
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Chapter 16: Conclusion

In this chapter I conclude my dissertation by enumerating the contributions of POISED,

threats to validity and avenues for future work.

16.1 Contributions

In this dissertation I provided a detailed description of POISED, my approach for dealing

with the problem of making adaptation decisions under uncertainty. I defined related con-

cepts and enumerated the related work. The following is the concrete list of contributions

in this research:

• More effective adaptation decisions: Since the adaptation decisions are made

based on (partial) information about the ranges of uncertainty instead of point esti-

mates, the trade-offs are more accurate and, as a result, the system is more effective

in achieving its objectives.

• Decision making techniques suitable for execution at run-time: Since the

mathematical techniques, which are used in the decision-making process, are efficient

and fast, my approach is suitable for execution at run-time.

• Analysis of uncertainty in self-adaptive software: This research presents a

terminology for referring to uncertainty in self-adaptive software. Moreover, the defi-

nition of uncertainty and its sources in self-adaptive software can be used for commu-

nication about uncertainty in the community.

• Tools and algorithms: I implemented a framework based on the techniques and

algorithms resulted from this research. This framework is extensible, as it allows
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implementation of extensions covering new quality dimensions and systems. It is

possible to reuse the framework in new adaptation problems with straightforward

customizations. In fact, I have already reused this framework for the problem of

decision making at design-time.

• Validation of research hypotheses: I used a prototype software system developed

on top of Prism-MW to conduct experiments, evaluate the ideas upon which my

framework is based, and validate my research hypotheses. The evaluation scripts are

publicly available1 and other researcher can reproduce my evaluation results.

16.2 Threats to Validity

With regard to the internal threats, there is only one issue. The weights of the three

objectives (recall Section 10.2.3) impact the outcome of POISED. In fact, in Section 14.6

and Figure 14.6, I showed how selecting different set of weights results in different optimal

solutions. One may be tempted to find a golden set of weights that can work best in all

domains. However, as I alluded to in Section 14.6, there is no such thing as a set of golden

weights. Each system needs its own tuning. For instance, in a mission critical system, where

the goal is to guarantee a very narrow range of worst case behavior, it may be desirable to

increase wp. On the other hand, in a system that one good execution out of many tries will

be selected, it may be desirable to increase wo.

An external threat is related to quantification of uncertainty, as the accuracy of POISED

heavily depends on the ability to quantifying uncertainty. In Section 9, I presented some

techniques and concrete examples to show feasibility of quantification for POISED. In fact,

in Section 14.4 and Figure 14.4, I showed how different levels of accuracy in assessing

uncertainty impact POISED’s ability to find the optimal solution. However, according to

hypothesis 3, even partial information about uncertainty allows making better decisions

compared to considering only point estimates. Therefore, even in the worst case, POISED

1http://www.sdalab.com/projects/poised
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would not work worst than traditional approach.

Another external threat is with regard to the analytical models used during my exper-

iments. As I mentioned in Chapter 14, I focused on execution time to be able to produce

results that are statistically strong. However, the analytical models used for assessing exe-

cution time may not be applicable to other quality attributes. There is an extensive body

of literature on analytical modeling (e.g., [69]), and hence, I left analytical modeling out-

side the scope of this dissertation. POISED is general enough to accommodate any other

quality attribute. In fact, the formalism (recall Chapter 8) already models other quality

attributes. As I described in Section 13.2.2 and depicted in Figure 13.2, POISED already

has the extension points for plugging other analytical models.

16.3 Future Work

I plan to extend this work on two fronts. The first front is considering other sources of

uncertainty. One of the important sources of uncertainty is the behavior of the selected

solution over time. Figure 16.1a depicts a configuration picked by traditional approach, in

which the behavior over time is neglected. On the other hand, Figure 16.1b, depicts my

envisioned approach, which considers the behavior of the selected configuration over time,

i.e., selects a configuration that has lower utility at the moment in which the decision is

made with expectation for improvement in the future. Since the system is expected to

do better in the future, this approach decreases the number of adaptations compared to

traditional approach. Note that in Figure 16.1, the behavior over time is depicted linearly,

but, in general the behavior over time may follow a different trajectory.

The second front for extending this work is application of POISED to other problem

domains. I have already done this for the problem of making early architectural decisions.

However, there are multiple other problems that can easily be extended to benefit from

the contributions of the POISED. One notable example is the problem of component de-

ployment at run-time [64]. In the domain of deployment problem, decisions are allocations

of component to physical hosts and the goal is to maximize the utility of the impact of
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Figure 16.1: The utility of a self-adaptive system based on the decision using: (a) tradi-
tional approach, where the behavior over time is not considered and (b) my envisioned
approach, which considers the behavior over time.

these decisions on quality attributes. Since the assessment of the impact of redeployment

decisions on quality attributes is mired with uncertainty, POISED can naturally and easily

be applied to this problem.
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