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ABSTRACT OF THE DISSERTATION

Advancing Automated Software Testing Through Test Reuse

By

Jun-Wei Lin

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2021

Professor Sam Malek, Chair

Testing is an indispensable phase of software development life cycle. It is the primary way

through which the quality of software is improved. To reduce the cost of manual testing,

many automated test input generation techniques have been proposed. Despite all these

efforts, current automated techniques still suffer from a set of common limitations that

undermines their viability. On the other hand, while rarely discussed or leveraged in the

context of test generation, the concept of test reuse has great potential for addressing these

limitations. In other words, automated test generation can significantly benefit from reusing

and extracting human knowledge from existing test suites.

This dissertation proposes to advance automated software testing through enabling test

reuse (1) across similar applications within a platform; (2) across different platforms for the

same application; and (3) within an application. To show the feasibility of these ideas, this

thesis particularly presents three automated tools, namely CraftDroid, TransDroid,

and Route, to (1) transfer GUI tests across similar Android apps; (2) transfer GUI tests

for an app from web to its Android counterpart; and (3) augment existing test suites of

an Android app to verify the same features but with alternative execution paths. These

tools are backed by program analysis and natural language processing techniques to find

the semantic mapping between GUI events across apps and platforms. The ability to reuse

xiii



context-aware text inputs and oracles in the original tests distinguishes this research from

prior work.

All conducted experiments on real-world subject apps corroborate the effectiveness and ef-

ficiency of the proposed approaches, and their ability to supply automated software testing

with test reuse.
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Chapter 1

Introduction

As known to everyone, software should be adequately tested before release. What not well-

known, however, is that software testing is notoriously tedious and labor-intensive, requiring

up to 50% of software development costs [36]. As a result, while in textbook software testing

is an indispensable phase of the software development life cycle, in reality it is usually

conducted in a casual and ad hoc way, if performed at all [43]. Nevertheless, skipping or

overlooking software testing for saving the cost may pay a higher price later. A recent

example is the glitch in a mobile app used to transmit results from the Iowa presidential

caucuses, which could have been avoided with basic due diligence, including field and user

tests [28, 29].

To reduce the cost of software testing, a great deal of research effort has been devoted to

automated input generation (AIG) techniques. In mobile app testing, for instance, many

such techniques have been proposed in the literature over the past years [1, 2, 35, 37, 48,

70, 82, 75, 89, 94, 95, 97, 103, 128, 130, 131, 123, 92, 59]. Despite all these efforts, current

AIG techniques are still far from widespread adoption in practice. For example, several

studies indicate that the vast majority of the mobile app testing is still performed manually
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[77, 81, 90]. There are three main limitations that undermine the viability of such techniques:

(1) Inability to select valid (text) inputs. Generating valid text inputs is critical to

thoroughly test software. For instance, we need proper city and street names for testing

navigation software, and correct URLs for testing a browser. Without valid values for such

inputs, the generated tests tend to be shallow, failing to reach many interesting states in

the app under test (AUT). Case in point, among input generation techniques for apps,

random exploration strategy performs just as well—and in most cases better—than more

sophisticated approaches, as they are all limited by their inability to produce valid text

inputs [49]. Although asking users to manually generate these values defeats the very purpose

of automated testing, finding a way to reuse manually-generated values is likely to help test

generation considerably.

(2) Inability to create test oracles. Despite a few attempts at automatic generation of

test oracles (e.g., [130, 74]), most existing test generation techniques only focus on generating

input events alone. The generated tests are therefore unable to identify failures that do

not result in a crash. This limitation dramatically reduces the usefulness of automatically

generated tests. Also in this case, asking a human to manually create an oracle for each

generated test would be impractical. Moreover, creating an oracle for tests whose purpose

is unclear would make this task even harder.

(3) Inability to generate meaningful tests. The majority of the existing automated

testing techniques aim to either maximize code coverage or reveal as many crashes as possible.

This is one of the reasons why the tests generated by such techniques tend to be feature-

irrelevant and do not usually reflect the common usage scenarios of an AUT [89, 126]. In

addition to the obvious problem that these tests fail to cover relevant use cases, they also

make debugging more complex and ineffective. Developers have a hard time debugging tests

whose purpose is unclear and that are expressed in terms of low-level commands [90].

2



While rarely discussed or leveraged in the context of test generation, the concept of test reuse

has excellent potential to address the above limitations. First, human knowledge can be

retrieved from existing tests and reused to generate context-aware test inputs. Second, since

test reuse is only possible among applications provisioning similar functionality and sharing

some of their features, the generated tests are inherently feature-relevant and expressive.

Finally, by reusing not only test inputs but also assertions or oracles, the generated tests

can verify the behavior of the AUT.

This research is also motivated by several key insights. First, modern software systems

are intrinsically redundant as a by-product of modern modular software design [47]. This

redundancy is observed in software systems at every level of granularity, from source code

to component to functionality. For example, a recent study [93] has shown that around 70%

of the code on GitHub consists of clones of previously created files. Considering Android

apps, for instance, within each category of apps in Google Play Store, there are many highly

overlapping apps that share much of their functionality even when providing different user

interfaces. As a result, test cases for one application may be reusable for other similar

applications.

Second, while the back-end implementation can be different, e.g., with diverse programming

languages, frameworks, and platforms, GUI interfaces for the same functionality are usually

semantically similar, even if they belong to different software and have different looks and

styles. By semantic similarity, we mean the conceptual relation between the textual informa-

tion, e.g., the text or variable names, which can be retrieved from actionable GUI controls

such as buttons and input fields. For example, a button for checkout in different shopping

apps can appear as “Confirm and Pay” or “Place Order”, i.e., two syntactically different but

semantically similar names. If the mapping of such GUI controls can be built, it is possible

to migrate GUI events from one application to another.

Finally, the fact that there are existing test cases in open-source software systems also

3



benefits test reuse. For instance, our empirical study [87] shows that there are hundreds

of open-source Android apps with thousands of GUI tests that are readily available and

potentially reusable in the wild. Consequently, as code reuse is already a common practice

in modern software engineering, test reuse has enormous potential to be a practical solution

for everyday use.

1.1 Dissertation Overview

This dissertation proposes a four-pronged approach to advance automated software testing

through test reuse.

1. Intra-platform Test Transfer discusses the idea and challenges to automatically reuse

and migrate existing test suites, including the oracles (assertions), across similar ap-

plications within a platform. This thesis addresses a couple of critical challenges and

demonstrates the feasibility of this idea by presenting CraftDroid, an automated

tool that transfers GUI tests across similar Android apps.

2. Inter-platform Test Transfer further presents the need and potential to perform such

test migration across platform, as well as the new challenges that prior work in intra-

platform transfer has not addressed. The idea of inter-platform test transfer is realized

as TransDroid, an automated tool that transfers GUI tests from a web app to its

Android counterpart.

3. Feature-based Test Augmentation applies test reuse within an application and in the

context of test augmentation or amplification. This idea is realized as an automated

tool, Route, that augments existing test suites of an Android app to verify the same

features but with alternative execution paths. The ability to reuse context-aware text

inputs and oracles in the original tests distinguishes the tool from prior work.
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4. A Large-Scale Empirical Study on Test Automation in Open-Source Android Apps ad-

dresses the limitations of previous studies in terms of both the scale of study and the

quality of dataset. The findings in this study not only help locate potentially reusable

mobile tests, but also shed light on the current practices and future research directions

pertaining to test automation for mobile app development.

1.2 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 provides an overview of

the prior related research and identifies the position of this work in the research landscape.

Chapter 3 presents the research problem and the scope of this thesis. Chapter 4 presents

the challenges and techniques for intra-platform test transfer. Chapter 5 shows the proposed

framework for inter-platform test transfer. Chapter 6 introduces the automated tool for

feature-based test augmentation. Chapter 7 reports the empirical study on test automation

in open-source Android apps. Finally, Chapter 8 concludes the dissertation with future work.

The research presented in this dissertation has been published in or submitted to the following

venues:

• Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek, Test Transfer Across Mobile

Apps Through Semantic Mapping, 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE), San Diego, USA, September 2019.

• Jun-Wei Lin, Navid Salehnamadi, and Sam Malek, Test Automation in Open-Source

Android Apps: A Large-Scale Empirical Study, submitted to 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE), Virtual Event,

Australia, September 2020
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• Jun-Wei Lin and Sam Malek, GUI Test Transfer from Web to Android, submitted to

2022 IEEE International Conference on Software Testing, Verification and Validation

(ICST)

• Jun-Wei Lin, Navid Salehnamadi, and Sam Malek, ROUTE: Roads Not Taken in UI

Testing, submitted to 2022 44th IEEE/ACM International Conference on Software

Engineering (ICSE)

In addition, the following publications are not included in the dissertation but are related:

• Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek, Nemo: Multi-

criteria Test-Suite Minimization with Integer Nonlinear Programming, 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE), Gothenburg, May

2018.

• Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek, Search-Based Energy Testing

of Android, 41st International Conference of Software Engineering (ICSE), Montreal,

Canada, May 2019.

• Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy Bran-

ham, and Sam Malek, Latte: Use-Case and Assistive-Service Driven Automated Ac-

cessibility Testing Framework for Android, 2021 ACM SIGCHI Conference on Human

Factors in Computing Systems (CHI), Yokohama, Japan, May 2021.
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Chapter 2

Related Work and Research Gap

This chapter reviews the related work that lays the foundation for the proposed research.

Particularly, it discusses previous studies that apply automated test reuse in three different

contexts and how the proposed techniques are different from them. It then further identifies

the research gap and positions the proposed research in the body of literature.

2.1 Related Work

This section discusses prior work related to automated test reuse. It first reviews the research

that motivates and justifies automated test reuse, followed by previous studies that apply

automated test reuse in three different contexts: intra-platform test transfer, cross-platform

testing, and test augmentation. Finally, prior empirical studies on mobile app testing are

examined.
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2.1.1 Common Functionalities Across GUI-Based Apps

Modern software systems are intrinsically redundant as a by-product of modern modular

software design [47]. This redundancy is observed in software systems at every level of

granularity, from source code to component to functionality. For example, a recent study [93]

indicated that around 70% of the code on GitHub consists of clones of previously created

files. As for such redundancy at the functionality level, several prior works have discussed

common functionalities across desktop software [98], application-agnostic features across

mobile apps [130], and common GUI patterns used in web app testing [59, 106]. Augusto [98]

studied common functionalities such as authentication and saving a file in desktop software,

and proposed an automated technique to generate GUI tests for them with pre-defined GUI

structures and formal pre/post conditions. Zaeem et al. [130] introduced several application-

agnostic UI interactions, which can serve as oracles for mobile testing. Ermuth and Pradel

[59] proposed that sequences of low-level UI events, which correspond to high level logical

steps that can be inferred from test traces and also be further used for test generation.

Moreira et al. [106] developed a domain-specific language to model guidelines or recurring

solutions for common GUI design problems, and leveraged the model to automate GUI

testing. This dissertation shares the same insight as the above works that the existence

of commonality across GUI-based apps can be exploited. However, unlike them, proposed

approaches in this study generate feature-based tests by directly reusing existing tests from

similar applications.

2.1.2 Intra-Platform Test Transfer

In recent years, researchers have proposed various approaches for transferring or reusing tests

on different platforms. Rau et al. [114] proposed a technique for mapping of GUI widgets

among web applications. Behrang and Orso [41] proposed an approach to transfer test cases
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by mapping the GUI widgets to support assessment of mobile app coding assignments. Hu

et al. [73] presented a framework that leverages machine learning to synthesize reusable

UI tests for mobile apps. Qin et al. [112] recently proposed to migrate GUI events for

the different instances of the same app running on iOS and Android. While these studies

discussed GUI element mapping and shed light on test reuse across applications within a

platform, they were not able to transfer test oracles or assertions. Unlike all prior work,

CraftDroid is designed to fully migrate tests across applications, and generate tests with

oracles that verify the features of the target application.

It is noteworthy that, concurrent to the development of CraftDroid, Behrang and Orso

proposed AppTestMigrator [42] to migrate GUI tests, including oracles, for mobile apps

with similar functionality. While both works adopt similar techniques at a high level, such

as using Word2Vec models and combining static and dynamic analyses, CraftDroid is

different from AppTestMigrator in terms of several algorithmic details, such as the ways

it leverages the statically extracted model of app and computes similarity between GUI

widgets. In a recent study evaluating the techniques for usage-based test reuse across An-

droid apps [133], CraftDroid slightly outperformed AppTestMigrator in terms of the

considered effectiveness metrics.

2.1.3 Cross-Platform Testing

A significant number of previous studies have focused on cross-platform testing [100, 52,

50, 51, 62, 117, 76]. Developed concurrently by different research groups, CrossT [100] and

WebDiff [52] addressed the problem of cross-browser inconsistencies (XBIs) in web apps,

i.e., the same web application behaves differently on different browsers. CrossCheck [50]

combined the approaches in CrossT and WebDiff, and leveraged machine learning techniques

such as decision tree to improve the accuracy of the reported XBIs. Later, based on an
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extensive study of XBIs in real-world web apps, X-PERT [51] proposed a framework applying

different techniques for different types of XBIs to increase the effectiveness. Regarding the

similar presentation issues in Android apps caused by device fragmentation, DiffDroid [62]

combined input generation and differential testing to find cross-device inconsistencies. On

the other hand, FMAP [117] analyzed the client-server communication of the desktop version

and mobile version of a web app to identify missing features in either version. Similar to

FMAP, CheckCAMP [76] proposed to identify missing functionality in either the iOS or

Android version of the same app. All of these studies in cross-platform testing focus on

verifying the assumption that an application’s behavior should be consistent on different

platforms, whereas TransDroid leverages this assumption to migrates feature-based tests

across platforms.

2.1.4 Test Augmentation

Test augmentation techniques [111, 102, 129, 71, 125, 46, 65, 39, 121, 80, 132, 33] create

new tests from existing ones to achieve a given engineering goal, such as improving coverage

according to a criterion. Pezze et al. [111] proposed to leverage existing unit tests to con-

struct more complex tests that focus on class interactions to reveal more faults. Yoo and

Harman [129] introduced a search-based technique that can generate additional test data

from existing test data to improve the input space coverage. Harder et al. [71] presented

a test augmentation technique based on operational abstraction, which is a formal specifi-

cation of program’s runtime behavior that can be dynamically mined. A test suite can be

augmented by adding test cases until the operational abstraction stops changing. Tillmann

and Schulte [125] proposed to use symbolic execution and constraint solving to help increase

code coverage by finding relevant variations of existing unit tests. Similarly, Bloem et al [46]

used symbolic execution and model checking techniques to alter path conditions of existing

tests and generate new tests that enter uncovered features of the program. Starting from
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concrete unit tests, Fraser and Zeller [65] presented an approach to generate parameterized

unit tests containing symbolic pre- and post-conditions to achieve higher code coverage. To

improve the mutation score of an existing test suite, Baudry et al. [39] introduced a genetic

algorithm to guides the search for test cases that kill more mutants. Focusing on the context

of regression testing, the work by Santelices et al [121] adopted dependency analysis and

symbolic execution to synthesize new tests with respect to the code changes not covered by

existing tests. Another work considering test-suite augmentation for code changes by Kim et

al. [80] leverages different test generation algorithms dynamically, since different algorithms

have different strengths. Finally, Zhang and Elbaum [132] developed a solution to amplify a

test suite for finding bugs in exception handling code.

Route is different from the prior work because it is for GUI tests, while all of the above

augmentation techniques are for unit tests. Furthermore, Route aims to generate tests

that verify the same functionality as the original tests, which is not the focus of prior work.

Finally, unlike Route, none of the above-mentioned techniques target Android apps.

Route is more related to Thor proposed by Adamsen et al. [33]. Thor takes existing UI

tests for Android apps and injects neutral event sequences to see if the original assertions

still pass. Neutral event sequences are a series of operations that are not expected to affect

the outcome of the injected test cases, such as rotating the phone or turning the screen off

and on. Unlike Route, Thor is not able to find alternative tests for verifying the same

functionality, because its goal is to simply expose the AUT to adverse conditions.

Another work related to Route is Testilizer for web applications proposed by Fard et

al. [102]. Testilizer first infers a state flow graph from an existing web test, dynamically

explores the graph, and then generates new tests from the updated graph. The goal of

Testilizer is to explore new states and apply new and generic assertions learned from exist-

ing ones. In other words, the augmentation by Testilizer is not feature-based. It is also not

applicable to Android apps.
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2.1.5 Empirical studies on Mobile App Testing

Previously, researchers have investigated how mobile test automation is practically adopted [81,

90, 54, 55, 77, 91, 110]. Kochhar et al. [81] analyzed over 600 Android apps on F-Droid to

check the presence of test cases and computed the code coverage. They also conducted

surveys to understand the usage of automated testing tools and the challenges faced by de-

velopers while testing. Cruz et al. [55] analyzed 1,000 Android apps on F-Droid to check

their usage of automated testing frameworks and continuous integration tools. They also

found that projects using automated testing have more contributors and commits on GitHub.

Recently, Fabiano et al. [110] examined 1,780 Android apps on F-Droid to investigate the

prominence of tests developed for the apps, as well as other quality metrics of the tests such

as test smells, code coverage, and assertion density. Our work is different from theirs in

terms of the scale and data source, as we analyzed over 12,000 apps across 16 app markets.

In addition, Coppola et al. [54] studied more than 15,000 apps on GitHub to examine the

diffusion, evolution, and modification causes of UI tests in open-source Android apps. While

their work is highly related to ours, the key difference is that we focused only on non-

trivial apps as they did not factor out toy apps and forks of real apps from their dataset.

The inclusion criterion for non-trivial apps makes the dataset considered in our study very

different from theirs. For example, among the list of 1,042 repositories with tests released

by the authors, only 42 (4%) of them are included in our study.

On the other hand, to understand the main challenges that developers face while building

mobile apps, Joorabchi et al. [77] conducted a qualitative study with 12 mobile developers

from 9 companies, followed by a survey with 188 respondents. Linares-Vásquez et al. [90]

also analyzed responses from 102 open-source Android app developers to understand their

practices and preferences regarding Android app testing. Unlike our work, these papers

did not analyze open-source data in the wild and merely relied on interviews and survey
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responses.

Finally, Linares-Vásquez et al. [91] reviewed the frameworks, tools, and services for au-

tomated mobile testing, and their limitations. From a survey, they identified several key

challenges that should be addressed in the near future by the researchers in the area of

mobile test automation. Nevertheless, their work did not include any source code analysis

or developer survey.

2.2 Research Gap

This section identifies the research gap in the related literature as follows:

• Ability to leverage existing oracles for test reuse. Oracles or assertions in exist-

ing tests are the most critical part for automated test reuse to be a practical solution.

Without migrating them, the generated tests are not able to verify whether the out-

come is correct, which significantly influences the usefulness of prior test generation

tools.

• Inter-platform test transfer. Many organizations provide their software services

on multiple platforms. For example, 80% of the top 50 most visited websites in the

United States [3] provide native mobile apps for their users. However, at the state-of-

the-practice, despite substantial overlap among several versions of an app provisioned

by an organization and intended for execution on different platforms, developers have

to manually write separate sets of tests for each version of app. Current techniques for

intra-platform test transfer are not applicable when such a tranfer is across platforms.

• Feature-based UI test augmentation. Core features (functionalities) of an app

can often be accessed and invoked in several ways, i.e., through alternative sequences

13



of user-interface (UI) interactions. Given the manual effort of writing tests, developers

often only consider the typical way of invoking features when creating the tests (i.e.,

the “sunny day scenario”). However, the alternative ways of invoking a feature are as

likely to be faulty. These faults would go undetected without proper tests. Current

test augmentation techniques are not able to find additional high-quality UI tests,

consisting of both inputs and assertions, that verify the same feature as the original

test in alternative ways.

• Large-scale empirical study considering non-trivial Android apps under

real-world contexts. To understand the test automation culture prevalent among

mobile app developers, researchers have investigated the extent to which test automa-

tion is adopted in practice. However, those studies are limited in terms of both the

scale and the quality of the dataset. Specifically, most prior works have only consid-

ered hundreds of apps from a single source. Moreover, previous studies have failed to

exclude trivial apps (e.g., class assignments and tutorials) and dummy tests (i.e., the

placeholder tests automatically generated by development tools), which might severely

affect their conclusion.
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Chapter 3

Research Problem

3.1 Problem Statement

Usage-based user-interface (UI) testing or end-to-end testing is a primary way to examine the

functionality and usability for GUI-based software. To reduce the cost of manual UI testing,

many automated input generation (AIG) techniques have been proposed in the literature over

the past years. Considering mobile applications as an example, we see a great deal research

has been conducted on such techniques [1, 2, 35, 37, 48, 70, 82, 75, 89, 94, 95, 97, 103, 128,

130, 131, 123, 92, 59]. In general, these techniques follow different exploration strategies,

such as random, model-based, stochastic, or search-based, to generate inputs in order to

achieve a pre-defined testing goal, e.g., maximizing code coverage or finding more crashes.

Despite all these efforts, current AIG techniques still suffer from a set of common limitations

that undermines their viability (recall Chapter 1). In short, the problem statement of this

thesis can be summarized as follows:

Current AIG techniques for UI testing are limited by inability to (1) select valid text inputs,

(2) create test oracles, and (3) generate meaningful tests
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3.2 Thesis Statement

Motivated by several key insights, the limitations of current AIG techniques can be ad-

dressed by test reuse (recall Chapter 1). Intuitively, test reuse is tantamount to migrating

human knowledge and testing effort across applications and platforms. When successful, this

process would result in tests that (1) use valid inputs, (2) contain suitable oracles, and (3)

are meaningful and representative, thus directly tackling the main issues described in the

previous section. In this context,

The knowledge embedded in existing software tests can be automatically reused for advancing

automated software testing, such that a generated test comprises valid text inputs and proper

test oracles, and reflects meaningful usages of the software under test.

3.3 Research Hypotheses

This dissertation proposes three directions applying test reuse to automated software testing.

The first is test transfer across similar applications within a platform. That is, existing test

suites for one app, including the test inputs and oracles, can be reused for testing other apps

with similar functionalities. There are two main challenges in such transfer. The first is that

the mapping of test steps between two apps with the same functionality may not be one-to-

one. Second, the mapping of GUI controls is challenging, especially if they are syntactically

different but semantically similar (detailed in Chapter 4). Nevertheless, these challenges can

be resolved through program analysis and natural language processing techniques. Given

that GUI tests typically consist of events that perform actions on GUI controls, such transfer

is possible through appropriate mapping of GUI controls in different apps.
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Hypothesis 1: UI tests, including test inputs and oracles, can be transferred across sim-

ilar applications within a platform by developing an automated approach that maps the

actionable GUI controls with high precision and recall.

To demonstrate the feasibility of this hypothesis, I will use Android as the platform and

develop an automated tool, namely CraftDroid, that is able to transfer GUI tests across

similar Android apps. The reason for choosing Android is that mobile applications are

among the most used kind of end-user software today, and Android has the largest share of

the mobile market at the moment.

The second application of test reuse in automated GUI testing is test transfer across different

platforms for the same application. This idea is motivated by a fact that many popular

software services can be accessed via multiple platforms (e.g., websites and native mobile

apps). Therefore, such inter-platform transfer would be particularly useful in the common

case of companies that develop apps with the same functionality for different platforms,

forcing the developers to write analogous, yet separate sets of tests for each platform.

Inter-platform test transfer poses new challenges that intra-platform techniques have not

addressed: incompatible actions and unclear widget context (detailed in Chapter 5). First,

while GUI-based apps share certain common actions such as click and text input, different

platforms usually provide additional unique actions to optimize the user experience. As a

result, if the source actions are platform-specific and not supported on the target platform,

current techniques are not able to finish the transfer. Secondly, in prior work, the search and

mapping of GUI widgets between the source and target apps merely relies on widget context

such as type information. However, such context may be missing or ambiguous when the

transfer crosses platform boundaries. Therefore, approaches for inter-platform transfer need

to tackle these new challenges.
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Hypothesis 2: UI tests for shared features of an application can be transferred across

platforms by devising an automated approach that maps the actionable GUI controls with

high precision and recall.

To show the feasibility of this hypothesis, I will present an automated tool, namely Trans-

Droid, that can transfer GUI tests from a web app to its Android counterpart. The reason

for this implementation choice is the fact that the Internet era precedes the smartphone era,

and there are a large number of organizations developing their web app prior to their mobile

app. As a result, we believe many organizations may benefit from TransDroid, allowing

the tests created for their web app to be reused for their mobile app.

Finally, the third direction applying test reuse to automated UI testing is feature-based test

augmentation. That is, existing test suites can be reused to examine the same functionalities

of the application with alternative execution paths. This idea is based on two observations.

First, when writing automated GUI tests, developers usually consider merely the “sunny day

scenario” or “happy path”, in which the software is used in a typical way. However, real users

may not follow the particular way imagined by the developer. Second, essential features of

an app can usually be accessed in multiple ways, i.e., with different use-case scenarios. The

proposed augmentation can be achieved by obtaining a UI transition model of the application

and altering the original execution paths conservatively (detailed in Chapter 6).

Hypothesis 3: Existing UI test suites can be automatically augmented to examine the

same features in alternative ways and improve the fault detection effectiveness.

The feasibility of this hypothesis will be demonstrated by an automated tool, namely Route,

that is able to perform feature-based test augmentation for Android apps. The tool is

different from prior work in test augmentation because it is feature-based, i.e., it aims to

generate tests that verify the same functionality as the original tests.
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Chapter 4

Intra-Platform Test Transfer

GUI-based testing has been primarily used to examine the functionality and usability of

mobile apps. Despite the numerous GUI-based test input generation techniques proposed

in the literature, these techniques are still limited by (1) lack of context-aware text inputs;

(2) failing to generate expressive tests; and (3) absence of test oracles. To address these

limitations, we propose CraftDroid, a framework that leverages information retrieval,

along with static and dynamic analysis techniques, to extract the human knowledge from

an existing test suite for one app and transfer the test cases and oracles to be used for

testing other apps with the similar functionalities. Evaluation of CraftDroid on real-world

commercial Android apps corroborates its effectiveness by achieving 73% precision and 90%

recall on average for transferring both the GUI events and oracles. In addition, 75% of the

attempted transfers successfully generated valid and feature-based tests for popular features

among apps in the same category.
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4.1 Introduction

GUI testing is the primary way of examining the functionality and usability of mobile apps.

To reduce the cost of manual GUI testing, many automated test input generation techniques

have been proposed in the literature over the past years [1, 2, 35, 37, 48, 70, 82, 75, 89, 94, 95,

97, 103, 128, 130, 131, 123, 92, 59]. These techniques follow different exploration strategies,

such as random, model-based, stochastic, or search-based, for generating inputs in order to

achieve a pre-defined testing goal, e.g., maximizing code coverage or finding more crashes.

Despite all these efforts to automate the GUI test input generation, several studies indicate

that they are not widely adopted in practice and majority of the mobile app’s testing is still

manual [77, 81, 90]. There are three main reasons that limit the viability of these techniques:

(1) Lack of context-aware text inputs. Most of the state-of-the-art techniques use

random input values or rely on the manual configurations for text inputs. However, contex-

tual text inputs are critical to thoroughly test majority of the apps, e.g., city names for a

navigation app, correct URLs for a browser app, and valid username/password for a mail

client app. Without such meaningful inputs, exploration of the App Under Test (AUT) may

get stuck at the very beginning and GUI states deep in the testing flow may never been

exercised.

(2) Failing to generate expressive tests. Majority of the automated testing techniques

aim to maximize the code coverage or reveal as many crashes as possible. The generated

tests by such techniques are typically feature-irrelevant or unrepresentative of the canonical

usages of apps [89, 126]. This lack of expressiveness makes debugging cumbersome, as such

tests do not include the reproduction steps that can be organized by use cases or features [90].

(3) Absence of test oracles. Despite a few efforts for automatic generation of test oracles

for mobile apps [130, 74], majority of the existing test generation tools are unable to identify

failures other than crashes or run-time exceptions. Without automated test oracles, such
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tests cannot thoroughly verify correct behavior of the AUT.

To address these limitations, we propose CraftDroid, a framework to reuse an existing

test suite for one app to test other similar apps. CraftDroid is inspired by recent work

from Behrang and Orso [41] and Rau et al. [114], which provided initial evidence of the

feasibility of test transfer for mobile apps and web applications, respectively. Like their

works, our proposed technique transfers available test cases corresponding to a specific fea-

ture or use-case scenario of one app to other apps with similar functionality. However, unlike

their work, CraftDroid is also able to transfer the test oracles, if they exist. To enable

context-awareness for text inputs, CraftDroid relies on information retrieval techniques

to extract the human knowledge from an existing test suite and reuse it for other apps.

Since test transfer is across apps with similar functionalities/features, the generated tests

using CraftDroid are inherently feature-relevant and expressive. As CraftDroid not

only transfers test inputs, but also oracles (assertions), it is able to thoroughly verify correct

behavior of the AUT.

Two insights from the prior literature [40, 98] form the foundation of our work. First, apps

within the same category share similar functionalities. For example, shopping apps should

implement user registration and authentication to provide personalized services. As another

example, web browsers should implement common features such as browsing, adding/remov-

ing tabs, or bookmarking URLs, despite different strategies they take for enabling privacy.

Second, GUI interfaces for the same functionality are usually semantically similar, even if

they belong to different apps with different looks and styles. By semantic similarity, we mean

the conceptual relation between the textual information, e.g., the text, adjacent labels, or

variable names, which can be retrieved from actionable GUI widgets such as buttons, input

fields, or checkboxes. For instance, a button to start the registration process on an app can

appear with text ”Join”, ”Sign Up”, or ”Create Account”. Even if the texts are syntactically

different, they are semantically related. As another example, a ”Confirm and Pay” button
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on a shopping app for checkout can be a ”Place Order” button on another shopping app.

Extensive evaluation of CraftDroid on real-world commercial and open-source Android

apps collected from various categories on Google Play, including popular apps such as Wish,

Yelp, and Firefox Focus, confirms effectiveness of the proposed approach. In fact, 75% of the

attempted transfers by CraftDroid successfully generated valid and feature-based test

cases, with 73% precision and 90% recall on average for the transferred GUI events and

oracles. The proposed research in this chapter makes the following contributions:

• A novel technique for transferring both test inputs and oracles across mobile apps

through semantic mapping of actionable GUI widgets.

• An implementation of the proposed framework for Android apps, which is publicly

available [4].

• Empirical evaluation on real-world apps demonstrating the utility of CraftDroid to

successfully transfer tests across mobile apps.

The remainder of this chapter is organized as follows. Section 4.2 introduces a motivating

example that is used to describe our research. Section 4.3 provides an overview of our

framework and Sections 4.4-4.6 describe the details of the proposed technique. Section 4.7

presents the evaluation results. The chapter concludes with a discussion of the related

research and avenues for future work.

4.2 Motivating Example

To illustrate how CraftDroid works, consider Rainbow Shops [5], a shopping app for

women clothing, and Yelp [6], a local-search app for services and restaurants. Figures 4.2
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and 4.3 show the registration process on Rainbow Shops and Yelp, respectively. To register a

new account on Rainbow Shops, user starts by clicking on the “Join” button (Figure 4.2-a),

which directs the user to a registration form (Figure 4.2-b). By filling the required fields of

registration form and clicking on the “Create Account” button, Rainbow Shops creates an

account for the user and moves to the profile page (Figure 4.2-c), which shows information

about user, such as her username, i.e., Sealbot.

To initiate the registration process on Yelp, the testing flow starts by clicking on the profile

tab, denoted by “Me” in Figure 4.3-a. Then, the user should navigate through several screens

to provide required registration information (Figures 4.3-d to 4.3-e). Finally, by clicking on

the “Sign Up” button (Figure 4.3-f), the registration process is complete and Yelp moves to

the profile page, where user can see her username, i.e., Sealbot (Figure 4.3-g).

While the overall registration process in these two apps follows the same steps—clicking on

a button to start registration, filling the registration form, and submitting information—a

direct copy of the test steps from Rainbow Shops to Yelp is not possible due to the following

reasons: (1) The mapping of test steps between the two apps is not one-to-one. For example,

to reach the registration form, Rainbow Shops requires only one click (Figure 4.2-a), while it

takes three clicks in Yelp to reach the registration form (Figures 4.3-a, 4.3-b, and 4.3-c). As

another example, a user provides personal information using two forms in Yelp compared to

the one form in Rainbow Shops. (2) The mapping of GUI widgets is challenging, especially

if they are syntactically different but semantically similar. For example, the clicked buttons

in these two test flows are different in terms of their label, i.e., “Join” in Rainbow Shops and

“Sign Up” in Yelp.

Despite these challenges, CraftDroid is able to transfer a test case that verifies the reg-

istration process in Rainbow Shops to Yelp by semantically mapping their GUI widgets. In

the following sections, we describe the details of how CraftDroid identifies the matches

and transfers GUI/oracle events from Rainbow Shops to Yelp.
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Figure 4.1: Overview of CraftDroid

4.3 Approach Overview

Figure 4.1 provides an overview of CraftDroid consisting of three major components: (1)

Test Augmentation component that augments test cases available for an existing app, i.e.,

source app, with the information extracted from its GUI widgets that are exercised during

test execution, (2) Model Extraction component that uses program analysis techniques to

retrieve the GUI widgets and identify transitions between Activity components of a target

app, and (3) Test Generation component that leverages Natural Language Processing (NLP)

techniques to compute similarity between GUI widgets of the source and target apps to

transfer tests.

More specifically, CraftDroid takes an existing mobile app and its test case as input. It

then instruments, executes, and augments the source test with textual information retrieved

from the GUI widgets it exercised during its execution. Afterwards, CraftDroid statically

analyzes the target app to extract its UI Transition Graph (UITG). Finally, CraftDroid

uses UITG of the target app to search for widgets that are similar to those found in the

source app to generate a new test. It leverages NLP techniques, such as word embedding,

to compute the similarity between GUI widgets in the source and target apps. Regarding

the transfer of oracle, CraftDroid is able to deal with several types of oracles that are

commonly used in practice, including negative ones such as nonexistence check of text. We

will describe these three components in more detail in the following sections.
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Figure 4.2: Excerpted registration process on Rainbow Shops

Figure 4.3: Excerpted registration process on Yelp
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4.4 Test Augmentation

Algorithm 1 shows how Test Augmentation component works. It takes the source app,

srcApp, with an existing test case, t, as input, and generates an augmented test case t′,

which contains textual meta-data related to the GUI widgets that are exercised by t. We

formulate test case t as a set of GUI events {(w1, a1), (w2, a2), ...}, where wi is a GUI widget,

e.g., Button, and ai is the action performed on wi, e.g., click. An action ai can be a single

operation such as click or an operation with arguments such as swipe that contains starting

and ending coordinates. If a test comes with an oracle, CraftDroid identifies it as a

special type of event (wi, ai), where ai is an assertion, e.g., assertEqual. If the assertion is

widget-specific, e.g., existence check of a widget, wi denotes the widget to be checked. On

the other hand, if the assertion is widget-irrelevant, e.g., existence of certain text on the

screen, wi is set to be empty.

Algorithm 1 starts by initializing variables (Line 1) and launching the source app (Line

2). For each GUI or oracle event (wi, ai) in t, Test Augmentation component dynamically

analyzes current screen to retrieve required textual information of wi, such as the resource-id,

text, and content-desc. To that end, it uses adb tool [7] to dump current screen, i.e., an XML

file of current UI hierarchy (Line 4), and parses the XML file (Line 5). Algorithm 1 updates

wi with textual information to produce augmented widget w′i and adds it to the augmented

test (Line 6-7). Finally, it executes wi (Line 8) to move to the next widget.

4.5 Model Extraction

Model Extraction component statically analyzes the target app, targetApp, to generate a

model called UI Transition Graph (UITG). This model represents how Activities/Fragments

of an app interact with each other through invoking GUI widgets’ event handlers. UITG
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Algorithm 1 CraftDroid: Test Augmentation

Input:
A source app srcApp;
A test case t = {(w1, a1), (w2, a2), ...} for srcApp

Output:
An augmented test case t′ = {(w′1, a1), (w′2, a2), ...}

1: t′ = ∅;
2: launchApp(srcApp)
3: for each (wi, ai) ∈ t do
4: screen = dumpCurrentState()
5: info = getExtraInfo(wi, screen)
6: w′i = augment(wi, info)
7: t′ = t′ ∪ (w′i, ai)
8: execute(wi, ai)
9: end for

10: return t′

Figure 4.4: Excerpted UI Transition Graph for Yelp

will later be used by Test Generation component to search for a match for a given widget

of source app in the target app.

At a high level, UITG represents Activity components comprising the target app as nodes

and GUI events as transitions among the nodes. Each node of UITG in turn contains a

list of widgets that can be rendered directly through the Activity, or indirectly through

Fragments comprising the Activity. It is important to consider Fragments, since an Activity

may consist of several Fragments, which can be called from different Activities. Figure 4.4

shows a partial UITG for Yelp. As demonstrated by this UITG, clicking on the “Me” widget

transfers users from the Home Activity to the UserProfileLoggedOut Activity.
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Model Extraction constructs the UITG in two steps:

(1) Extracting Activities, Fragments, and their corresponding GUI widgets.

Model Extraction parses Manifest file of the target app to collect a list of Activity com-

ponents. For each identified Activity, it then extracts all of the GUI widgets, e.g., Button,

EditText, and TextView, that it renders during execution of the app. These widgets are

either implemented by the Activity itself or inside Fragments within the Activity.

To extract widget list, Model Extraction analyzes XML-based meta-data (Resource files)—for

statically defined GUI widgets—as well as the source code—for dynamically defined ones.

More specifically, to get the list of statically defined GUI widgets, Model Extraction first

refers to the source code of each Activity/Fragment and looks for specific methods, such as

setContentView() and findViewById(), to identify resource files corresponding to widgets. It

then adds all the widgets identified in the resource file to the widget list of the Activity. To

get the list of dynamically defined GUI widgets, Model Extraction analyzes the source code

of Activity/Fragment components to identify initialization of GUI widget elements in them

and adds the corresponding widgets to the widget list. During extraction of widgets, Model

Extraction also retrieves and stores their corresponding textual information.

(2) Identifying transitions between Activities. Model Extraction starts from the

launcher Activity, which is specifically identified in the Manifest file. For each Activity,

it analyzes the event handlers of all the GUI widgets in the Activity’s widget list, e.g.,

onClick() for a button or onCheckedChanged() for a check box. If the event handler of a

widget invokes specific methods that result in transition to another Activity (e.g., startActiv-

ity()) or Fragment (e.g., beginTransaction()), Model Extraction includes a transition between

the two Activity Components. We identify two types of transitions in UITG:

1. Inter-component transition. The method call results in a transfer of control between

two distinct Activities. For example, when user clicks on the “Me” tab in Figure 4.3-a,

28



the onClick() handler of this widget initiates an Intent message and invokes startAc-

tivity() method to transfer the control to UserProfileLoggedOut Activity.

2. Intra-component transition. The method call to a GUI event handler results in a

transition back to the same Activity. Such transitions happen when an Activity consists

of multiple Fragments and performing an action on one Fragment results in transition

to another Fragment within the same Activity. For instance, Figures 4.3-d and 4.3-e

represent two Fragments related to the CreateAccount Activity. Clicking on the “Next”

button on the first Fragment moves the control to the second Fragment. Thereby, this

transition causes a loop in the UITG, as shown in Figure 4.4.

After generation of UITG, Model Extraction component combines the widgets collected for

all nodes into an associative array, denoted as map. This construct maps all the GUI widgets

in targetApp to the corresponding Activity/Fragment that can render them during execution

of app.

4.6 Test Generation

Algorithm 2 demonstrates how the Test Generation component of CraftDroid works.

This component takes the targetApp, its corresponding UITG and widget map, and an

augmented test for the srcApp, t′, as input and generates a new test case tnew for targetApp

by transferring the GUI and oracle events of t′.

To that end, it iterates over every GUI or oracle event (wi, ai) in t′ and collects a list of

candidate widgets in targetApp, candidates, which are ranked based on their similarity to

wi (Line 4, details in Section 4.6.1). For each GUI widget wn in candidates, Algorithm 2

checks to see if it is reachable, and if so, identifies a sequence of events—leading events—that

should be executed to reach wn (Line 6, details in Section 4.6.2).
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Algorithm 2 CraftDroid: Test Generation

Input:
targetApp,
UITG of targetApp,
map widgets on each Activity/Frag. in the targetApp,
t′ = {(w′1, a1), (w′2, a2), ...} from srcApp,

Output:
tnew = {(wn1 , an1), (wn2 , an2), ...} for targetApp

1: while true do
2: tnew = ∅
3: for each (w′i, ai) ∈ t′ do
4: candidates = getCandidates(w′i,map, UITG)
5: for each wn ∈ candidates do
6: leadingEvents =

getLeadingEvents(wn, UITG,map, tnew)
7: if leadingEvents 6= null then
8: an = generateAction(w′i, ai, wn)
9: tnew = tnew ∪ leadingEvents ∪ (wn, an)

10: break
11: end if
12: end for
13: end for
14: if ∆ fitness(tnew) ≤ threshold or timeout
15: break
16: end if
17: end while
18: return tnew

19: function getLeadingEvents(wn, UITG,map, tnew)
20: execute(tnew)
21: srcAct = getCurrentActivity()
22: destAct = getActivity(wn,map)
23: paths = getPaths(srcAct, destAct, UITG)
24: sort(paths)
25: for each path ∈ paths do
26: isV alid = validate(wn, path,map)
27: if isV alid = true then
28: return path
29: end if
30: end for
31: return null
32: end function
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For a reachable candidate wn, Algorithm 2 identifies the appropriate action an (Line 8, details

in Section 4.6.3), adds (wn, an) along with the leading events to tnew (Line 9), and moves to

the next w′i to find its match (Line 10).

Once all the widgets in t′ are checked for a match in targetApp, Algorithm 2 checks the

termination criteria (Line 14, details in Section 4.6.4). If termination criteria are met, it

terminates (Line 15). Otherwise, it repeats the whole process of transfer. The reason for

repeating the test generation process is that Test Generation component relies on UITG to

identify reachability of the candidate widgets. Since UITG is derived through static analysis,

it is an over approximation of the app’s runtime behavior. In addition, static analysis is

not able to realize dynamically generated contents such as pop-up dialogues or buttons in

Android’s WebView. To overcome these limitations, CraftDroid executes targetApp to

determine reachability and updates UITG based on runtime information. Thereby, Test

Generation repeats transfer with an updated UITG to increase the chance of successful

transfer.

In the remainder of this section, we describe the key components of Test Generation in more

detail.

4.6.1 Computing Similarity Score

In the getCandidates function (Line 4), Test Generation considers two factors to compute

the similarity between widgets: (1) their corresponding textual information, and (2) their

location in UITG. More specifically, to determine the similarity of a candidate widget wn to

source widget w′i, Test Generation first computes scoret—a measure of how similar are the

textual information of wn to that of w′i. It then normalizes scoret based on how close wn is

to the current Activity by leveraging UITG to compute the final similarity value.
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Computing textual similarity score, scoret

CraftDroid collects the textual information of a GUI widget from multiple sources, such as

widget’s attributes, the name of Activity/Fragment that renders it, and its immediate parent

and siblings. CraftDroid follows a two step process to measure the textual similarity. It

first retrieves raw textual data from different sources and processes them. It then utilizes

the processed data to measure the similarity in a weighted scheme among all sources.

Text Processing. Test Generation processes the collected textual information by Test

Augmentation and Model Extraction through applying a series of common practices in NLP,

including tokenization and stopword removal. The result of this step is a set of word lists

for every textual information. For example, textual information for the button Sign Up in

Figure 4.3-b can have three word lists: (1) [“Sign”,“Up”] from its label, (2) [“sign”, “up”,

“button”] from its resource-id of sign up button, and (3) [“user”, “profile”, “logged”, “out”]

from its Activity name of UserProfileLoggedOut.

Computing Textual Similarity. To determine scoret between two GUI widgets wn and

w′i, Test Generation computes the similarity score for each information source and then

calculates a weighted sum of the individual scores. Since the previous step produces a set of

word lists for each GUI widget, the problem of determining the textual similarity between

two GUI widgets is dual to the problem of computing the similarity score between word lists.

CraftDroid leverages Word2Vec [101]—a model that captures the linguistic contexts of

words—to compute the similarity score between two word lists. That is, it first computes

the cosine similarity for all possible word pairs in the word lists. Next, it identifies the best

match among pairs based on two criteria: (1) the pair has the highest cosine similarity, and

(2) every word is only matched once.

For instance, consider the Create Account button in Figure 4.2-b and Sign Up button in
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Figure 4.3-b from the motivating example. The two word lists corresponding to these buttons

are [“Create”, “Account”] and [“Sign”, “Up”]. To compute the similarity score between

them, the pairwise cosine similarity is calculated as follows:


Create Account

Sign 0.405 0.168

Up 0.201 0.158


In this example, the word pairs that match the mentioned criteria are (”Create”, ”Sign”) and

(”Account”, ”Up”) with cosine similarity of 0.405 and 0.158, respectively. Thereby, the final

similarity score between these two word lists is calculated as (0.405+0.158)/2 = 0.282, which

is the score for the text of these two buttons. Similarly, the two word lists corresponding

to the resource-id of these two widgets are [“button”, “sign”, “up”] and [“sign”, “up”,

“button”]. The cosine similarity for these lists are as follows:



button sign up

sign 0.117 1.0 0.149

up 0.048 0.149 1.0

button 1.0 0.117 0.048


Based on these values, the score for resource-id is calculated as (1.0 + 1.0 + 1.0)/3 = 1.0. If

only these two information sources are considered to compute the similarity score, the final

textual similarity between these two buttons is (0.282 + 1.0)/2 = 0.641.

Computing final similarity score

To compute the final similarity score between wn and wi, Test Generation normalizes scoret

based on the distance of wn from current screen. Test Generation consults UITG to get the
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shortest distance d, i.e., number of GUI events, from the current screen to the Activity to

which wn belongs. It computes the final similarity as follows:

similarity(wn, w
′
i) =



scoret, if d = 0

scoret
1 + log2 d

, otherwise

This adjustment assigns a higher priority to candidate GUI widgets that are closer to the

current screen. This is because intuitively, the steps or events to test the same functionality

should not be significantly different even in different apps. For example, consider the Join

button from Figure 4.2-a in Rainbow Shops. The most semantically similar widget in Yelp

app to this button is the Sign Up button, which appears in multiple UIs, e.g., Figures 4.3-b,

4.3-c, and 4.3-f. To identify which one of these buttons is the best match for Join, Craft-

Droid starts from the launcher Activity of Yelp, Home Activity, and finds the closest node

in its UITG (Figure 4.4) that contains a Sign Up button, UserProfileLoggedOut Activity,

which is shown in Figure 4.3-b.

4.6.2 Reachability Check

The function getLeadingEvents in Algorithm 2 checks the reachability of wn, a candidate

widget in targetApp that can be matched to w′i. If reachable, the function returns the GUI

events leading to the Activity holding wn. To that end, first tnew—series of GUI events

successfully transferred so far—is executed and the last activity srcAct executed by tnew is

identified (Line 21). The widget map is then used to pinpoint the Activity destAct that holds

wn (Line 22). Next, all the potential paths in UITG from srcAct to destAct are explored to

derive sequences of GUI events—leading events—that execute each path (Line 23).

34



The identified paths are sorted based on their length (Line 24). This way, shorter paths have

a higher chance of being selected, thereby making the length of final transferred test shorter,

which is generally desirable for debugging purposes. The function validate then verifies

whether wn is reachable by executing actions corresponding to each path on targetApp (Line

26). The first path that verifies reachability of destAct from srcAct is returned as output

(Lines 27-28). If no path is found or could be verified, null is returned (Line 31), indicating

that wn is not reachable.

Finally, it is worth mentioning that in addition to verifying the reachability of each path,

function validate (1) updates UITG by removing invalid paths, i.e., unreachable paths,

(2) updates the widget map by adding new GUI widgets that are encountered at runtime

(i.e., those that are loaded dynamically), and (3) determines the correct screen for asserting

negative oracles (details in Section 4.6.3).

4.6.3 Actions for the Transferred GUI and Oracle Events

Once a widget match wn is found, Algorithm 2 determines the proper action an for it to

successfully transfer (w′i, ai) (Line 8). Based on the type of event, i.e., GUI or oracle event,

Algorithm 2 identifies an as follows:

GUI event. Even when the type of matched GUI widgets in srcApp and targetApp are

the same, their corresponding action might be different. For example, removing an item in

a to-do list app can be performed by a swipe, while the same task in another to-do list app

might be performed by a long click. To overcome this challenge, CraftDroid considers a

series of possible actions for wn and finds the one that properly works on wn in targetApp.

To that end, it first analyzes the source code of targetApp to find a specific event listener,

such as onSwiped() or setOnLongClickListener(), registered for the matched widget wn, and

returns an as the action corresponding to such an event listener. If no specific action can be
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Table 4.1: Types of oracle supported by CraftDroid. (w′i, ai): the source oracle event.
(wn, an): the transferred target oracle event.

ai an Widget-specific?

assertEqual(V ALUEi, attr(w
′
i)) assertEqual(V ALUEn, attr(wn)) Y

elementPresense(w′i) elementPresense(wn) Y

elementInvisible(w′i) elementInvisible(wn) Y

textPresense(STRING) textPresense(STRING) N

textInvisible(STRING) textInvisible(STRING) N

identified, it reuses the same action in srcApp, i.e., assign an = ai.

Oracle event. For oracle events (w′i, ai) in srcApp, where ai is an assertion, CraftDroid

generates an for targetApp based on whether ai is widget-specific, e.g., existence check of a

widget, or widget-irrelevant, e.g., existence check of text.

Table 4.1 lists the types of oracle events supported by the current version of CraftDroid.

For widget-specific assertions, Test Generation modifies the assertion so that it matches the

target widget, wn. For example, when ai checks if the resource-id of w′i matches a specific

value, the generated an should also check if the resource-id of wn matches a specific value

(First row in Table 4.1). On the other hand, if ai is widget-irrelevant, it can be directly

transferred to targetApp.

Transferring negative oracle events, e.g., nonexistence of text, is challenging, as they can

make the transferred test pass, regardless of the successful transfer of tests. For example,

consider testing the functionality of removing a task from to-do list. To ensure that an item

has been successfully deleted, the oracle could be a negative assertion of textInvisible to check

non-existence of item’s text. Suppose that we have a source app that removes a task without

confirmation, while target app requires one additional step to get confirmation of removal

from user before removing the task. An unsuccessful transfer of test that does not consider

user confirmation in target app can still pass, since the negative assertion will be checked at

the confirmation step, where the text of item is not visible, yet item is not deleted. Thereby,

the main challenge of transferring negative oracles is to identify the correct screen for them
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to be executed.

A heuristic that allowed us to overcome this challenges is as follows: a negative oracle is likely

to be asserted on the proper screen when its negation (i.e., positive oracle) is also asserted on

that same screen, albeit with different content displayed on the screen. To find the correct

screen for a negative oracle, CraftDroid uses anchor widget—an actionable widget that

appears in the screen where both a negative oracle and negation of the negative oracle (i.e.,

positive oracle) should be asserted. The anchor widget serves as a reference to the correct

screen. To identify an anchor widget, CraftDroid first negates the assertion of negative

oracle and then searches for a screen where that assertion can be verified. Any actionable

widget in that screen can be considered as the anchor widget. To that end, CraftDroid

analyzes the source test, t′i, before transfer and determines the negate of negative oracle, if

one exists. During test transfer, it examines the negated assertion on all screens and selects

an actionable widget in a screen that the negated assertion passes as an anchor widget1.

In the example of to-do list apps, CraftDroid negates the negative oracle of text non-

existence to existence, i.e., checks if the text of an item exists in the current screen. The

anchor widget in this example could be an Add widget that is used to add items to a list.

This is because existence of the text of a to-do item should be checked when that item is

being added. Thereby, a widget for adding always exists in the screen that list items exist.

Later for transfer of oracle event, CraftDroid leverages UITG to first navigate back to

the screen, where the Add exists, and then transfers the oracle.

4.6.4 Termination Criteria

Algorithm 2 iteratively improves the quality of test transfer through updating UITG and

the widget map. It terminates once the fitness of a transferred test cannot be improved any

1CraftDroid uses anchor widget instead of Activity names, since Activity might have multiple Frag-
ments. Thereby, just getting back to the Activity does not guarantee the screen is correct.
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further, or a timeout value is reached. The fitness of a transferred test is the average of

similarity values (Section 4.6.1) computed for its corresponding events.

4.7 Evaluation

We investigate the following research questions in our experimental evaluation of Craft-

Droid:

RQ1. How effective is CraftDroid in terms of the number of successful transfers compared

to total attempted transfers? What are the precision and recall for attempted GUI

and oracle transfers?

RQ2. What are the main reasons yielding transfer failure?

RQ3. How efficient is CraftDroid in terms of the running time to transfer tests from one

app to another?

RQ4. What are the factors impacting the efficiency of CraftDroid?

4.7.1 Experimental Setup

We implemented CraftDroid with Python and Java for test cases written using Ap-

pium [8], which is an open source and cross-platform testing framework. Existing test cases

for the subject apps are written using Appium’s Python client and the augmented/generated

test cases are stored in JSON format. The Model Extraction component is built on top of

Soot, a static analysis framework for Java [127]. For our experiments, we used a Nexus 5X

Emulators running Android 6.0 (API 23) installed on a Windows laptop with 2.8 GHz Intel

Core i7 CPU and 32 GB RAM.
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Table 4.2: Subject apps.

Category App (version) Source

a1-Browser

a11-Lightning (4.5.1) F-Droid
a12-Browser for Android (6.0) Google Play
a13-Privacy Browser (2.10) F-Droid
a14-FOSS Browser (5.8) F-Droid
a15-Firefox Focus (6.0) Google Play

a2-To Do List

a21-Minimal (1.2) F-Droid
a22-Clear List (1.5.6) F-Droid
a23-To-Do List (2.1) F-Droid
a24-Simply Do (0.9.1) F-Droid
a25-Shopping List (0.10.1) F-Droid

a3-Shopping

a31-Geek (2.3.7) Google Play
a32-Wish (4.22.6) Google Play
a33-Rainbow Shops (1.2.9) Google Play
a34-Etsy (5.6.0) Google Play
a35-Yelp (10.21.1) Google Play

a4-Mail Client

a41-K-9 (5.403) Google Play
a42-Email mail box fast mail (1.12.20) Google Play
a43-Mail.Ru (7.5.0) Google Play
a44-myMail (7.5.0) Google Play
a45-Email App for Any Mail (6.6.0) Google Play

a5-Tip Calculator

a51-Tip Calculator (1.1) Google Play
a52-Tip Calc (1.11) Google Play
a53-Simple Tip Calculator (1.2) Google Play
a54-Tip Calculator Plus (2.0) Google Play
a55-Free Tip Calculator (1.0.0.9) Google Play

Subject apps. We evaluated the proposed technique using both open-source and com-

mercial Android apps. CraftDroid is able to transfer tests for similar functionalities

implemented differently on separate apps. Thereby, we performed test transfers among apps

within the same category and for each category, identified main functionalities to be tested.

To that end, we selected five categories that have large number of apps on Google Play,

namely Browser, To-Do List, Shopping, Mail Client, and Tip Calculator. These five cate-

gories are often used in prior research that either studied common functionalities across mo-

bile/web apps [116, 73, 98, 114] or proposed Android GUI testing solutions [49, 97, 104, 95].

Table 4.2 shows the list of 25 subjects and their categories.

For each category, we identified two main functionalities and the corresponding test steps.

The test steps for each functionality, which are listed in Table 4.4 include at least one oracle

step. The oracle steps are implemented as assertion and wait-until statements.
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Table 4.3: Test cases for the proposed functionalities.

Functionality
#Test
Cases

Avg#
Total Events

Avg#
Oracle Events

b11-Access website by URL 5 3.4 1
b12-Back button 5 7.4 3
b21-Add task 5 4 1
b22-Remove task 5 6.8 2
b31-Registration 5 14.2 5
b32-Login with valid credentials 5 9 4
b41-Search email by keywords 5 5 3
b42-Send email with valid data 5 8 3
b51-Calculate total bill with tip 5 3.8 1
b52-Split bill 5 4.8 1

Total 50 6.6 2.4

Test cases. To construct tests suites, we first collected tests for each subject app2, if there

were any, and then augmented the test suites with the test cases corresponding to the steps

described in Table 4.4. The number of events for tests among different categories varies from

3 to 19, with an average of 6.6 events, including 2.4 oracle events 3.

Attempted transfers. For each test case validating a functionality of an app, Craft-

Droid transfers the test case to the other four apps under the same category. Thereby,

the number of attempted transfers for each category are 5 (test cases) × 4 (transfers) = 20,

making the total number of attempted transfers for evaluating CraftDroid to be 200. Af-

ter each transfer, we manually examined the test and its execution to identify false positive,

false negative, and true positive cases as follows: false positive occurs when the target wid-

get of manual transfer is different from wn identified by CraftDroid; false negative occurs

when CraftDroid fails to find a target widget, while manual transfer can; and true positive

occurs when the target widget from manual transfer matches wn identified by CraftDroid.

Based on these metrics, we measured the Precision as the number of generated target events

that are correct. Additionally, Recall measures how many of the source events are correctly

transferred. Our experimental data is publicly available [4].

2Test suites for Geek, Wish, and Etsy apps are from [73]
3The number of actual GUI and oracle events in the test cases may be more than the number of steps

shown in Table 4.4, since Table 4.4 only provides general instructions for testing the functionalities
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Table 4.4: Identified main functionalities for subject apps.

Category Functionality Test Steps

a1-Browser
b11-Access website by URL

1. Locate the address/search bar
2. Input a valid URL and press Enter
3. Specific content about the URL should appear

b12-Back button

1. Locate the address/search bar
2. Input valid URL1 and press Enter
3. Specific content about URL1 should appear
4. Input valid URL2 and press Enter
5. Specific content about URL2 should appear
6. Click the back button
7. Specific content about URL1 should appear

a2-To Do List
b21-Add task

1. Click the add task button
2. Fill the task title
3. Click the add/confirm button
4. The task title should appear in the task list

b22-Remove task

1. Add a new task
2. Click/long-click/swipe the task in the task list to remove the task
3. Click the confirm button if exists
4. The task should not appear in the task list

a3-Shopping
b31-Registration

1. Click the register/signup button
2. Fill out necessary personal data
3. Click the submit/signup button to confirm registration
4. Personal data should appear in the profile page

b32-Login with valid credentials

1. Click the login/signin button
2. Fill out valid credentials
3. Click the submit/signin button to login
4. Personal data should appear in the profile page

a4-Mail Client
b41-Search email by keywords

1. Start the inbox activity
2. Click the search button
3. Input keywords for search and press Enter
4. Specific email related to the keywords should appear

b42-Send email with valid data

1. Start the inbox activitiy
2. Click compose button
3. Input an unique ID for the subject
4. Input a valid email address for the recipient
5. Click send button
6. The unique ID should appear in the inbox

a5-Tip Calculator
b51-Calculate total bill with tip

1. Start the tip calculation activity
2. Input bill amount and tip percentange
3. Total amount of bill should appear based on the values in step 2

b52-Split bill

1. Start the tip calculation activity
2. Input bill amount and tip percentage
3. Input number of people
4. Total amount of bill per person should appear based on the values in step 2 and 3

4.7.2 RQ1: Effectiveness

Table 4.5 demonstrates the effectiveness of CraftDroid in terms of successful transfers for

each functionality listed in Table 4.4. These results demonstrate that on average, 74.5% of

the attempted transfers by CraftDroid are successful, with an overall 73% precision and

90% recall considering all the transferred GUI and oracle events. Thereby, CraftDroid is

substantially effective in identifying correct GUI widgets and successfully transferring tests

across mobile apps.
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Table 4.5: Effectiveness and Efficiency Evaluation of CraftDroid.

Functionality
GUI Event Oracle Event #Successful

Transfer
Avg. Transfer

Time (sec)Precision Recall Precision Recall
b11 79% 100% 100% 100% 20/20 (100%) 1,144
b12 85% 100% 100% 100% 20/20 (100%) 4,986
b21 78% 100% 85% 100% 17/20 (85%) 1,051
b22 69% 100% 85% 80% 11/20 (55%) 10,611
b31 44% 90% 34% 67% 8/20 (40%) 14,974
b32 53% 82% 56% 61% 10/20 (50%) 8,644
b41 100% 100% 100% 100% 20/20 (100%) 349
b42 85% 80% 89% 89% 14/20 (70%) 2,611
b51 82% 100% 100% 80% 16/20 (80%) 2,581
b52 80% 100% 100% 65% 13/20 (65%) 6,762

Total 70% 94% 79% 85% 149/200 (74.5%) 5,371

The results shown in Table 4.5 also confirm that finding a match for all the widgets in

source test is not necessary to successfully transfer a test. As an instance for such cases,

consider the functionality b11, where its corresponding precision for transferring GUI events

is 79%, while it successfully transfers all tests (success rate = 100%). That is, transfer of

events from source app to target app in b11 has been accompanied by false positives, i.e.,

the target widget is identified incorrectly. However, these false positives are not harmful,

since different apps might implement common functionalities in different ways. For example,

while one app may require the user to confirm the provided password during registration and

before an account is created, this confirmation may not be required in another app, thereby,

can be skipped.

While false positive may be acceptable, false negative is not, as it prevents the examination of

the desired functionality. In other words, high recall is more important than high precision in

test transfer, as false negatives typically have more adverse affect compared to false positives.

CraftDroid’s high recall of 90% for transferring GUI and oracle events makes it suitable

for test transfer.

Another important observation from the results in Table 4.5 is that the success rate varies

significantly among different categories of apps, ranging from 100% success rate for the apps

under Browser and Mail Client categories to 40% for Shopping apps. Even within the same

category, the success rate varies for different functionalities. In the next research question,
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Table 4.6: Pearson correlation coefficient between average test length and effectiveness.

GUI Event Oracle Event #Successful
TransferPrecision Recall Precision Recall

Avg.
Test Length

-0.74 -0.60 -0.87 -0.51 -0.71

we investigate the attributes that impact the success rate of test transfer.

4.7.3 RQ2: Factors Impacting Effectiveness

To identify the factors that impact effectiveness of a test transfer, we manually investigated

all of the attempted transfers, including both successful and failed ones. We identified the

following reasons for transfer failure:

Length of test. Intuitively, transfer of a long test is more challenging compared to a

shorter one, since more GUI and oracle events should be transferred. Thereby, more false

positives and false negatives might be generated. To identify how the length of tests impact

effectiveness of a test transfer, we calculated the Pearson correlation coefficient [9] between

the average length of tests, i.e., number of total events, and the effectiveness metrics in

our experiments. Table 4.6 represents the computed correlation coefficients. These results

indicate a strong and negative correlation between the length of tests and success of a test

transfer.

Complexity of app. Complexity of subject apps, in terms of their interface and function-

ality, also impacts the effectiveness of CraftDroid. Some categories of apps have standard

or de-facto design guidelines, such as arrangement of GUI widgets to follow, which makes the

transfer of test cases across such apps easier. For example, the design guideline for browser

apps is to have a simple main screen that only contains a search bar and few actionable

GUI widgets. This relatively simple design for the browser apps makes the transfer of the

GUI events across them easier, since there are fewer candidate widgets on a screen to be
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analyzed for proper mapping. On the other hand, apps without uniform design guidelines,

such as Shopping apps, are flexible to determine the number of functionalities contained on

a screen and the number of required steps for a functionality. This flexibility makes the

search for finding correct matches more complicated. As demonstrated by the results in Ta-

ble 4.5, while CraftDroid successfully transfers all the tests under the Browser category,

the success rate of transfer among Shopping apps is not as high as other categories.

4.7.4 RQ3: Efficiency

Table 4.5 shows the average running time of CraftDroid to transfer a test from one

app to another when executed sequentially. On average, a test transfer takes less than 1.5

hours, ranging from 6 minutes to 4.2 hours among different functionalities. Performance

evaluation of different components of CraftDroid shows that validating reachability of a

candidate widget is the most time-consuming part of test transfer. That is, the function

getLeadingEvents in Algorithm 2 dominates the execution time, as it frequently restarts

the target app to validate the potential paths for a candidate widget.

Fortunately, this function can be easily parallelized. Multiple devices or emulators can be

used to drastically cut down the execution time by performing the reachability check in

parallel. For example, in our experiments, CraftDroid verifies 6.6 paths on average to

transfer a source event. As a result, by using 6 emulators, we can speed up the transfer

approximately 6 times to reduce the average running time to 15 minutes. We believe this is

a reasonable amount of time to produce a feature-based test, consisting of both inputs and

oracles.
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4.7.5 RQ4: Factors Impacting Efficiency

By analyzing efficiency of test transfer among different apps and functionalities, we identified

three factors that impact the efficiency of CraftDroid: (1) length of tests, (2) transfer

success, and (3) size of target app. Intuitively, the longer is a test, it takes more time to

transfer its events. In fact, the average test length and average transfer time are strongly

and positively correlated, as the Pearson correlation coefficient between them is 0.81 in our

experiments.

In addition, we observed that unsuccessful transfers take more time compared to successful

ones. That is, an unsuccessful transfer often needs to examine and validate more candidate

widgets during transfer. In our experiments, the average running time of the 149 successful

transfers is 3, 577 seconds, while this number for the remaining 51 unsuccessful transfers is

10, 613 seconds, meaning unsuccessful transfers are 3x slower. Finally, the size of UITG is

positively correlated to the size of app—with correlation coefficient = 0.5. Since Craft-

Droid heavily relies on the UITG to search and validate the correct widget, it requires more

time to transfer a test for a larger target app.

4.7.6 Threats to Validity

The major external threat to validity of our results is the generalization to other mobile

apps and test cases. To mitigate this threat, we collected 25 commercial and open-source

apps from Google Play and F-Droid under various categories. The main internal threat to

validity of the proposed approach is the possible mistakes involved in our implementation

and experiments. We manually inspected all of our results to increase our confidence in

their correctness. The experimental data is also publicly available for external inspection.

In terms of the construct validity, CraftDroid assumes that the source test is transferable,

i.e., the source and the target apps share similar functionalities, which is not always true.
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However, CraftDroid is not designed to generate test cases for every possible or app-

specific features. It aims at reducing the manual effort of implementing tests for common

or popular functionalities across apps. Our evaluation shows that this assumption does hold

for apps under different categories.

4.8 Conclusion and Future Work

In this chapter, we presented CraftDroid, a framework for transferring tests across mobile

apps through semantic mapping of actionable GUI widgets. We evaluated CraftDroid

using 25 real-world apps from 5 categories. Our experimental results show that 75% of the

attempted transfers are successful, with 73% precision and 90% recall for the transferred GUI

and oracle events. We also discussed the factors impacting the effectiveness and efficiency

of CraftDroid, which can be used as a guideline by researchers to improve test transfer

techniques.

For the future work, we are planning to conduct empirical study with more apps and in-

corporate techniques such as crowd sourcing to improve the effectiveness of CraftDroid.

We share the vision of Behrang and Orso [40] toward the establishment of a centralized

repository similar to App Store, but for test cases. This Test Store will be able to generate

feature-based test cases for newly developed apps. The knowledge mined from existing tests

and apps, which we use for test transfer, can also have applications beyond testing, such as

suggesting missing features and improving GUI layouts/flows for new apps.
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Chapter 5

Inter-Platform Test Transfer

GUI testing is important for examining the end-to-end workflows and usability of GUI-based

software. To reduce the manual effort of writing GUI tests, recent research has explored the

potential of automatically reusing GUI tests by transferring them across similar applications.

However, what is missing from the prior work is that such transfer may be required for apps

available on different platforms. In particular, both web and Android are dominant platforms

on which many organizations provide their software services. At the state-of-the-practice,

even if the web and Android versions of an app provisioned by an organization substantially

share the functionality, the developers have to manually write separate sets of tests for each

version. This chapter proposes TransDroid, an automated tool that transfers GUI tests

from a web app to its Android counterpart. Evaluation of TransDroid on real-world web

and Android apps corroborates its effectiveness by achieving 77% success rate among the

attempted transfers, along with 82% precision and 99% recall in the mapping of the GUI

events and oracles.
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5.1 Introduction

Usage-based GUI testing aims to cover the use-case scenarios of the software under test.

Developers typically prefer usage-based GUI testing to other forms of GUI testing (e.g.,

crawling) that are use-case agnostic and simply aim for higher code coverage [90, 87]. Usage-

based GUI testing provides the developers with actionable information that allows them to

properly recreate the failures and debug their programs. However, this form of testing is

tedious and time-consuming, since it often involves substantial manual effort of writing the

test cases from scratch.

To reduce the manual effort of writing usage-based GUI tests, recent research has explored the

possibility of reusing GUI tests by automatically transferring them across similar applications

(apps) within a platform [114, 41, 73, 112, 42, 86]. By platform, we mean a particular

computing domain, such as mobile, web, and desktop. A key insight guiding these efforts

is that the GUI widgets of different apps providing the same functionality are semantically

similar. As a result, it is possible to automatically generate a usage-based GUI test for a

target app by reusing the test of a source app, provided that (1) both apps share the same

feature (functionality); and (2) the correct mapping of the widgets between these two apps

can be identified.

While the current techniques for intra-platform test transfer are promising, missing from the

prior work is that such transfer may be required for apps on different platforms. In fact,

many organizations provide their software services on multiple platforms. Case in point,

among the top 50 most visited websites in the United States [3], 80% of them also provide

native mobile apps for their users. Another example is WordPress [10], one of the most

popular content management systems, which can be accessed via web browsers, mobile apps

(Android and iOS), and desktop apps (Windows, MacOS, and Linux). At the state-of-the-

practice, despite substantial overlap among several versions of an app provisioned by an
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organization and intended for execution on different platforms, developers have to manually

write separate sets of tests for each version of app. We believe automated test transfer

presents a promising solution in such settings, yet has never been explored in the past.

There are two main challenges in cross-platform test transfer that prior work has not ad-

dressed. The first is incompatible actions. Event synthesis is a necessary process for test

transfer, in which appropriate actions such as a click are determined for the identified GUI

widgets in the target app to compose executable events. This synthesis is guided by both

the actions performed by the source test and the type of target widgets. While GUI-based

apps share certain common actions such as click and text input, different platforms usually

provide additional unique actions to optimize the user experience. As a result, if the source

actions are platform-specific and not supported on the target platform, current techniques

are not able to finish the transfer. For example, mouseOver is a common action in web

testing for sub-menu exploration, but its corresponding action on Android is undefined.

The second challenge in cross-platform test transfer is unclear widget context. A core process

in test transfer is to search and map the GUI widgets between the source and target apps.

For example, what is most similar to the “Sign Up” button in the source app can be the

“Register” button in the target app. In this case, a source GUI event clicking the “Sign Up”

button can be transferred to a target event clicking the “Register” button. In prior work,

the similarity between widgets are determined by their context, such as text values (e.g.,

“Register”) and types (e.g., Android.widget.Button).

As part of the context, type information is important for the search and mapping of the

widgets. For instance, if the source widget is an Android.widget.Button, the most similar

target widget is likely also an Android.widget.Button (or at least a clickable). Nevertheless,

such context may be missing or ambiguous when the transfer crosses platform boundaries.

Take GUI widgets in web apps, i.e., HTML tags, as an example. There are two main

categories of HTML tags: specific tags (e.g., <a>, <textarea>, and <li>) and generic tags
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(e.g., <span> and <div>). A characteristic of web apps is that, through registered JavaScript

event handlers, the behavior of widgets can be easily changed or assigned. For example,

developers can change the behavior of a <textarea> from editable to clickable. Furthermore,

it is even more common to assign arbitrary behaviors to generic tags like <span>. In turn,

context of source widgets on web may provide no or even wrong hints for the search and

mapping of target widgets on, for instance, a mobile platform, like Android.

In this chapter, we propose TransDroid, an automated tool that addresses the aforemen-

tioned challenges in the context of web-to-Android test transfer. In other words, Trans-

Droid transfers GUI tests from a web app to its Android counterpart. The reason for this

implementation choice is the fact that the Internet era precedes the smartphone era [63, 72],

and there are a large number of organizations developing their web app prior to their mobile

app. Typical examples include WordPress [10], Wikipedia [11], Twitter [12], and Zoom [13].

As a result, we believe many organizations may benefit from TransDroid, allowing the

tests created for their web app to be reused for their mobile app. Nevertheless, it should

be noted that the aforementioned challenges are shared in all types of cross-platform test

transfer, e.g., mobile-to-web, web-to-desktop, and we expect the overall approach described

in this chapter to have application in other domains, albeit with a different implementation

to account for platform-specific differences.

TransDroid has several key differences from prior work. First, it includes a pre-transfer

phase with customizable action transformation rules to covert incompatible actions in the

source test into compatible ones with the target platform. Moreover, besides widget context,

TransDroid considers two other types of contextual information, i.e., screen context and

action context. The inclusion of additional contextual information not only helps the search

and mapping of the GUI widgets with unclear widget context, but also makes TransDroid

capable of supporting the transfer of test steps or events that have no associated GUI widgets,

e.g., jumpByURL event that navigates to a web page by directly changing the URL field in

50



the browser.

We evaluated TransDroid with 20 real-world web and Android apps and 110 test cases,

including 561 GUI and oracle events for the web apps. The experimental results show that

77% of the attempted transfers were successful, along with 82% precision and 99% recall for

the widget mapping.

In short, this chapter makes the following contributions:

• A description of cross-platform test transfer problem and the associated challenges in

the context of web-to-Android transfer.

• A novel approach to automatically transfer GUI tests from a web app to its Android

counterpart. The tool implementing this approach is publicly available [14].

• An empirical evaluation on real-world apps demonstrating the effectiveness and effi-

ciency of the proposed approach.

The rest of this chapter is organized as follows. Section 5.2 provides the background for

understanding this work using a motivating example. Section 5.3 provides an overview of

TransDroid as well as the implementation details of its components. Section 5.4 illus-

trates our proposed test generation algorithm. Section 5.5 presents the evaluation results.

Section 5.6 discusses the limitations of this work. The chapter concludes with an overview

of the related research and future work.

5.2 Background and Motivating Example

User interaction with GUI-based software is in terms of GUI events. A GUI event (w, a)

consists of a widget w and an action a performed on w. Note that it is possible that there
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Figure 5.1: Saving a draft with the web app of WordPress

Figure 5.2: Saving a draft with the Android app of WordPress

is no widget associated with a GUI event, such as the jumpByURL event mentioned earlier.

Moreover, an action in GUI events can be a simple operation (e.g., button click), or an

operation with arguments (e.g., text input). Finally, if the action of a GUI event is an

assertion, e.g., isDisplayed, we categorize the event as an oracle event.

To provide background knowledge about test transfer and illustrate the new challenges when

the transfer is across platforms, consider WordPress [10], a popular blog and content man-

agement system. Figure 5.1 shows the excerpted steps to save a draft in WordPress using

its web app. The user first gets to the post-listing page and then clicks the “Add New”

button to initiate a new blog. After typing in the title and content, she clicks the “Save

Draft” button and finally navigates back to the post-listing page to ensure the draft is saved.

Figure 5.2 depicts how the same functionality is performed and tested on the Android app

of WordPress. Table 5.1 shows the GUI and oracle events for this functionality on the two

platforms.

As shown in Table 5.1, while the core steps to perform this functionality on these two
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Table 5.1: The GUI and oracle events for saving a draft in WordPress on different platforms

Source Events on Web Target Events on Android
1. (“Posts”, mouseOver)
2. (“All Posts”, click)

(“Posts”, click)

3. (“Add New”, click) (“Create a Post”, click)
4. (“Title”, (input, “Blog Title”)) (“Title”, (input, “Blog Title”)
5. (“Content”, (input, “Blog Content”)) (“Content”, (input, “Blog Content”))

6. (“Save Draft”, click)
(“More options”, click)
(“Save”, click)

7. (“”, (JumpByURL, all-posts.php)) (“Posts”, click)
8. (“Draft”, click) (“Drafts”, click)
9. (“Blog Title”, isDisplayed) (“Blog Title”, isDisplayed)

platforms are conceptually identical, automatically reusing the source test for web app to

generate the target test for Android app is hindered by several challenges. A critical challenge

that has been addressed by prior work [86, 42] is the mapping of syntactically different but

semantically similar GUI widgets between apps, such as the “Add New” and “Create a Post”

buttons in Table 5.1. By leveraging advances in natural language processing (described in

Section 5.4), prior work has shown the possibility of resolving such non-trivial mappings to

transfer the GUI events.

Nevertheless, prior techniques have not addressed several challenges that are unique to cross-

platform transfer. First, here the source test contains actions that do not exist on the Android

platform, i.e., mouseOver and jumpByURL. Second, sometimes the contextual information

about the source widgets are insufficient for guiding the search and mapping of the target

widgets. For instance, if the source widget is a <span> HTML tag with text “Posts”, and

there are two target widgets, an Android.widget.TextView with text “Blog Posts” and an

Android.widget.Button with text “Create a Post” (just as shown in the second screen of

Figure 5.2), it is difficult to determine which one is the corresponding target widget. In other

words, the behavior of the source tag (i.e., <span>) is unclear and other attributes, such as

text values, are insufficient for determining the proper target widget.

We have designed TransDroid to overcome the aforementioned challenges and transfer

such tests from web to Android. For example, the first mouseOver event and the second
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Figure 5.3: Overview of TransDroid

click event in the source test are merged, and then transferred as the first click event on the

target app. Furthermore, the jumpByURL event in the source test is first converted to an

intermediate event navigateToActivity on Android, and then transferred as the click event

on the target app.

5.3 Approach

Figure 5.3 provides an overview of TransDroid. It takes a source test, a source app, and

a target app as input, and generates a target test that examines the same functionality

as the source test on the target app. TransDroid consists of four components: Context

Extraction, Action Transformation, NavGraph Extration, and Test Generation. We describe

the implementation of each component in the following subsections.

5.3.1 Context Extraction

Context Extraction component execute the source test and retrieves the contextual infor-

mation related to each event in the source test. Like prior work [86, 42], we extract widget
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context that comes from the attributes of the GUI widgets interacted by the source test.

However, unlike prior work, we additionally extract two other types of contextual informa-

tion: screen context and action context. Screen context comes from the attributes of the

GUI screens visited by the source test. Action context simply comes from the actions in the

source test.

While we share the same insight as prior work that widget context can help identify correct

target widget in test transfer, we believe that screen and action contexts, which are missing

from the prior work, are also important to address the new challenges posed by cross-platform

transfer. If we perceive the execution of a test as traversal through a graph consisting of an

app’s GUI screens, screen and action contexts provide additional information about how the

path is visited. Following this insight, including the screen context in our analysis allows

us to support source events that have no associated GUI widgets, such as the jumpByURL

event mentioned previously. Furthermore, including action context in our analysis allows us

to supplement our knowledge of the behaviorally ambiguous widgets. Taking the <span>

tag described in Section 5.2 as an example, if its accompanied action is click, the search

for the target widgets on Android can be limited to clickables. On the other hand, if the

accompanied action is input, the search for the target widgets can be limited to editables

such as Android.widget.EditText. Our transfer algorithm, thus, relies on all three forms

of contextual information for search and mapping of the widgets.

In TransDroid, the Context Extraction component is implemented for web apps. It in-

struments and executes the source test to retrieve the contextual information related to each

event. The widget context for GUI widgets in web apps, i.e., HTML elements, comes from

their attributes, such as id, name, class, href, placeholder, etc., as well as the enclosed text.

Moreover, the screen context in web apps are the title of the page (i.e., <title> tag) and first

header element (e.g., <h1> tag), since they indicate the primary semantics of the screens.

The action context in web apps are the actions performed by the source test, such as click,
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Figure 5.4: Retrieved contexts of (“Posts”, mouseOver) in Table 5.1

input and mouseOver. For example, Figure 5.4 shows the retrieved contexts of the first event

in Table 5.1, i.e., (“Posts”, mouseOver).

5.3.2 Action Transformation

Action Transformation component processes the source test and ensures that the actions in

the transformed source test are compatible with the target platform.

The transformation relies on a set of customizable rules that perform one of the four basic

operations: reuse, merge, conversion, and removal. First, the actions commonly shared by

GUI-based software such as click can be directly reused on the target platform. Next, if an

event contains a platform-specific action, it is possible to combine the event with its preceding

or succeeding event (i.e., merge). Alternatively, we may replace the action with a similar

action available on the target platform (i.e., conversion). Finally, if the incompatible action

is not suitable for merge or conversion, the event may be removed from the transformed test.

Table 5.2 shows the action transformation rules adopted by TransDroid. An example of

merge action is mouseOver, since this action is typically followed by click to form a common

combo operation on web apps to open a sub-menu. Therefore, a mouseOver event, together

with the retrieved context, is merged with the following click event.
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Table 5.2: Action Transformation Rules in TransDroid

Source Action
on Web

Target Action
on Android

Operation
Type

click() click() reuse
textInput() textInput() reuse
mouseOver() (merge into the next source action) merge
rightClick() (merge into the next source action) merge
jumpByURL() navigateToActivity() conversion
doubleClick() click() conversion
keyDown() (removed) removal
switchToWindow() (removed) removal

Examples of the converted actions include jumpByURL and doubleClick. Because the seman-

tics behind jumpByURL is a change of GUI state, this action is converted to navigateToActivity ,

an intermediate action defined in TransDroid for Android with the similar intention. On

the other hand, doubleClick in web apps is usually adopted to provide desktop-like user ex-

perience for features, such as opening a file in file manager or editing cells in a spreadsheet.

Since such a user experience is rarely available in native mobile apps, we simply change

doubleClick to click.

Finally, an instance of removed actions is keyDown, since it is usually used to perform a

modifier key press (e.g., Shift) and may be safely removed without affecting the testing flow

of the generated target test. Note that the presented action transformation rules can be

extended for more platform-specific actions, or customized to accommodate the context of

the target apps.

5.3.3 NavGraph Extraction

NavGraph Extraction component extracts the Navigation Graph of the target app. A Nav-

igation Graph G of an app A is generally defined as a tuple (s, V, E) where:

• s denotes the starting state, i.e., the initial state after A has been fully loaded and

started.
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• V is a set of GUI states (screens). Each v ∈ V represents a unique runtime GUI state

in A. Moreover, each v is associated with a set of GUI widgets, Wv, that could be

rendered in state v.

• E is a set of edges between the GUI states. Each e = (v1, v2, (w, a)) ∈ E represents a

transition from v1 to v2 by firing a GUI event (w, a).

We leveraged and modified the static analysis tool in prior work [86] to construct the Nav-

igation Graph for the target app. The tool first extracts Activities in the target app as

the GUI states. For each Activity, it then retrieves the associated GUI widgets (as well

as their context if possible) from the resource files and source code. At last, it identifies

transitions among Activities as the edges, by analyzing the registered event handlers on the

widgets associated with each Activity. Figure 5.5 illustrates part of the Navigation Graph

for WordPress on Android. This graph provides information about the screens and wid-

gets comprising the target app to the Test Generation component, which as described next,

applies a novel, heuristic-based algorithm to generate the target tests.

Figure 5.5: Excerpted Navigation Graph for WordPress on Android
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5.4 Test Generation

Test Generation component takes a targetApp and its corresponding navGraph, as well as

a transformed source test t as input, and generates the target test tn using a model-based,

greedy search algorithm, as described in Algorithm 3. The algorithm consists of three main

steps: (1) transfer the source events one-by-one to the target app; (2) update the Navigation

Graph based on runtime information; and (3) repeat the transfer until no improvement can

be made.

First, for each event = (wi, ai) ∈ t, if the event has an associated widget, i.e., wi is not null,

Algorithm 3 consults navGraph with the widget context and action context of the event,

and collects a list of widgets in the target app, widgets, in which the widgets are ranked

based on their similarity to wi (line 6-9). Next, for each wn ∈ widgets, it checks whether

wn is reachable, and if so, identifies a sequence of events, leadingEvents, that should be

executed to reach wn (line 10-12). After that, it determines an appropriate action an for the

identified wn, and composes the targetEvent = (wn, an) (line 13-14), which will be added

into tn together with leadingEvents (line 28). More details about similarity computation

(lines 9 and 20), reachability check (lines 11 and 22), and action generation (line 13) are

described in the next subsections.

On the other hand, if the source event has no widget attached, i.e., wi is null, that means no

target widget needs to be mapped. Instead, we consult navGraph with the screen context

of the event, and try to identify a reachable GUI screen s in the target app that is most

similar to the screen visited by the source event (lines 18-26). In this case, leadingEvents

is a sequence of events that should be executed to reach s, (line 23) and targetEvent is left

to be null.

Once all the events in t are processed, the algorithm computes the fitness of the generated

test tn by evaluating its similarity to source test t, i.e., a weighted average of similarity scores

59



(described in the next subsection) is computed for the corresponding events. If the fitness of

tn cannot be improved any further by a user-specified threshold or other termination criterion

such as time limit is reached (line 30), the algorithm terminates and returns (line 34). Oth-

erwise, it repeats the transfer and tries to find a better solution with an updated navGraph.

As described in the following subsections, during the reachability analysis (lines 11 and 22),

we also update navGraph to improve the precision of our statically-retrieved app model

with dynamically observed behaviors, thereby improving the likelihood of solving the search

problem with each iteration of the algorithm.

5.4.1 Similarity Computation

Similarity between GUI widgets or screens is primarily determined by their context. The

similarity between two widgets is based on their widget context and action context. For two

GUI screens, the similarity is determined by their screen context. Since the contexts are

represented as words or word lists, the similarity can be computed by leveraging different

metrics in natural language processing (NLP). In this work, following the recent test transfer

works [42, 86], we leverage Word2Vec [101] to compute the similarity between two widgets

or GUI screens. Word2Vec is a neural network model that captures the linguistic contexts of

words. In this model, each word is represented as a real-value vector (called word embedding).

A characteristic of Word2Vec is that semantically related words are close together in terms

of their cosine similarity. For instance, “Create” is closer to “Add” (with cosine similarity

of 0.47) than “Delete” (with cosine similarity of 0.33) in the vector space. As a result, even

if the “Add New” button does not exist in the Android App, TransDroid can still find its

most similar widget, i.e., the “Create a Post” button, as shown in the motivating example

(the second row in Table 5.1).

To exemplify how we compute the similarity between two contexts, consider the “Add New”
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Algorithm 3 TransDroid: Test Generation

Input:
targetApp, navGraph, and
Transformed source test t = {(w1, a1), (w2, a2), ...}

Output:
tn = {(wn1 , an1), (wn2 , an2), ...} for targetApp

1: while true do
2: tn = ∅
3: for each event = (wi, ai) ∈ t do
4: leadingEvents = ∅
5: targetEvent = null
6: if wi is not null then
7: xw = getWidgetContext(event)
8: xa = getActionContext(event)
9: widgets =

getSimWidgets(xw, xa, navGraph)
10: for each wn ∈ widgets do
11: if isReachable(wn, tn, navGraph) then
12: leadingEvents =

getPath(wn, navGraph)
13: an = generateAction(wi, ai, wn)
14: targetEvent = (wn, an)
15: break
16: end if
17: end for
18: else
19: xs = getScreenContext(event)
20: screens = getSimScreens(xs, navGraph)
21: for each s ∈ screens do
22: if isReachable(s, tn, navGraph) then
23: leadingEvents =

getPath(s, navGraph)
24: break
25: end if
26: end for
27: end if
28: tn = tn ∪ leadingEvents ∪ targetEvent
29: end for
30: if ∆ fitness(t, tn) ≤ threshold or timeout
31: break
32: end if
33: end while
34: return tn
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button and the “Create a Post” button in the motivating example (the second row in Ta-

ble 5.1). To compute the similarity between their text, i.e., “Add New” and “Create a Post”,

we first apply a series of common practices in NLP, including tokenization and stopword re-

moval, to convert the text into word lists, i.e., [“Add”, “New”] and [“Create”, “Post”].

Next, we query a pre-trained Word2Vec model released by Google [15] to obtain the cosine

similarity scores for the word pairs as follows:


Add New

Create 0.47 0.22

Post 0.10 0.12


The similarity for the text is then calculated as (0.47 + 0.12)/2 = 0.29, the average of the

pairs with the highest score. We compute the similarity scores for other attributes of these

two buttons following the same way. The final similarity score is calculated as a weighted

sum of the scores from all of their attributes.

5.4.2 Reachability Check

The Navigation Graph needs to be verified and updated during transfer, because the graph

may be initially derived through static analysis, which tends to over-approximate the app’s

runtime behavior. Algorithm 4 describes the function isReachable called on lines 11 and 22

of Algorithm 3. This function serves two main purposes: (1) check if an entity, i.e., a

widget or GUI screen, is reachable by verifying the possible paths leading to it; and (2)

update navGraph, including the events that trigger transitions between screens as well as

the associated widgets with each GUI screen, during the verification.

To that end, the function first restarts the app and executes tn, i.e., the events successfully

transferred so far, to get to the current GUI screen, curScreen (line 2-3). Next, if entity is a
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Algorithm 4 TransDroid: Function: isReachable()

1: function isReachable(entity, tn, navGraph)
2: execute(tn)
3: curScreen = getCurrentGUIScreen()
4: if entity is a widget then
5: dstScreen = getGUIScreen(entity, navGraph)
6: else . entity is a GUI Screen
7: dstScreen = entity
8: end if
9: paths = getPaths(curScreen, dstScreen, navGraph)

10: for each path ∈ paths do
11: isV alid = validate(entity, path, navGraph)
12: if isV alid is true then
13: return true
14: end if
15: end for
16: return false
17: end function

widget, the function assigns the GUI screen associated with entity to the destination screen,

dstScreen (line 5); otherwise the entity itself is assigned to dstScreen (line 7). After that,

all possible paths between curScreen and dstScreen are executed to verify whether entity

is reachable. The function returns true once a feasible path for entity is found; otherwise

it returns false (line 9-16). Moreover, the function validate in line 11 updates navGraph

by (1) removing unreachable paths; and (2) adding newly encountered widgets at runtime

to the associated widgets of the GUI screen.

5.4.3 Action Generation

The function generateAction in line 13 of Algorithm 3 determines a proper action an for the

identified target widget wn. Typically, if the source event (wi, ai) contains a generic action

such as click or text input, the action can be directly reused, i.e., an = ai. However, it is

possible that the correct action for an is other type of actions supported by or registered on

wn, such as longClick. On the other hand, an can be an assertion (e.g., isDisplayed) if the

source event is an oracle event. Therefore, the implementation of generateAction needs to

63



Table 5.3: Assertion types supported by TransDroid. (wi, ai): source oracle event.
(wn, an): transferred target event.

ai an
isAttrEqual(V ALUEi, attr(wi)) isAttrEqual(V ALUEn, attr(wn))
isDisplayed(wi) isDisplayed(wn)
textPresent(STRING) textPresent(STRING)
textNotPresent(STRING) textNotPresent(STRING)

accommodate these situations.

In our implementation, for GUI events, we first analyze the source code1 to check whether

the identified target widget has specific event listeners, such as setOnLongClickListener(),

and if so, we assign the action corresponding to such an event listener as the target action

an. Otherwise, we reuse the source action.

If the source event (wi, ai) is an oracle event, i.e., ai is an assertion, this function needs to be

customized for different types of assertion. Currently, TransDroid supports four types of

assertion commonly used in web testing [16], as shown in Table 5.3. The first two assertion

types, isAttrEqual and isDisplayed, are widget-specific, and their arguments needs to be

modified when transferred to the target app. The other two assertion types, textPresent and

textNotPresent, are widget-irrelevant assertions and can be directly transferred to the target

app.

5.4.4 Walk-Through of the Motivating Example

We provide a walk-through of how TransDroid transfers the test shown in our illustrative

example (recall Figures 5.1 and 5.2) to help the reader see the entire framework in action.

First, Context Extraction executes the source test shown in Table 5.1 on the source app to

retrieve the contextual information related to each event, and annotates the source test with

this information. After that, Action Transformation parses the source test and transforms

1Our analysis is actually performed on decompiled binary code (i.e., APKs) using Soot, a static analysis
framework for Java [127].
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it to an Android-compatible test, i.e., a test in which all of the actions are supported in

Android. Particularly, the first mouseOver event is merged into the following click event,

and the jumpByURL event is converted to navigateToActivity event. At the same time,

NavGraph Extraction statically retrieves the Navigation Graph of the target app as the

input for Test Generation.

In Test Generation, each event in the transformed source test is transferred one-by-one. The

target widgets or GUI screens most similar to the source contexts are identified from the

Navigation Graph with our formula for computing similarity. For example, when transferring

the navigateToActivity event (transformed from jumpByURL), the algorithm searches for an

Android Activity that is most similar to the screen context retrieved from all-posts.php

(i.e., Activity with a name that is most similar to title/heading of php file), and generates

the events leading to that screen. This results in a click on “Posts” button, which initiates a

transition from MainActivity to PostsListActivity, as shown in Figure 5.5. All other events

are similarly transferred. Finally, the last oracle event in the source test, i.e., existence

check for the <a> tag with text “Blog Title”, is transferred to an existence check for the

android.widget.TextView with the same text.

5.5 Evaluation

We investigate the following research questions in our experimental evaluation of Trans-

Droid:

RQ1. How effective is TransDroid in terms of (1) the precision and recall for widget

mapping, and (2) the number of successful transfers compared to total attempted

transfers?

RQ2. What are the main reasons behind transfer failure?
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Table 5.4: Subject apps and test suites

Subject App Description Web Version Android Version #Web Tests
#Events in Web Test
GUI Oracle Total

BuzzFeed News and entertainment Live website com.buzzfeed.android:v2021.3 11 30 19 49
DokuWiki Collaborative editor v2018-04-22 com.fabienli.dokuwiki:v0.10 9 29 17 46
Etsy E-commerce Live website com.etsy.android:v5.53.1 13 40 18 58
Fox News News television channel Live website com.foxnews.android:v4.22.0 11 30 17 47
GitLab DevOps lifecycle tool v13.2.2 com.commit451.gitlab:v2.6.3 11 38 27 65
Groupon E-commerce Live website com.groupon:v20.10.224420 13 39 23 62
Hacker News Social news forum Live website net.dreambits.hackernews:v2.5 12 39 24 63
OwnCloud File hosting v10.5 com.owncloud.android:v2.15 11 40 20 60
Wikipedia Online encyclopedia Live website org.wikipedia:v2.7.50320 9 37 14 51
WordPress Content management v5.3.2 org.wordpress.android:v14.3 10 43 17 60

Total 110 365 196 561

RQ3. How much effort can be saved by using TransDroid to generate tests?

RQ4. How efficient is TransDroid in terms of the running time to perform cross-platform

transfer?

5.5.1 Experimental Setup

We implemented TransDroid with Python and Java for web tests written using Sele-

nium [17]. Existing test cases for the subject apps are written with Selenium’s Python

client. The transferred Android tests are stored in JSON format and executed by our test

runner implemented with Appium [8]. In our experiments, we used ChromeDriver [18] to

execute the web tests, and a Pixel 2 Emulator running Android 7.1 (API 25) for test gen-

eration. The experiments were conducted on a Windows laptop with 2.8 GHz Intel Core i7

CPU and 32 GB RAM. Our experimental data is publicly available [14].

Subject apps and test suites. As noted by others [102, 33], it is very difficult to find

publicly available web apps that have working UI test suites. We managed to find 10 pairs

of web and Android apps (20 in total) with either existing tests, or existing documentation

containing the test descriptions. We first collected web tests for each subject app, if there

were any, and then augmented the test suites with the test cases corresponding to the found

test descriptions. Table 6.1 shows the 10 pairs of real-world subjects used in our study,
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including the size of test suites and the number of GUI and oracle events. There are 110

web tests in total, each containing 5.1 events (including 1.8 oracle events) on average. In

addition, we manually constructed the corresponding Android tests. These tests served as

the ground truth in our experiments to determine if (1) the target widgets were correctly

identified, and (2) the transfers were successful or not (detailed in the next paragraph).

Effectiveness of attempted transfers. TransDroid transfers each of the tests for a

web app to its Android counterpart, resulting in 110 total attempted transfers. For each

transfer, we used the ground truth to examine the generated test to identify false positive,

false negative, and true positive cases as follows: false positive occurs when the target widget

of manual transfer is different from the widget identified by TransDroid; false negative

occurs when TransDroid fails to find a target widget, while manual transfer can; and true

positive occurs when the target widget from manual transfer matches the widget identified

by TransDroid. Based on these metrics, we measured the Precision as the number of

generated target events that are correct. Additionally, Recall measures how many of the

source events are correctly transferred.

Precision and recall can faithfully evaluate the correctness of widget mapping, but not nec-

essarily the successfulness of test transfer [86, 133]. In other words, precision and recall do

not consider whether the generated tests are executable or applicable in the context of the

target app. For example, suppose a web app requires the user to provide a password only

once during registration, but twice on its Android counterpart for confirmation. In that case,

the transfer may have very high precision and recall if most of the source events are correctly

migrated. However, the generated test on Android is still not executable because it lacks

the required password confirmation step. As a result, we also report whether the attempted

transfers were successful by manually examining the generated tests. A successful transfer

means that the generated test was executable and actually meaningful in the context of the

target app, verifying the same feature as the source test.
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Table 5.5: Effectiveness evaluation of TransDroid

Subject
GUI Event Oracle Event #Successful

Precision Recall Precision Recall Transfer
BuzzFeed 64% 95% 63% 100% 64% (7/11)
DokuWiki 70% 90% 94% 94% 89% (8/9)
Etsy 95% 100% 94% 100% 100% (13/13)
Fox News 86% 100% 71% 100% 64% (7/11)
GitLab 81% 100% 81% 100% 64% (7/11)
Groupon 74% 100% 87% 100% 69% (9/13)
Hacker News 79% 100% 83% 100% 67% (8/12)
OwnCloud 71% 96% 85% 100% 73% (8/11)
Wikipedia 86% 100% 92% 92% 89% (8/9)
WordPress 88% 100% 100% 100% 100% (10/10)

Total 80% 99% 85% 99% 77% (85/110)

Effort Reduction. Another perspective to evaluate the usefulness of TransDroid in

practice is to measure how much effort developers can save if they adopt this tool to generate

tests instead of writing them from scratch, regardless of whether the transfers are successful

or not. To that end, we first measure how close a transferred test is to its ground-truth

test by computing their Levenshtein distance [85] or edit distance. Levenshtein distance is

a string metric to compute the minimum number of edits required to change one word to

another word. In our case, a single edit is defined as an insertion, deletion or substitution

of an event in the transferred test. Next, we further define reduction of effort as follows:

Reduction(tn) = 1− editDistance(tn, tg)

#events(tg)

This equation measures the manual effort reduced by a generated test tn compared to writing

its ground truth tg from scratch. For example, if a 6-event generated test needs 2 edits (e.g.,

1 deletion and 1 substitution) to its 5-event ground truth, compared to writing the ground

truth from scratch, the reduced manual effort through the generated test is 1− (2/5) = 60%.

5.5.2 RQ1: Effectiveness

Table 5.5 demonstrates the effectiveness of TransDroid in terms of precision, recall, and

successful transfers for each subject listed in Table 6.1. These results show that in total, 77%
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of the attempted transfers by TransDroid are successful, with an overall 82% precision

and 99% recall considering all the transferred GUI and oracle events. TransDroid is

substantially effective in identifying correct GUI widgets and successfully transferring tests

from web to Android.

Interestingly, we found that perfectly matching all the widgets and screens in a source test

is not always necessary to successfully transfer the test. Two instances for such cases are

WordPress and Etsy, in which all the tests were successfully transferred (i.e., 100% success

rate), despite the existence of several false positives in the matched GUI events (i.e., imperfect

precision). The reason is that sometimes false positives are not harmful, since the same

feature may be implemented differently on two platforms. For example, to access the “About

Me” page on WordPress’s web app, users need to expand and navigate the side menu, which

is not required on the Android app, as it provides a shortcut to that page on its main screen.

Another important observation from the results in Table 5.5 is that the success rate varies

among different subjects, ranging from 64% (on BuzzFeed, Fox News, and GitLab) to 100%

(on Etsy and WordPress). In the next research question, we investigate the attributes that

impact the success rate of test transfer.

5.5.3 RQ2: Factors Impacting Effectiveness

We manually investigated all of the attempted transfers, including both successful and failed

ones, to identify the factors that impact the effectiveness.

Insufficient widget context. Insufficient contextual information in the target widgets,

such as indistinguishable or missing textual information, impacts TransDroid’s ability to

find a proper match. For instance, while the input fields for shipping address in Groupon’s

web app contain distinguishable identifiers such as city and zip-code, the Android app
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(a) Create a page on the web app
through the search bar and a dynam-
ically generated link

(b) Create a page on the Android app
through a button

Figure 5.6: Different interaction flows to create a page on Dokuwiki across platforms

uses the same identifier, i.e., edit-text, for all of the corresponding fields. As a result,

TransDroid failed to transfer the tests dealing with the shipping feature. Another example

is the Navigation Drawer (a.k.a., the menu icon or hamburger icon) in GitLab’s Android

app. It is implemented as an image button, rather than a native Android icon, without

any associated textual information. As TransDroid only considers textual information for

widget context, this button could not be matched and the features accessible through this

button remain undiscovered.

Missing features. The test transfer fails if the tested feature is not implemented in the

target app/platform. For example, the web users of OwnCloud can restore deleted files

from the recycle bin, but this feature is not provided on OwnCloud’s Android app. Another

instance of such transfer failure is the “unvote” feature (i.e., to revoke the vote for a news

post) that is only provided on the web app of Hacker News, and not its Android counterpart.

Radically different interaction flows. If the interaction flow of accessing a feature is

utterly different across platforms, the transfer may fail. For example, to create a new page

on DokuWiki’s web app, users need to first search for the name of the page that they want
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Table 5.6: Average reduction of effort

Subject
#Events on Average

%ReductionGenerated Ground Truth Edit
Test Test Distance

BuzzFeed 5.13 4.13 1.75 58%
DokuWiki 6.11 5.89 0.78 87%
Etsy 4.62 4.46 0.23 95%
Fox News 4.89 4.67 0.67 86%
GitLab 6.27 6.09 1.27 79%
Groupon 5.23 4.85 1.08 78%
Hacker News 6.82 6.55 1.00 85%
OwnCloud 6.80 6.30 1.50 76%
Wikipedia 6.33 5.89 0.89 85%
WordPress 6.50 5.60 0.90 84%

Total 5.84 5.44 0.98 82%

to create, and then click the link dynamically generated in the search result. This form of

interaction, however, is not supported by the Android app. A new page can only be created

by clicking the “Create page” button on the Android app, as shown in Figure 5.6.

Test length is NOT a key factor. Prior work in intra-platform test transfer [86] found

a strong negative correlation between test length (i.e., number of total events) and the

effectiveness metrics (i.e., precision, recall, and success rate). Their finding inspired us to

investigate if a similar correlation can be found in inter-platform test transfer. We conducted

a Pearson correlation analysis [9] on our dataset, and observed a negligible correlation with

the coefficients ranging between 0.03 and 0.30. Since it appears test length is not a key

factor impacting effectiveness of cross-platform test transfer, we argue that future research

should focus on other factors to improve the success rate of cross-platform transfer.

5.5.4 RQ3: Reduced Effort

Table 5.6 demonstrates the average number of events comprising the ground-truth tests and

transferred tests, along with their edit distance. The results show that TransDroid can

save 82% of the manual effort on average, compared to writing the ground-truth tests from

scratch. Taking WordPress as an example, on average the tests generated by TransDroid
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Table 5.7: Efficiency evaluation of TransDroid

Subject
Time in Sec for a Transfer
Min Max Avg

BuzzFeed 48 3160 518
DokuWiki 14 2060 396
Etsy 17 271 95
Fox News 50 1724 639
GitLab 13 157 66
Groupon 54 644 199
Hacker News 21 424 133
OwnCloud 42 3132 629
Wikipedia 51 4445 769
WordPress 18 613 212

Total 13 4445 349

contain 6.5 events and need only 0.9 manual edits to be transformed to the ground truth,

thereby achieving a substantial reduction in the manual effort of creating the tests from

scratch. This result hints at the potential utility of TransDroid, even when it fails to

successfully transfer the entire test suite.

5.5.5 RQ4: Efficiency

Table 5.7 shows the execution time for the attempted transfers in our experiments. On

average, a test transfer takes less than 6 minutes, ranging from 13 seconds to 1.2 hours among

the different tests and subject apps. Note that, however, among all 110 attempted transfers,

only 4 of them took more than half an hour (the four largest numbers shown in Table 5.7).

The average execution time for the other 106 transfers is only 241 seconds or approximately 4

minutes. While it is not feasible to directly compare our inter-platform transfer work against

prior works targeting intra-platform transfer, the efficiency demonstrated by TransDroid

is quite impressive, since prior work for intra-platform transfer takes 1.5 hours on average [86]

to finish a transfer.

We investigated the four longest transfers and found that they spent most time in checking

the reachability of many candidate widgets. That is, they ran the function isReachable in
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Algorithm 4 repeatedly. This is the most time-consuming element of the Test Generation

component in general, as it frequently restarts the target app to validate the potential paths

for a candidate widget or screen. Nevertheless, such reachability checks may be accelerated

if executed in parallel with multiple devices or emulators.

5.6 Assumptions and Limitations

Similar to all prior work in intra-platform test transfer [114, 41, 73, 112, 42, 86], Trans-

Droid assumes the source web app and its Android counterpart have similar features. If not,

test transfer would not work. In some cases the Android app may have unique and platform-

specific features, such as notification- or geolocation-related functionalities, for which test

transfer will not be possible, since the corresponding web app lacks those features and hence

does not have any related tests for transfer. The goal of this work is to reduce the manual

effort of writing tests for features that are shared.

TransDroid also assumes the interaction flows between the web and the Android versions

of an app are similar, albeit not identical, for a given feature. As discussed in RQ2 (Sec-

tion 5.5.3), we acknowledge that the same feature may be realized with drastically different

interaction flows on different platforms. Nevertheless, as our evaluation shows, that is typ-

ically not the case in practice, and the proposed transfers are effective on a considerable

number of apps that have similar cross-platform behaviors.

The current implementation of TransDroid does not support some actions in web testing

such as drag and drop. Moreover, this work does not consider external communications in

the source web test, such as choosing a local file or login with OAuth. Such limitations

could be addressed by extending the current action transformation rules. That said, one can

trivially construct an automated pre-processing phase to exclude the source tests containing

73



unsupported actions to improve the success rate of transfers.

5.7 Conclusion

Automated test transfer is a promising method of generating high-quality tests for verification

of similar features among mobile apps. In this chapter, we described the cross-platform

test transfer problem and the associated challenges that prior works have not addressed.

We presented TransDroid, an automated tool for solving this problem in the context of

web-to-Android transfer. TransDroid adopts novel transformation techniques and test

generation algorithms to resolve the challenges of overcoming the incompatibilities between

platforms. Our evaluation on real-world apps demonstrated the effectiveness and efficiency

of TransDroid, as it successfully transferred 77% of the test cases in our experiments.

Our results indicate that even when test transfer is not completely successful, it has the

potential of significantly reducing the manual effort of creating tests for similar apps, i.e.,

82% reduction on average in our study subjects.

We also discussed the factors impacting the effectiveness of TransDroid, addressing which

will frame part of our future work. We also aim to conduct a user study involving real

developers to further validate our empirical findings. Finally, we plan to investigate the

application of TransDroid for test transfer among other platforms, such as mobile-to-web

and web-to-desktop.
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Chapter 6

Feature-Based Test Augmentation

Core features (functionalities) of an app can often be accessed and invoked in several ways,

i.e., through alternative sequences of user-interface (UI) interactions. Given the manual

effort of writing tests, developers often only consider the typical way of invoking features

when creating the tests (i.e., the “sunny day scenario”). However, the alternative ways of

invoking a feature are as likely to be faulty. These faults would go undetected without proper

tests. To reduce the manual effort of creating UI tests and help developers more thoroughly

examine the features of apps, we present Route, an automated tool for feature-based UI test

augmentation for Android apps. Route first takes a UI test and the AUT as input. It then

applies novel heuristics to find additional high-quality UI tests, consisting of both inputs and

assertions, that verify the same feature as the original test in alternative ways. Application

of Route on several dozen tests for popular apps on Google Play shows that for 89% of

the existing tests, Route was able to generate at least one alternative test. Moreover, the

fault detection effectiveness of augmented test suites in our experiments showed substantial

improvements of up to 39% over the original test suites.
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6.1 Introduction

Feature-based user-interface (UI) testing serves as a primary way of examining the end-to-end

workflows and usability of interactive applications such as mobile apps. Compared to other

forms of UI testing (e.g., crawling or random exploration) that simply focus on achieving

higher code coverage, feature-based UI testing aims to cover the features (functionalities) of

the app under test (AUT). A prior study has showed that this type of testing is preferred

by mobile app developers [90]. While it is straightforward to conduct usage-based testing

manually, developers often choose to write scripted or automated UI test cases to make such

testing repeatable in the context of continuous integration [58].

Automated feature-based testing has several advantages: reliability, execution speed, and

in particular, the manifestation of developers’ knowledge regarding software functionality

through oracles, i.e., assertions in test cases. However, writing the tests involves substantial

manual effort; thus, developers in practice only create a limited number of such tests due to

time constraints. A recent study about test automation in open-source Android apps shows

that within the real-world projects adopting automated UI testing, half of them contain

fewer than 8 UI test cases [87].

Furthermore, the functionalities examined by automated feature-based tests are usually im-

portant, core capabilities of an app that can be accessed in multiple ways, i.e., through

alternative sequences of UI interactions. The existing automated test generation tech-

niques [1, 35, 37, 48, 70, 94, 95, 97, 103, 128, 123, 57] cannot generate high-quality tests,

consisting of both inputs and proper assertions, as they lack developers’ knowledge; instead,

they generate inputs for exploring apps without providing proper assertions to verify the

resulting behavior. On the other hand, when creating the automated test scripts, developers

may only consider the typical way of invoking a feature (i.e., the “sunny day scenario” or

“happy path”), neglecting alternative ways of invoking it.

76



find_element_by_id("school/timetable").click ()

find_element_by_id("more_options").click ()

find_element_by_id("school/item_1").click()

e = find_element_by_id("school/title")

assertEquals(e.getText (), "Manage timetables"); // Oracle

Listing 6.1: Test script for timetable management in School Planner

For example, Listing 6.1 shows a GUI test for a feature dealing with timetable management

in School Planner, a popular planner app for students [31]. The execution of this test case

is depicted in Figure 6.1-a. This test resembles the actions a user would take to manage

timetables through a dedicated pop-up menu. The assertion in the last line checks if the

app responds correctly by verifying the title of the page is “Manage timetables” (the last

screen of Figure 6.1-a). Nevertheless, Figures 6.1-b and 6.1-c demonstrate that this feature

can be actually performed in two alternative ways, i.e., via the timetable selection dialog or

Settings. When the developer writes the test for this feature, she may perceive the scenario

of Figure 6.1-a as the default or primary way of invoking this functionality. Failure to create

tests for the other two ways of invoking the feature, however, leaves the potential faults

that can only be revealed by those tests undetected. For instance, the first test shown in

Figure 6.1-a cannot reveal latent faults in the event listener method of the “MANAGE”

button in Figure 6.1-b.

To reduce the manual effort of creating feature-based tests and help developers more thor-

oughly verify the features of their apps, we present Route, short for ROads not taken in Ui

TEsting, which is an automated solution for feature-based UI test augmentation for Android

apps. Route first takes a feature-based UI test, including both its inputs and assertions,

and the AUT as input. It then applies novel heuristics to explore the AUT and generate

additional UI tests that verify the same feature as the original test. Route leverages virtu-

alization techniques to increase the accuracy and performance of app exploration. In other

words, it saves and restores the snapshots of the memory of the device in certain states. In

fact, Figures 6.1-b and 6.1-c are the alternative scenarios discovered by Route from the
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(a) Origianl scenario: manage timetables through a dedicated pop-up menu

(b) Alternatie scenario: manage timetables through the timetable selection
dialog

(c) Alternatie scenario: manage timetables through Settings

Figure 6.1: Different use-case scenarios for timetable management in the School Planner
app.

original test shown in Figure 6.1-a.

Route has several key differences from prior work in test augmentation [111, 102, 129, 71,

125, 46, 65, 39, 121, 80, 132, 33]. First, the proposed augmentation is feature-based. In other

words, we aim to generate tests that verify the same functionalities as the original tests. To

achieve this goal, we have developed several properties that the generated tests should hold

and designed Route based on these properties. Second, the assertions in the original tests
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are reused in the generated tests, which makes the augmented test suites capable of detecting

feature-related faults and providing the developers with actionable information to debug

their programs. Finally, we have developed a test generation algorithm that prioritizes the

candidate tests according to how likely they are to exercise a feature in a materially different

way than the existing tests.

We have applied Route on several dozens of feature-based UI tests for verification of popular

apps on Google Play. The experimental results show that for 89% of the existing tests,

Route was able to generate at least one alternative test. Moreover, the fault detection

effectiveness of the augmented test suites was improved by up to 39% over the original test

suites.

Overall, this chapter makes the following contributions:

• We propose a feature-based UI test augmentation technique capable of creating high-

quality tests, consisting of both inputs and assertions, to verify features of an app in

alternative ways.

• We present novel heuristics for the proposed augmentation, and implement them as an

automated tool, called Route, which is publicly available [19].

• We empirically evaluate Route on real-world tests and demonstrate its utility to

generate additional tests capable of detecting new faults.

The rest of this chapter is organized as follows. Section 6.2 elaborates on the concept of

feature-based test augmentation. Section 6.3 provides an overview of Route as well as the

implementation details of its components. Section 6.4 presents our test generation algorithm.

Section 6.5 discusses the evaluation results. The chapter concludes with future work.
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Figure 6.2: Example of states and paths in the School Planner app shown in Figure 6.1

6.2 Background

An existing UI test can be augmented by modifying its execution path. In this work, we

model the dynamic behavior of the AUT as a graph G = (V,E), where:

• V is a set of GUI states (screens). Each v ∈ V represents a unique runtime GUI state

in the AUT.

• E is a set of edges between the GUI states. Each e = (vi, vj, (w, a)) ∈ E represents a

transition from vi to vj by firing a GUI event that performs an action a on a widget w.

Furthermore, the execution of a test can be perceived as a traversal through the graph.

Specifically, for a UI test t, we represent its execution path p = (vs, vf , Vp, Ep, Vo) as follows:

• Vp ∈ V are GUI states visited by t with edges Ep ∈ E.

• vs ∈ Vp denotes the start state, i.e., the state before t executes the first event.

• vf ∈ Vp denotes the end state, i.e., the state after t executes the last event. vs and vf

are also referred as terminal states.

• Vo ⊆ Vp denotes the oracle states, i.e., the states on which t has assertions. We also

store the assertions associated with each vo ∈ Vo.
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Finally, for a usage-based test to be augmented, we call its execution path base path and the

visited GUI states base states. For example, in Figure 6.2, the solid edges illustrate the base

path of the test executing the scenario of Figure 6.1-a. The base path can then be modified

to generate new tests from the original test.

When we construct a modified execution path p′ from a base path p to generate a new

test, we would like p′ to still test the same functionality as p, albeit using an alternative

path. To that end, we propose several properties that we would like the modified execution

path p′ to hold. First, the start and end states of p′ should be the same as the base path

p, because the terminal states provide important information about the boundary of the

tested feature. Similarly, the oracle states Vo in p, as well as the assertions examined at

each state vo ∈ Vo, should also be included in p′, because they are critical for semantically

verifying the functionality. Finally, p′ should not be drastically different from p. The reason

is that overly modifying p may significantly change the behavior of the AUT and invalidate

the original assertions. As a result, we need to limit the changes from p to p′ to specific

types of operations, such as replacing a sub-path in p with an alternative simple path. The

paths labeled “b” and “c” in Figure 6.2 (corresponding to the scenarios of Figures 6.1-b

and 6.1-c) exemplify the modified execution paths satisfying the proposed properties. In the

following sections, we describe how we designed Route to integrate these properties into

the generated tests.

6.3 Approach

Figure 6.3 provides an overview of Route. It takes an original test and the AUT as input

and generates new tests that examine the same feature as the original test in alternative ways.

There are three main components in Route: Base Path Construction, App Exploration, and

Test Generation. First, Base Path Construction component executes the original test and
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Figure 6.3: Overview of Route

retrieves its execution path as the base path. Next, based on the visited states in the base

path, App Exploration component systematically explores the AUT and outputs the state

transition diagram that represents the AUT’s runtime behavior. Finally, Test Generation

component applies novel heuristics to identify and prioritize the executable tests that hold

the desired properties discussed in Section 6.2. We describe the implementation of each

component in the following subsections.

6.3.1 Base Path Construction

Algorithm 5 describes how Base Path Construction component executes the original test t

to obtain its execution path p as the base path. As defined in Section 6.2, p is a 5-tuple

of vs (start state), vf (end state), Vp (base states), Ep (edges), and Vo (oracle states). The

algorithm first initializes E and Vo as an empty set, and then launches the AUT. Next, it

dumps the current screen of the AUT to obtain the initial state before test execution as the

start state, and use it to initialize base states and the variable for previous state (line 3-6).

A dumped screen of an Android app is a widget hierarchy tree in XML format, in which

non-leaf nodes are layout widgets and leaf nodes are actionable or visible widgets, such as

buttons and text views. We uniquely identify a GUI state by computing a hash value over

the widget hierarchy tree.
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Algorithm 5 Route: Base Path Construction

Input:
t: original test

Output:
p = (vs, vf , Vp, Ep, Vo): the base path of t

1: Ep = ∅; Vo = ∅ . initialize edges and oracle states
2: launchApp()
3: screen = dumpCurScreen()
4: vs = getHash(screen) . start state
5: Vp = {vs} . initialize base states
6: prevState = vs
7: takeSnapshot(vs)
8: for each event ∈ t do
9: if event is not an assertion then

10: execute(event)
11: screen = dumpCurScreen()
12: curState = getHash(screen)
13: Vp = Vp ∪ curState
14: Ep = Ep ∪ (prevState, curState, event)
15: prevState = curState
16: takeSnapshot(curState)
17: else . event is an assertion
18: Vo = Vo ∪ prevState
19: end if
20: end for
21: vf = prevState . end state
22: p = (vs, vf , Vp, Ep, Vo)
23: return p

Before executing the test, a snapshot of the start state is taken (line 7). In this work, we

leverage virtualization to save the visited states and later restore and explore them in App

Exploration (detailed in the next subsection). In other words, the AUT is installed and

executed on a virtual machine (VM) such as Android Virtual Device [27] or VirtualBox

VM [109], such that the runtime program state of the AUT, including the underlying OS

and emulated hardware, can be stored in a snapshot and fully resumed later. This helps

improve the accuracy and performance of GUI state exploration. Typically in prior work [1,

70, 95, 97, 123], a GUI state is resumed by restarting the AUT and replaying the recorded

event sequence. However, a shortcoming of this restart-and-replay approach is that the

background services may change after restarting the AUT and the GUI state cannot be
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reached again. Virtualization addresses this issue. Moreover, the exploration of the AUT

can be accelerated because the snapshots can be restored and processed in parallel with

multiple VMs. The practice of using virtualization and snapshots is also adopted by prior

work in Android testing [57].

Algorithm 5 executes the original test t after the initialization steps (line 8). For each

event ∈ t, if the event is not an assertion, it first executes the event and then obtains

curState, the current GUI state after execution (lines 9-12). We subsequently update the

base path in terms of the base states Vp and edges Ep, and take a snapshot of this new

state (line 13-16). On the other hand, if the event is an assertion1, it means some checks are

performed on the previous state, and we hence update the oracle states Vo with prevState

(line 17-18). Finally, after the execution of t, the end state is updated and the base path p

is returned as input to the next phase of App Exploration (line 21 to 23).

6.3.2 App Exploration

With the base path p from the original test, App Exploration component performs k-step

lookahead on each base node to obtain G, an explored state transition graph of the AUT,

as described in Algorithm 6. In particular, the algorithm explores if there are paths with

length not greater than k from a base state v to another base state. This base-path-directed

exploration restricts the possible paths that can be constructed from the graph later, such

that the generated tests will not deviate too much from the base path.

Algorithm 6 first initializes G, the graph to be returned, with the states and edges in the base

path (line 1). Next for each base state v ∈ Vp, it performs initialization steps in lines 3-8.

It creates a first-in-first-out queue to store the event sequences that need to be executed

for exploration (line 3). To initialize the queue, it retrieves all actionable widgets from v

1The assertions considered in this work are UI-based assertions, such as checking the existence of widget
or text, or verifying the attributes of a widget.
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Algorithm 6 Route: App Exploration

Input:
p = (vs, vf , Vp, Ep, Vo): base path
k: lookahead threshold

Output:
G: state transition diagram of the AUT

1: G = {Vp, Ep}
2: for each v ∈ Vp do
3: queue = ∅ . A first-in-first-out queue
4: widgetList = getActionable(v)
5: for each widget ∈ widgetList do
6: events = ∅
7: events = events ∪ (widget, getAction(widget))
8: queue.push(events)
9: end for

10: while queue 6= ∅ do
11: restoreSnapshot(v)
12: events = queue.pop()
13: subPath = ∅
14: prevState = v; curState = v
15: for each e ∈ events do
16: execute(e)
17: screen = dumpCurScreen()
18: curState = getHash(screen)
19: if curState 6= prevState then
20: subPath =

subPath ∪ (prevState, curState, e)
21: prevState = curState
22: end if
23: end for
24: if curState ∈ Vp then
25: G.update(subPath)
26: else if events.length < k then
27: widgetList = getActionable(curState)
28: for each widget ∈ widgetList do
29: newEvents =

events ∪ (widget, getAction(widget))
30: queue.push(newEvents)
31: end for
32: end if
33: end while
34: end for
35: return G
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(line 4), creates an action event, such as click, for each of them, and pushes the generated

event sequences into queue (lines 5-8). For example, the solid nodes and edges in Figure 6.2

depict the initial G for the test in Listing 6.1. Moreover, for v equal to state 2, queue is

initialized with three single events, which when executed result in exploration of states 3, 5,

and 8.

For each event sequence events ∈ queue, Algorithm 6 first restores the GUI state v and

executes the events sequentially (line 11-16). The executed events, as well as the encountered

GUI states, are also recorded as subPath, a sub-path starting from v (lines 17-21). Next,

if curState, the GUI state reached after the execution, is a base state, it updates G with

the traversed subPath (line 24-25). Otherwise, if the length of events is smaller than the

threshold k, it means we can continue exploring forward from v. To that end, we retrieve all

actionable widgets for curState and create newEvents, a new event sequence by appending

an appropriate action event, such as click or type, to each of the retrieved widgets (line 27-

29). newEvents is then pushed into queue for further exploration (line 30). For example,

for k = 2 and v equal to state 2 in Figure 6.2, subpaths (2 → 3) and (2 → 5 → 4) will be

added to G since states 3 and 4 belong to Vp. Note that, some paths (explored states in

Figure 6.2) are not added to G because they do not visit any base states, or they exceed the

lookahead threshold, e.g., given k = 3, the path (1 → 8 → 9 → 11 → 4) is not explored.

After all event sequences in queue are consumed for all base states v, the algorithm stops

and returns G (line 35). We describe Test Generation in detail in the next section.

6.4 Test Generation

Test Generation component takes the base path p and the state transition diagram G as

input, and generates T , a set of executable tests with size n, as described in Algorithm 7.

To that end, in line 2, it retrieves all simple paths in G that (1) are from start state (vs) to
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Algorithm 7 Route: Test Generation

Input:
p = (vs, vf , Vp, Ep, Vo): base path
G: state transition diagram of the AUT
n: number of tests to be generated

Output:
T : a set of executable tests with size n

1: T = ∅
2: paths = getSimplePaths(G, vs, vf , Vo)
3: T = generateTestsFromPaths(T, paths, Vo)
4: if |T | < n then
5: paths = getCyclicPaths(G, vs, vf , Vo)
6: T = generateTestsFromPaths(T, paths, Vo)
7: end if
8: return T

9: function generateTestsFromPaths(T, paths, Vo)
10: paths = sort(paths)
11: for each p′ ∈ paths do
12: launchApp()
13: executable = execute(p′, Vo)
14: if executable is true then
15: T = T ∪ p′
16: if |T | = n then
17: return T
18: end if
19: end if
20: end for
21: return T
22: end function

end state (vf ), and (2) visit all oracle states (Vo). We focus on the paths that satisfy these

two constraints because they are required properties for the generated tests (as discussed

in Section 6.2). Moreover, tests with an execution path containing a cycle may include

repetitive operations such as navigating back to a previous screen, and hence considered less

useful. As a result, the algorithm first considers simple paths (i.e., paths without repeating

states) when generating the tests.

Next, Algorithm 7 verifies the retrieved simple paths and generates executable tests from

them (line 3) by calling the generateTestsFromPaths() (line 9). This function first sorts
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Figure 6.4: Examples of valid and invalid paths considered by getCyclicPaths() in Algo-
rithm 7

the paths by their difference from the base path (line 10, detailed in the next subsection), and

then launches the AUT and executes each of the prioritized paths to verify if it is executable

(line 11-13). If a candidate path p′ is executable, it is added to T (line 14-15). Note that

when verifying p′, if an oracle state vo ∈ Vo is encountered, the associated assertions are also

performed. That way, the generated tests include the original assertions that have passed.

generateTestsFromPaths() returns when the size of T is n (line 16) or all candidate paths

are verified (line 21).

If the size of T is smaller than n after checking all the simple paths, Algorithm 7 will further

retrieve the execution paths containing only one cycle (line 4-5). Specifically, getCyclicPaths()

in line 5 only considers the paths with a non-loop circuit (i.e., a cycle with a length larger

than one) on a base state, as illustrated in Figure 6.4. We only allow this special case for

execution paths containing cycles, because we would like to modify the base path conserva-

tively. The retrieved paths are then verified in the same way to generate more tests (line 6).

The algorithm returns when the required number of tests are generated or after checking all

valid candidate paths (line 8).
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Algorithm 8 Route: Path Difference

1: function pathDiff(p, p′)
2: L = getStateList(p) . L = {v1, v2, ..., v|L|}
3: L′ = getStateList(p′) . L′ = {v′1, v′2, ..., v′|L′|}
4: d1 = editDist(L,L′)
5: score = 0; count = 0
6: for i from 2 to |L′| do
7: if v′i /∈ L then
8: score = score+ xmlEditDist(v′i, v

′
i−1)

9: count = count+ 1
10: end if
11: end for
12: d2 = score/count
13: return α× d1 + (1− α)× d2
14: end function

6.4.1 Computing path difference

With the explored state transition graph of the AUT, the number of candidate paths may

grow exponentially and become too many to verify. As a result, Test Generation component

prioritizes the candidate execution paths by their difference from the base path (line 10 in

Algorithm 7). In other words, we compute a distance score between the base path p and

each candidate path p′ with the pathDiff() function in Algorithm 8. The paths with the

highest distance scores are executed and verified first.

We would like to select the candidate paths that are most different from the base path, as

they are more likely to exercise a feature in a materially different way than the existing test.

To that end, we consider the difference between a candidate path and the base path at both

the path level and the state level. By path level, we mean how different the two paths are

in terms of their length and visited states. At the state level, we further look into the new

states in the candidate path and determine the extent they are different from their preceding

states.

Algorithm 8 first gets the list of states visited by p and p′ as L and L′, respectively (lines 2-3).

It then computes a coarse-grained score (d1) about how different L and L′ are, in terms of
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their edit distance (line 4). Here we treat L and L′ as two strings and the contained state

identifiers (hash values) as characters, and compute the number of required edits, inserts or

deletions that converts L to L′. Next, it traverses each state v′i ∈ L′ sequentially. If v′i is

not a base state (i.e., v′i /∈ L), we compute a find-grained score about how different v′i and

v′i−1 (its previous state) are, in terms of the edit distance between their XML representations

(line 8). This helps us estimate if the change from v′i−1 to v′i is huge or merely incremental

(such as a checkbox is selected). Finally, d1 and the averaged find-grained score (d2) are

normalized into [0, 1] and a weighted sum of them is returned (line 13, with α = 0.5 in our

implementation).

6.5 Evaluation

We investigated the following research questions in our experimental evaluation of Route:

RQ1. What types of tests are generated by Route? Are they for the same feature and

meaningful?

RQ2. Is the fault detection effectiveness of the augmented test suites improved?

RQ3. How is the fault detection effectiveness of augmented test suites affected by the inde-

pendent variables in Route?

6.5.1 Experimental Setup

We implemented Route with Python for UI tests written using Appium [8], an open-source

and cross-platform testing framework. Existing usage-based tests for the subject apps are

written with Appiums’ Python client. The generated tests are stored in JSON format and
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Table 6.1: Subject tests and experimental results

TestName AppName #Events #Assertions
#Alt Tests %Mutants Killed
Generated Orig Augmented

TestAddFavorite Astro 5 1 3/3 2 2
TestAppManager Astro 2 1 0/3 5 16
TestCreateFolder Astro 5 1 3/3 2 2
TestListView Astro 3 1 2/3 7 11
TestOpenDirectory Astro 3 1 3/3 2 2
TestSearch Astro 6 1 2/3 9 9
TestCreateLink OwnCloud 10 3 3/3 11 13
TestDelete OwnCloud 6 2 3/3 3 13
TestFileDetail OwnCloud 9 2 2/3 3 8
TestRename OwnCloud 7 1 3/3 8 18
TestSearch OwnCloud 3 1 1/3 0 11
TestSearchDetail OwnCloud 4 1 2/3 0 5
TestUpload OwnCloud 5 1 2/3 0 0
TestViewStorage OwnCloud 2 1 1/3 0 11
TestAddGrade School Planner 8 1 3/3 8 14
TestAddSubject School Planner 8 1 3/3 0 14
TestAgenda School Planner 3 1 3/3 0 6
TestCalendar School Planner 2 1 3/3 0 6
TestManageTimeTable School Planner 5 1 3/3 6 11
TestSettings School Planner 3 1 3/3 0 6
TestViewProgression School Planner 3 1 3/3 0 8
TestViewTimeTable School Planner 4 1 3/3 6 8
TestAddNewItem Shopping List 4 1 3/3 0 0
TestAddNewList Shopping List 5 1 2/3 0 10
TestCheckAll Shopping List 3 1 2/3 0 13
TestDeleteChecked Shopping List 6 1 2/3 3 15
TestDeleteList Shopping List 3 1 1/3 3 13
TestRenameList Shopping List 5 1 0/3 3 10
TestSearch Shopping List 4 1 2/3 0 13
TestAddDraft WordPress 10 1 3/3 7 25
TestBlogPost WordPress 9 1 3/3 4 21
TestMenuBlog WordPress 2 1 2/3 4 21
TestMenuMedia WordPress 2 1 2/3 0 18
TestMenuPage WordPress 2 1 2/3 0 18
TestPageSearch WordPress 4 1 2/3 0 25
TestPostNavigation WordPress 9 4 3/3 4 21
TestViewSite WordPress 2 1 2/3 0 21
TestCreateFolder Writely Pro 5 1 1/3 0 17
TestCreateNote Writely Pro 6 1 3/3 0 39
TestDeleteNote Writely Pro 4 1 3/3 0 3
TestEditNote Writely Pro 4 1 3/3 0 25
TestMoveNote Writely Pro 6 1 0/3 3 17
TestRenameNote Writely Pro 5 1 0/3 3 6
TestSearch Writely Pro 3 1 0/3 3 28

Total 209 51 95/132 12 33

executed by our test runner. In our experiments, we used VirtualBox VM [109] with Android-

x86 7.1 OS [23] installed. The experiments were conducted on a Windows laptop with 2.8

GHz Intel Core i7 CPU and 32 GB RAM. Our experimental data is publicly available [19].
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Subject tests. We collected a set of feature-based UI tests from prior work in mobile app

testing [42, 119]. In a few cases, we added appropriate assertions to the tests that had no

assertion. Table 6.1 shows the subject tests used in our study, including the test names,

app names, and the contained GUI events and assertions. In total, 44 original feature-based

tests were included. Five of the apps under test (except for Writely Pro) are popular apps,

with 100K+ to 50M+ installs on Google Play.

Independent variables. The two primary independent variables in Route are k, the

lookahead step in App Exploration, and n, the number of generated tests in Test Generation.

We also investigated how these two variables influence the augmented test suites in RQ3.

6.5.2 RQ1: Quality of the Generated Tests

In our experiment, 132 new tests were generated by Route (with n = 3) from the 44

original tests in Table 6.1. We first manually classified all the generated tests as alternative

tests or not. A generated test is an alternative test if its execution path contains an acyclic

sub-path from one base state to another base state that is different from the sub-path taken

by the original test. Table 6.1 shows that 72% (95/132) of the generated tests are valid

alternative tests for verifying a feature. For 89% (39/44) of the original tests, Route was

able to generate at least one alternative test. Furthermore, in most cases (90%, 35/39) the

alternative tests are the first test generated by Route. This indicates that the prioritization

criteria of Route works effectively and it can quickly find alternative tests.

We also conducted a qualitative study by manually examining the behavior of the 95 alter-

native tests generated by Route and categorized them into four groups.
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(a) Original: click the checkbox and delete checked
items via a menu option

(b) Generated: select and delete all items via menu
options

Figure 6.5: Deleting a checked item in Shopping List with different controllers

Different Controllers

In this category, the generated test performs the same task through different GUI controllers.

Examples include Figure 6.1-b and 6.1-c. Instead of the pop-up menu in the original test,

these two tests reach the timetable management screen by the selection dialog and menu

options in Settings, respectively. Another example is illustrated in Figure 6.5. In the original

test, an item is selected by clicking the checkbox and then deleted through a menu option.

This task can be instead finished by different controllers, i.e., menu options that select and

delete items, as performed in the generated test.

Different Input Data

In this category, the generated test performs the same task through the same controllers,

but with different input data. For example, Figure 6.6 illustrates that the task of creating
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(a) Original: create a note with title and content

(b) Generated: create a note with title only

Figure 6.6: Creating a note in Writeily Pro with different input data

a note is tested the same way in both the original and generated tests, i.e., using the same

controllers. However, the created notes are different in terms of the content (i.e., input

data). Figure 6.7 provides another example in this category. An original test depicted in

Figure 6.7-a views the details of a photo, but in the generated test the photo is deleted and

the details of another photo is displayed (Figure 6.7-b). In other words, the task of viewing

photo details is perform the same way, i.e., via the same menu option, in these two tests,

but the photos (input data) are different.

Different Control Flow

The generated test performs the same task through the same controllers and with identical

input data. However, it adds additional steps to the original control flow. For instance,

Figure 6.8-a shows that the generated test switches from table view to list view before

managing timetables. Similarly, Figure 6.8-b illustrates that an additional circuit is added

94



(a) Original: view the details of a photo via a
menu option

(b) Generated: delete the photo and then view the details of anoter
photo, via the same menu option

Figure 6.7: View photo details in OwnCloud with different input data

to the original control flow by opening and closing a dialog.

Deviated

Here, the original assertions accidentally pass in the generated test, but the desired func-

tionality is not actually performed. For example, an original test for the page search feature

in WordPress first performs a search with a keyword and then checks if a specific page title

is displayed. On the other hand, one of the generated tests directly navigates to the page

list screen and performs the existence check of the page title. Such a test is not considered

to be performing the same task as the original test.

The number of generated tests for each category is listed in Table 6.2. We believe the first

three categories of tests can be useful to developers in different ways, while the deviated

tests may not be. 93% (88/95) of the alternative tests generated by Route fall in the first
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(a) Switch from table view to list view before managing timetables (b) Open and close a dialog before
managing timetables

Figure 6.8: Timetable management in School Planner with different control flows

Table 6.2: Categories of tests generated by Route

Category #Generated Tests
Different Controllers 38 (40%)
Different Input Data 17 (18%)
Different Control Flow 33 (35%)
Deviated 7 (7%)

Total 95 (100%)

three categories.

6.5.3 RQ2: Fault Detection Effectiveness

To investigate whether the generated tests are advantageous in terms of fault detection

effectiveness, we created mutants for the apps under test with MutApk [60], an open-source

mutation testing tool for APK files. It supports 35 mutation operators designed for Android

apps [88] and performs the mutation on intermediate representations of the code. We created

the mutants with MutApk’s default strategy, in which both the mutation operators and

locations of mutated code were picked randomly. The number of mutants created for each

app is shown in Table 6.3.

The percentage of mutants killed by the original test suite and the augmented test suite

is shown in Table 6.1. Note that we generated 3 more tests for each original test, so the

size of augmented test sets is four (one original plus three generated). Table 6.1 shows that
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Table 6.3: Mutants created for each subject apps

Subject App #Mutants
Astro 44
OwnCloud 38
School Planner 36
Shopping List 39
WordPress 28
Writely Pro 36

Total 221

Table 6.4: Percentage of mutants killed by the original tests and augmented tests with
different lookahead step k and number of generated tests n

original
n=3 k=3

k=1 k=2 k=3 n=1 n=2 n=3
12 13 25 33 29 32 33

the fault detection effectiveness of the augmented test sets improved on 86% (38/44) of the

subject tests and by up to 39% (in the case of TestCreateNote for Writely Pro). In total,

the augmented tests were able to kill 33% (74/221) of the mutants, while the original tests

were only able to kill 12% (27/221) of them. This indicates that the generated tests are

not redundant. They covered additional parts of the AUT that the original tests missed. In

other words, Route is capable of augmenting test suites to detect latent faults.

6.5.4 RQ3: Influence of the Independent Variables

In this research question, we investigated how the lookahead step k and the number of

generated tests n influence the fault detection effectiveness (FDE) of augmented suites. To

that end, we first fixed n = 3 and checked the effect of k. In other words, for the 44

original tests we produced three sets of augmented tests with exactly the same size (i.e.,

44 + 132 = 176). The difference among them is that they are generated according to state

transition diagrams resulting from different values of k. We report the percentage of mutants

killed by each of these three sets by considering all of the generated mutants. As shown in

Table 6.4, the FDE of the augmented test suites improves as k increases. This indicates that
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the ability to look further when exploring the AUT is important for Route to produce tests

with high FDE.

Next, we fixed k = 3 and checked the effect caused by n. That is, we used the same

state transition graph from 3-step lookahead to produce three sets of augmented tests with

different size, in which the first set is one time larger than the original tests (n = 1), the

second set is two times larger (n = 2) and so on. The results in Table 6.4 indicate that,

generally the first test generated by Route is very good in terms of FDE. For example, by

generating one more test for each original test, the FDE was improved from 12% to 29%.

However, Route can still improve the FDE of augmented suite by adding more tests.

6.6 Conclusion

There are often several ways of invoking the core features of an app. Due to the manual

effort of writing tests, developers tend to consider only the typical way of invoking a feature

when creating the tests. However, the alternative ways of invoking a feature are as likely to

be faulty, which would go undetected without proper tests. This chapter presented Route,

an automated tool for feature-based UI test augmentation for Android apps. Route creates

high-quality tests, consisting of both inputs and assertions, to verify the features tested by

existing tests in alternative ways. Route relies on several novel heuristics to guide the

search for new tests and leverages virtualization technology to save the visited UI states,

such that the states can be fully restored later for exploration.

Experimental results using real-world subjects have demonstrated the effectiveness of Route,

as it successfully generated alternative tests for 89% of the existing test cases in our experi-

ments. Moreover, the fault detection effectiveness of augmented test suites in our experiments

showed substantial improvements of up to 39% over the original test suites.
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In our future work, we aim to investigate the applicability of techniques described here in

other computing domains (e.g., web applications) and other testing paradigms (e.g., unit

tests). We also plan to conduct user studies with practitioners to validate the utility of tests

generated using Route in practice.
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Chapter 7

Test Automation in Open-Source

Android Apps: A Large-Scale

Empirical Study

Automated testing of mobile apps has received significant attention in the recent years from

researchers and practitioners alike. In this chapter, we report on the largest empirical study

to date, aimed at understanding the test automation culture prevalent among mobile app

developers. We systematically examined more than 3.5 million repositories on GitHub and

identified more than 12, 000 non-trivial and real-world Android apps. We then analyzed these

non-trivial apps to investigate (1) the trends in adoption of test automation; (2) working

habits of mobile app developers in regards to automated testing; and (3) the correlation

between the adoption of test automation and the popularity of projects. Among others,

we found that (1) only 8% of the mobile app development projects leverage automated

testing practices; (2) developers tend to follow the same test automation practices across

projects; and (3) popular projects, measured in terms of the number of contributors, stars,

and forks on GitHub, are more likely to adopt test automation practices. To understand
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the rationale behind our observations, we further conducted a survey with 148 professional

and experienced developers contributing to the subject apps. Our findings shed light on the

current practices and future research directions pertaining to test automation for mobile app

development.

7.1 Introduction

Testing is an indispensable phase of software development life cycle. It is the primary

way through which quality of software is improved. In comparison with manual testing,

automated testing is reported to be more advantageous for a number of reasons, such as

reliability, repeatability, and execution speed, especially in the context of continuous in-

tegration [58]. To understand the test automation culture prevalent among mobile app

developers, researchers have investigated the extent to which test automation is adopted in

practice [81, 90, 54, 55, 77]. However, those studies are limited in terms of both scale and

quality of the curated dataset.

First, most prior works have only considered hundreds of apps from a single source, i.e.,

F-Droid. The findings and conclusions drawn from a relatively small set of sample apps may

not generalize to the overall app ecosystem.

Second, previous studies have failed to exclude dummy and invalid tests; an important

factor that might severely affect their conclusion. That is, when developers create a new

project with Android Studio, the official IDE for Android app development, it generates

some example test cases which are irrelevant for the created app. Including these default

tests may influence the results of research questions as to the adoption of test automation

practices.

Finally, appropriate and representative subjects are of critical importance for an empirical
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study. In the case of test automation for Android apps, a practical inclusion criterion is

to consider only non-trivial apps, since it is not cost-effective to write tests for trivial apps

such as class assignments, tutorials, or simple apps with only one component. Studying

trivial apps cannot reveal useful insights into the adoption of test automation practices.

Nevertheless, no previous study has focused exclusively on non-trivial apps.

In this chapter, we report on a large-scale empirical study on open-source Android apps from

GitHub. We systematically examined more than 3.5 million non-forked repositories in Java

and Kotlin, and investigated more than 12, 000 real-world apps to determine (1) the trends

in adoption of test automation; (2) working habits of mobile app developers in regards to

automated testing; and (3) the correlation between the adoption of test automation and

the popularity of projects in terms of different metrics, such as contributors and stars on

GitHub, and ratings on Google Play Store.

Two important contributions of our work are the scale of study and the way we have curated

the dataset. First, we considered more than 12, 000 apps across 16 app markets including

Google Play Store, F-Droid, and PlayDrone. We also developed novel heuristics to exclude

irrelevant and example tests in data collection and analysis. Lastly, the subject apps were

selected according to a criteria designated for identifying non-trivial apps (detailed in Section

7.3). As presented in Section 7.4, these efforts led to findings that are quite different from

prior work.

Another contribution of our work is that we considered both unit tests and UI tests. Given

the interactive nature of mobile apps, UI testing, which requires an emulator or a real

device to run, is the primary way to examine the functionality and usability of mobile

apps. Therefore, in addition to unit tests, we are interested in whether and how automated

UI tests are adopted by mobile developers. We discuss related research questions such as

developers’ preference for unit and UI testing and their compliance with the Testing Pyramid

practice [68] in Section 7.4.
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To gather a deeper understanding of the underlying reasons for our observations from the

source code, we further conducted a survey with the contributors of the subject apps, and

ended up with 148 responses mainly from professional and experienced developers. Interest-

ingly, with respect to some of the research questions, the results obtained from the analysis

of project data and survey responses are inconsistent, indicating a gap between what the

developers believe they do versus what they actually do.

Overall, this chapter makes the following contributions:

• We report on the first large-scale analysis focusing on non-trivial apps in over 12, 000

open-source projects from 16 app markets and spanning a period of 5 years, to investigate

how test automation is practically adopted.

• We present the working habits of mobile app developers regarding test automation, such

as the tendency to write tests or lack thereof and the compliance with the Testing Pyramid

practice.

• We discuss how the presence of automated tests, and its extent, impact the popularity of

apps in terms of different metrics on GitHub and Google Play Store.

• We present the findings of a survey involving 148 practitioners who developed the subject

apps to understand the rationale behind our observations as well as the challenges in

Android app testing.

• We create a publicly available dataset for this study [30]. The dataset was built by referring

to multiple data sources including GitHub, Google Play Store, F-Droid, and AndroZoo.

The remainder of this chapter is organized as follows. We provide a background on mobile

app test automation in Section 7.2. In Section 7.3, we present our approach for data col-

lection, subject selection, and developer survey. In Section 7.4, we present and discuss our

findings. The chapter concludes with a discussion of threats to validity and future work.
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7.2 Test Automation in Android

7.2.1 Unit and UI Tests

Given the interactive nature of mobile apps, there are roughly two types of tests in Android:

unit tests and UI tests.1 According to the definition from Google [68], unit tests are small

tests that “validate the app’s behavior one class at a time”. In contrast, UI tests or end-to-

end tests are medium or large tests that “validate user journeys spanning multiple modules

of the app”. The key difference between unit and UI tests, besides the scope of testing, is

that unit tests run on a local machine with JVM, while UI tests need an emulated or real

device to run, and almost always use the Android OS or Android framework.

In Android Studio, the official IDE for Android app development, unit and UI tests are

clearly separated—they are placed in different directories. The tests in the test folder are

unit tests that run locally on JVM. The tests in the androidTest folder are UI tests that

require an emulator or real device to run. These two directories are automatically generated

when developers create a new project with Android Studio. In this study, we consider the

tests under the test folder as unit tests, and the tests under the androidTest folder as UI

tests.

A feature of Android Studio highly related to our study is that, when developers create a

new project, it generates not only the folders, but also examples for different types of tests.

By default, the test folder contains a class called ExampleUnitTest.java, and the androidTest

folder contains a class called ExampleInstrumentedTest.java, as shown in Figure 7.1. They

are executable examples of unit and UI tests to help developers get started with test au-

tomation. However, including these example files may result in overestimated conclusions for

research questions about the prevalence or adoption of automated tests, because developers

1Sometimes they are called local tests and instrumented tests [67].
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public class ExampleInstrumentedTest {

@Test

public void useAppContext() {

Context appContext = InstrumentationRegistry

.getInstrumentation()

.getTargetContext();

assertEquals("com.example",

appContext.getPackageName());

}

}

public class ExampleUnitTest {

@Test

public void addition_isCorrect() {

assertEquals(4, 2 + 2);

}

}

Figure 7.1: Example Test Classes Generated by Android Studio

may accidentally commit these files without an intention to write automated tests. In this

study, we exclude these example files when counting number of tests contained in an app.

7.2.2 The Testing Pyramid Practice

The Testing Pyramid is a mindset or practice to guide developers in terms of how much

effort they should put on creating different kinds of automated tests [53, 64, 68, 32, 107]. It

essentially says that developers have to balance their automated tests by having many more

low-level unit tests than high-level UI tests, as illustrated in Figure 7.2.

There are many reasons to follow the Test Pyramid practice. First, unit tests make debugging

easier because they focus on small modules that can be tested independently. When unit

tests fail, developers can quickly pinpoint the root cause of failure and save a lot of time.

On the other hand, if there is a failure reported by a UI test, it usually means that the

corresponding unit tests are incorrect or missing. Furthermore, unit tests are more robust

and run faster in general, while UI tests may be subject to flakiness [99] and almost always

105



Figure 7.2: Illustration of the Testing Pyramid Practice from [68]

run slower. As a result, while UI tests are still important to validate end-to-end workflows,

overly relying on them will make testing expensive, slow, and brittle.

Although the proportion of tests for each layer in the Testing Pyramid varies based on

different apps, a general recommendation from Google is a 70/20/10 split: 70% unit tests,

20% integration tests, and 10% UI tests [68]. Note that, while there is a layer of integration

tests, and they can be understood as tests that “validate the collaboration and interaction

of a group of units [68]”, the scope for integration tests is controversial [79]. In fact, these

three layers are not totally clear-cut and sometimes overlap with each other [108]. In this

chapter, we leverage the characteristics of Android apps and Android Studio to identify the

two major types of tests, unit and UI tests. Furthermore, according to the above guideline,

we believe an appropriate ratio of UI tests should be 20% to 30% of the total number of

tests.

7.3 Methodology

Figure 7.3 depicts the flow of data collection and analysis in our study. This study consisted

of the following steps: (1) we first collected a large list of GitHub repositories from the

106



Figure 7.3: Flow of Data Collection and Analysis in This Study

GHTorrent database [69]; (2) we set filtering criteria to identify the repositories representing

non-trivial Android apps; (3) we further analyzed the identified repositories to collect their

meta-data and information about automated tests and popularity; (4) we evaluated the

collected dataset to answer research questions about the test automation culture prevalent

among mobile app developers; and finally (5) we conducted a survey with the developers of

the subject apps to get a deeper understanding of the underlying reasons for our observations

from the dataset. We now describe each of these steps in further detail.

7.3.1 Study Subjects and Selection Criteria

The initial list of GitHub repositories for our study was queried from the GHTorrent database [69],

a research project that monitors the GitHub public event time line and populates the col-

lected information with a relational database. We downloaded the latest dump of their

database [66], and queried the repositories written in Java or Kotlin that are neither forked

nor deleted. The query returned with a list of more than 3.5 million repositories.

To identify the repositories of non-trivial and real-world Android apps from the returned

list, we set the following selection criteria:
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(1) The repository must contain exactly one AndroidManifest.xml. The manifest file is a

must-have for every Android app to provide essential information about the app to the

Android build tools [25]. The reason for exactly one manifest file is that the repository

containing multiple such files is likely a tutorial or class assignment with multiple demo

apps. We used GitHub API to walk through the directory tree of the projects to search for

the files.

(2) The repository must contain build.gradle with a specific string ‘‘com.android.application’’

inside. Android Studio uses Gradle as its build system, and a Gradle plugin with this specific

string means that this project has a task to build an Android app. We used GitHub API to

search the projects with the specified condition. Most of the repositories were filtered out

with these two criteria, with about 537 thousand apps left.

(3) At least two components have to be declared in the manifest file. We parsed the manifest

file and looked for the declaration of four Android component types (i.e., Activity, Service,

Broadcast Receiver, and Content Provider [24]) inside. We set a threshold of 2 components

because we believe it is not cost-effective to write tests for a simple app with only one

component. About half of the apps were removed by this step, with 287 thousand apps left.

(4) The package name stated in the manifest file must appear in an app market. We believe

that the apps published in app markets, especially the markets that charge fees to join such

as Google Play Store, are more likely beyond toy or demo apps, because the developers want

the apps to reach general users (and even willing to pay for it). From the manifest file of each

app, we retrieved the package name and tried to match it with apps hosted in the following

app markets: Google Play Store, F-Droid [61], and the list of package names and markets

provided by AndroZoo [34].2 This criterion was critical to identify non-trivial apps and left

us with a list of about 19 thousand apps.

2A list of app markets considered by AndroZoo can be found at [38].
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(5) We removed the apps with duplicate package names, and ended up with a list of 14, 914

GitHub repositories of non-trivial Android apps.3

The above filtering process took two months, primarily because of the rate limit of GitHub

API (5,000 requests per hour).

7.3.2 Data Collection and Analysis

For each of the selected repositories, we used GitHub API to further collect its meta-data:

creation date, number of forks, number of stars, number of commits, number of contributors,

number of issues, and number of pull requests. If the app is on Google Play Store, we also

collected its category and user ratings by crawling the app page.

To collect the information about how test automation is adopted in the project, we used

GitHub API to walk through the directory tree of the project, and parsed all the files under

the test and androidTest folders, if any exist. We considered a method as a test case if

it is annotated with “@Test”. This annotation is used by JUnit-based testing frameworks,

including both unit and UI testing frameworks such as JUnit [78], Robolectric [115], Mock-

ito [105], and Espresso [20]. A prior study investigating the usage of testing frameworks in

1, 000 apps on F-Droid [55] shows that 100% of the adopted unit testing frameworks and

97% of the UI testing frameworks are JUnit-based. Furthermore, we classify a test case as a

unit test if it is under the test folder, and otherwise as a UI test (i.e., under the androidTest

folder). Finally, as mentioned in Section 7.2.1, we excluded the example unit and UI test

generated by Android Studio.

An assumption of our study is that the subject apps were developed with Android Studio.

Because Android Studio has been the official IDE for Android app development since its first

3Sometimes two repositories contain the same package name because one is a direct copy of the other
(not by forking). In this situation, we keep the repository with the oldest creation date.
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Table 7.1: Distribution of Apps by App Market*

Market* #Apps

Google Play 11265
PlayDrone 539
fdroid 434
anzhi 408
appchina 294
mi.com 70
VirusShare 62
angeeks 41
1mobile 26
freewarelovers 12
slideme 10
torrents 4
praguard 3
hiapk 2
proandroid 1
apk bang 1

*An app may belong to multiple markets

Table 7.2: Distribution of Apps by Year Created

Year Created #Apps

2015 3614
2016 2330
2017 1731
2018 2898
2019 1989

Total 12562

stable release in December 2014 [26], we further factored out the repositories before 2015

from the list described in Section 7.3.1. We finally ended up with 12, 562 repositories/apps

in our dataset. The distribution of apps by app market is shown in Table 7.1. While the

majority of the apps were published on Google Play Store, the dataset covers apps across

16 app markets. Table 7.2 shows the distribution of apps by the year they were created. For

the apps on Google Play Store, Figure 7.4 shows the distribution by category.

110



Figure 7.4: Distribution of the Google Play Apps by Category

7.3.3 Survey

To complement our findings, we conducted an online survey with the developers of the

subject apps in our dataset. In this section, we describe the design, participant selection,

and data collection of the survey.

Survey Design

The online survey was designed to understand the rationale behind our findings from the

dataset as well as the challenges in Android app testing. We first asked demographic ques-

tions to understand the respondents’ background, such as their experiences in terms of the

number of years of Android app development. We then asked them about their current

practices of Android app testing. For the respondents reporting the use of automated tests,

we further asked them related questions such as the preference for unit and UI testing and

whether they follow the Testing Pyramid practice, and the reasons for their choices. Next,

we presented some of our findings in the correlation analysis between the adoption of test

automation and the popularity of apps, and asked for their opinions on possible explana-

tions. Finally, we asked the respondents for the difficulties in adopting automated tests and
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general challenges of testing Android apps. For all questions about practices and opinions,

we provided a set of choices identified from previous studies [90, 81, 55], as well as an “other”

choice with free form text if none of the provided choices apply. A sample of the survey can

be found at the companion website [30].

To ensure that the questions were clear and the survey can be finished in 10 minutes, we

conducted a pilot survey with graduate students in Computer Science who have experience

in Android app development and survey design. We rephrased some questions according to

the feedback. The responses from the pilot survey were used solely to improve the questions

and were not included in the final results.

Participant Selection

From each subject app in our dataset, we tried to retrieve the email of its main contributor

in the following order: (1) the email found in the GitHub profile of the repository’s owner;

(2) the email of the contributor who made the most commits; and (3) the email of the

contributor who made the most recent commit. After removing invalid and duplicate data,

we identified 7, 490 unique email addresses for our survey.

Data Collection

We used Qualtrics [113] to distribute the survey to the 7, 490 targeted email addresses, and

653 of them bounced. From the 6, 837 emails successfully sent, we received 148 valid and

complete responses with a 2.2% response rate. The response rate is close to the results of

previous studies such as 2.1% (83/3905) reported in [81] and 1.0% (102/10000) reported

in [90] on very similar surveys with mass developers on GitHub.

The 148 received responses are from 45 countries. The top two countries where the re-
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Table 7.3: Distribution of Apps in Terms of Presence of Test Cases

Group #Apps Percentage

Apps with any tests 1002 7.98%
Apps without tests 11560 92.02%
Apps with unit tests 766 6.10%
Apps with UI tests 502 4.00%
Apps with both unit and UI tests 266 2.22%

spondents reside are United States of America (22.3%) and India (10.8%). 70.3% of the

respondents are professional software developers paid by a company, and 68.9% of them

have more than 2 years of experience in Android app development.

7.4 Results

In this section, we present the results of our study from the following perspectives: (1) the

prevalence and trends in the adoption of test automation; (2) working habits of the mobile

app developers with respect to test automation; and (3) the correlation between the adoption

of test automation and the popularity of projects.

7.4.1 Prevalence and Trends in the Adoption of Test Automation

To understand the degree to which test automation is adopted in open-source Android app

development, we investigate the following research questions:

RQ1. How prevalent is test automation in open-source Android apps, in terms

of the presence of unit and UI tests?

Table 7.3 shows the number of repositories grouped by the presence of different types of

tests. The results indicate that only 7.98% of the subject apps contain tests, and most of

113



them are poorly tested in an automated manner—even though they are non-trivial. This

percentage is much lower than previous findings: 20% reported in [54], 14% reported in [81],

and 40% reported in [55].

There are many possible reasons for the inconsistency between our results and previous

findings. First, our analysis excludes the placeholder tests that are automatically generated

by Android Studio, as mentioned in Section 7.2.1. This check was critical for our results,

since such tests are common in our dataset (7,017 of the 12,562 apps examined, 56%). We

also manually checked the dataset released by Coppola et al. [54], and found such examples

in the reported test cases. We are not able to verify the results reported by Kochhar et

al. [81] because they are not willing to release their dataset. Regarding the results reported

by Cruz et al. [55], since they did not search for test cases (detailed in the next paragraph),

we are unable to compare their results with ours.

The way one computes the existence of tests can also influence the results significantly. For

example, in the study by Cruz et al. [55], they inspect the build configurations and look

for imports related to testing frameworks to determine the presence of tests in a repository.

Since having related imports in the build configurations does not necessarily mean there

are test cases in the project, their findings about prevalence of test automation is prone to

overestimation.

Finally, the scale of study might also affect the results. In the papers by Kochhar et al. [81]

and Cruz et al. [55], only 627 and 1,000 apps from F-Droid were analyzed, respectively. In

contrast, our study considers more than 12,000 apps on GitHub across 16 markets, which is

substantially different from their works in terms of scale and source of data.

Another finding from Table 7.3 is that UI testing is not adopted as extensively as unit testing

(i.e., 4% vs. 6.1%). We will further discuss this in Section 7.4.2.
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Table 7.4: The Ways of Testing Android Apps by the Survey Participants

Way #Respondents

Manually 130
With scripted/automated tests 85
With dedicated QA team or 3rd party testing services 43
With automatic input generation tools 12
Other 6
Not at all 3

Table 7.5: The Reasons for not Adopting Test Automation by the Survey Participants

Difficulty #Respondents

Cost to create and maintain automated tests 77
Time constraints 74
Size or maturity of the app 66
Lack of exposure or knowledge of existing frameworks 52
Cumbersome to use 50
Lack of support from management or organization 30
Other 11

�
�

�
�

Observation 1: Only 8% of the non-trivial and real-world apps have automated tests.

Automated UI testing is less adopted than unit testing.

RQ2. How prevalent is test automation and what are the reasons for not adopt-

ing it (as reported by developers)? What are the challenges in testing of

Android apps in general?

In our survey, we asked the developers how they test their Android apps, and they were

allowed to select all options that apply. Table 7.4 shows the results. Interestingly, over 57%

(85/148) of the respondents state that they are using automated tests, yet we do not observe

this degree of test automation adoption from the subject apps they develop. One possible

explanation for this inconsistency is that the proponents of test automation are more willing

to take our survey, while the developers not interested in test automation have no incentive to

provide feedback. Another reason could be that the professional developers adopt automated

tests at work, but not for their pet projects on GitHub. Finally, it is also possible that the

developers only uploaded their source code on GitHub without corresponding tests.

To understand why the observed adoption of test automation is low, we asked the developers
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Table 7.6: The Biggest Challengs in Testing Android Apps by the Survey Participants

Challenge #Respondents

Fragmentation 104
Concurrency 66
Performance 51
Security 44
Energy 43
Functionality 43
Accessibility 35
Other 14

Table 7.7: The Most Important or Useful Criteria for Evaluating Android App Tests by the
Survey Participants

Criterion #Respondents

Fault detection capability of tests 96
Feature or use case coverage of tests 83
Code coverage of tests 67
Code or test case reviews 59
Other 7

to specify the reasons for not adopting test automation. From the results in Table 7.5, we can

see the top three reasons are: (1) cost to create and maintain automated tests, e.g., caused

by changing requirements or rapid development; (2) time constraints, e.g., because of time-

to-market or customer’s schedule; and (3) size or maturity of the app, e.g., the app is not

big or complex enough to require automated tests. Note that the third reason corresponds

to our insight that it is not cost-effective to write automated tests for trivial apps, and they

should be excluded in the empirical study, as we have done. Besides, the respondents also

mentioned other interesting difficulties in adopting test automation as follows:

“Legacy code not designed to be tested requires lots of refactoring which makes it harder to

justify the additional effort to write tests.”

“...hard to test unexpected GUI aspects or unexpected hardware (manufactor firmware) issues

or unexpected permission issues or unexpected Android behavoir or unexpected 3rd party data

formats.”
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Figure 7.5: Prevalence of Test Automation of the Google Play Apps by Category

It is worth mentioning that we also asked two general questions to understand (1) the biggest

challenges in testing of Android apps; and (2) the most useful criteria for evaluating tests for

Android apps. The results are reported in Tables 7.6 and 7.7. According to Table 7.6, the top

three challenges are: (1) fragmentation, e.g., multiple Android OS or API versions, devices

with different sizes or resolutions, etc.; (2) concurrency, e.g., detecting data races, deadlock,

or violation of execution order of methods; and (3) performance, e.g., app’s responsiveness

such as frames per second for gaming apps. Moreover, from Table 7.7 we can see that the

developers do not consider code coverage as the most important criterion for evaluating tests,

which is in line with the prior study [90]. We believe the reported concerns call for additional

research and development in test automation frameworks and tools.

'
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Observation 2: 57% of the survey participants reported the use of test automation,

which varies drastically from that observed in the dataset. The top three difficulties in

adopting test automation are: cost to create and maintain tests, time constraints, and

size or maturity of the app.

RQ3. Is the prevalence of test automation varied across different categories of

apps?

To understand whether there are any patterns as to the adoption of automated testing prac-
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Figure 7.6: Days to Add the First Test after Project Creation

tices across different categories of apps, for the Google Play apps with category information

in our dataset, we report their adoption of automated tests by category in Figure 7.5. As

depicted in Figure 7.5, while overall the prevalence of test automation is 8%, the percentage

is substantially higher for some categories of apps such as finance (19%) and video players

(15%). On the other hand, some categories of apps such as shopping (3%) and dating (0%)

are poorly tested in an automatic manner. This variance could be attributed to the quality

requirements for different categories. Note that the observed patterns may not generally

apply to apps on Google Play Store, since many commercial and closed-source apps, such as

popular shopping apps, are not included in our study.

�
�

�
�

Observation 3: Some categories of apps, such as finance and video players, are more

extensively leveraging test automation techniques than others.

RQ4. How long does it take for a project to adopt test automation?

It is not rare that testing is conducted or introduced later in mobile app development. To

understand how long it takes for the first automated test to be added to a project, we

analyzed the commit logs of all 1, 002 apps with tests in our dataset, and computed the time

interval in days for each app between the creation of the project and the first automated

test. We report the medians and means of the results by the creation year of the apps in

Figure 7.6. From Figure 7.6 we can see a clear trend that the adoption of automated tests is
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Figure 7.7: Percentage of Repositories Containing Tests over the Past 5 Years

faster in more recent apps. For instance, the apps created in 2015 took 275 days on average

to add the first unit or UI test, and half of the apps took more than 119 day to do so (the

median). On the other hand, the apps created in 2019 took only 30 days on average to add

their first test, with a median of 7 days.

�

�

�

�

Observation 4: Developers that are willing to adopt test automation, adopt it in their

projects more quickly than before. The average number of days to adoption drops from

275 days in 2015 to 30 days in 2019.

RQ5. Has the adoption of test automation increased over time?

Tools and libraries for test automation in Android are continuously evolving. While we are

far from an extensive adoption of test automation, we would like to know if it is gaining

momentum within the mobile app developer community or not. Therefore, we analyzed how

test automation is used in the apps created in the past 5 years. Given that old apps may

have more time than new apps to add tests, to compare them fairly, we checked the use

of test automation within 9 months after project creation for all apps. The threshold of 9

months is selected based on the answer to previous research question regarding the average

days to adoption of test automation.

Figure 7.7 shows the percentage of the apps containing tests grouped by the year they
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are created. While Figure 7.7 illustrates a rising trend of the adoption of test automation

from 2015 to 2017, it does not appear to be the case from 2017 to 2019. For example, the

percentage of repositories containing any type of tests increases from 4.6% in 2015 to 9.2%

in 2017, but then goes down to 7.2% in 2019. This observed pattern applies to both unit

and UI testing. In other words, we do not see a trend that test automation has become

more popular in recent years. Note that our finding is inconsistent with the study by Cruz

et al. [55], in which they observed newer apps have more tests than older apps. We believe

the reasons for this are similar to what we have discussed in the first research question (i.e.,

the fact that they did not properly curate their dataset).

�

�

�

�

Observation 5: Test automation adoption does not appear to be gaining momentum

among the open-source Android projects. We do not observe a trend that test automation

has become more popular in recent years.

7.4.2 Working Habits of Mobile App Developers

RQ6. Do the same developers have the same testing habits across apps?

In this section, we investigate whether developers are following the same test automation

habits across apps. To that end, we first clustered all subject apps by their owner, i.e., the

GitHub account, and obtained a set of 985 clusters, Sa, in which each cluster contains two

or more apps by the same developer. Next, we defined and computed the test adoption rate

for each cluster C in Sa as follows:

rate(C) =
#Apps with test in C

#Apps in C

A cluster with a rate of 1 or 0 means the developer has followed the same behavior across

apps. That is, the developer either wrote tests for all of her apps or did not write tests at
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Table 7.8: Probability of Observing Consistent Behavior on the Apps by the Same Develop-
ers. Sa: Clusters of Apps by the Same Developers. Sb: by Different Developers

Set
Size #Clusters

Probability p-value
(#Clusters) Same Behavior

Sa 985 902 91.57%
4.06e−12

Sb 985 763 77.46%

all. We further computed the probability of observing the same behavior in Sa by dividing

the number of clusters showing the same behavior (i.e., achieve test adoption rate of 1 or 0)

by the size of Sa.

Moreover, to understand if the probability observed in Sa is high, we created another set of

clusters, Sb, as a control group. The number of clusters and the size of each cluster in Sb is

exactly the same as Sa. However, the apps in Sb were randomly selected from the apps not

in Sa. We computed the test adoption rate for each cluster in Sb using the same equation,

and the probability of observing the same behavior in Sb accordingly.

Finally, to determine if the observed difference between Sa and Sb is statistically significant,

we applied hypothesis testing on the rate distribution of Sa and Sb using the non-parametric

test Mann-Whitney U [96] with a significance level of 0.05. We chose the Mann-Whitney U

test because Sa and Sb are not normally distributed and did not pass the normality test of

Shapiro-Wilk [122].

The results in Table 7.8 show that in Sa, the set of clusters in which each cluster consists of

the apps by the same developer, it is more likely to observe a cluster manifesting the same

behavior. In other words, for a group of apps by the same developer, the probability that

either all or none of them have tests (91.57%) is higher than a group of apps by different

developers (77.46%). The difference between Sa and Sb is statistically significant, because

the null hypothesis that Sa and Sb are from the same distribution is rejected by the Mann-

Whitney U test with a p-value of 4.06× 10−12.
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Table 7.9: The Reasons for the Preference of Unit Testing by the Survey Participants

Reason #Respondents

Speed 39
Scope 30
Simpleness 28
Robustness 26
Other 6

�
�

�
�

Observation 6: App developers tend to follow the same test automation practices across

projects.

RQ7. Do developers prefer unit or UI testing and why?

From Table 7.3 in Section 7.4.1, we see that the apps adopting unit tests (6.1%) are more than

UI tests (4%). To validate our observation and understand the reasons behind this, for the

developers reporting the use of test automation, we further asked what type of testing (unit

testing or UI testing) they do mostly and why. Among the 83 respondents, the majority of

them (55/83, 66%) prefer unit testing. This is in line with our observation from the dataset.

Furthermore, 27% (22/83) of the respondents have no preference and 7% (6/83) of them

prefer UI testing.

We also asked the proponents of unit testing for their rationale. Table 7.9 shows that the top

three reasons by the developers are: (1) speed, e.g., unit tests run faster than UI or end-to-

end tests; (2) scope, e.g., unit tests focus on small or independent modules, thereby simplify

the debugging; and (3) simpleness, e.g., unit tests are easier to learn and write. On the

other hand, developers preferring UI testing indicate that the interactivity is the top reason,

because UI or end-to-end tests can test the app in a more interactive and straightforward

way.�

�

�

�

Observation 7: Majority of the developers prefer unit testing, corroborated through

both project dataset and survey results. The top three reasons are speed, scope and

simpleness.
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Table 7.10: Distribution of the Number of Tests in the Apps with Both Types of Tests. 1Q:
1st quartile. 2Q: 2nd quartile (median). 3Q: 3rd quartile.

Distribution
Min Max Mean 1Q 2Q 3Q

#Unit Tests 1 685 34.75 3 11 27.25
#UI Tests 1 178 14.32 2 7 17

Ratio of UI Tests to All Tests 0.3% 97.1% 41.9% 17.5% 40.0% 64.4%

RQ8. Is the practice of Test Pyramid followed by developers?

As mentioned in Section 7.2.2, the Testing Pyramid practice is a guideline for developers

to have a balanced portfolio of different types of automated tests. To understand if the

guideline is appropriately followed by the developers, we analyzed the 266 apps containing

both unit tests and UI tests in our dataset by counting the number different types of tests.

Furthermore, we computed the ratio of the number of UI tests to the total number of tests

as follows:

#UI tests

#Unit tests+ #UI tests
× 100

Table 7.10 shows that the distribution of the numbers of unit and UI tests in the apps are

skewed, because the averages are much larger than the medians (i.e., 34.75 vs. 11 for unit

tests, and 14.32 vs. 7 for UI tests). That means some apps contain many more tests than

others. On the other hand, the third quartile shows that 75% of the apps have fewer than

27.25 unit tests and 17 UI tests. We believe these are reasonable numbers for general apps.

Regarding the developers’ compliance with the Test Pyramid practice, Table 7.10 shows that

in more than half of the apps, the ratio of UI tests is higher than 40%, which differs from

the recommended ratio of 20%-30% by Google [68]. In other words, the developers put more

effort than recommended in writing UI tests. A possible explanation is that the interactive

nature of mobile apps drives the developers to write more UI tests. However, as mentioned
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Table 7.11: Distribution of the Popularity and Satisfaction Metrics of the Apps. 1Q: 1st

quartile. 2Q: 2nd quartile (median). 3Q: 3rd quartile.

Distribution
Sample Size Min Max Mean 1Q 2Q 3Q

Stars 12533 0 7897 15.09 0 0 1
Forks 12533 0 2209 4.49 0 0 1
Contributors 12533 0 451 2.30 1 1 2
Commits 12527 1 13844 75.95 4 15 55
Issues 12527 0 2442 5.5 0 0 0
Pull Requests 12527 0 1679 3.80 0 0 0
Ratings 3937 1 5 4.23 3.91 4.38 4.78

in Section 7.2.2, overly relying on UI tests may make testing and debugging cumbersome.

As a result, while UI tests are essential to validate certain types of requirements such as

business logic and usability, we believe that the developers need to better follow the Test

Pyramid practice and write more unit tests.

In our survey, we asked the participants whether they are following the Testing Pyramid

practice, and 52% (51/98) of them said no, which is consistent with our observation from

the dataset. A prominent reason from the respondents reporting the non-compliance is

the lack of exposure or knowledge about the Testing Pyramid practice (40/51, 78%). Other

interesting reasons include “special needs for my team or projects” and “the Testing Pyramid

practice is misleading/flawed”.�
�

�
�

Observation 8: Developers put more effort than recommended in writing UI tests, as

the average ratio of UI tests to all tests is 40%.

7.4.3 Association Between Presence of Automated Tests and Pop-

ularity

Mobile app developers often strive to have their apps become popular. On the one hand,

as members of an open-source community, developers are happy to see their apps getting

more attention from other developers in terms of stars, forks, contributors, etc. on GitHub.
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On the other hand, as product owners, developers want their apps to satisfy the users

and get good ratings and feedback on the market. While these popularity metrics are not

necessarily related to the development process of apps, we would like to investigate whether

they are impacted by the adoption of test automation. Specifically, we consider the following

popularity metrics on GitHub: number of stars, forks, contributors, commits, issues4, and

pull requests. Moreover, we consider user ratings on Google Play Store as the metric of

user satisfaction. These metrics were collected in the manner described in Section 7.3.2.

Table 7.11 presents the distribution of data in terms of different metrics.

RQ9. How does test automation relate to project popularity?

We would like to know whether apps with tests are different from apps without tests in

terms of the popularity metrics on GitHub. First, to eliminate the effect caused be app size,

we excluded the apps that have fewer than 3 components (the 1st quartile) and more than

8 components (the 3rd quartile) in our dataset, ending up with a set of 7, 664 apps under

consideration. Next, we conducted statistical analysis for each metric with the following

steps:

(1) We divided the data into two disjoint sets, Rw and R′. Rw consists of the metric values

from the apps with tests. R′ consist of the metric values form the apps without tests.

(2) We applied the Z-score method [83] with a threshold of three times of standard deviation

to remove the outliers from both sets.

(3) Since the apps without tests are much more than the apps with tests in our dataset,

Rw and R′ are extremely unbalanced in terms of their sizes. Given that unequal sample

sizes may generally reduce statistical power of equivalence tests [118], we created Ro with

the same size as Rw by randomly selecting the values in R′.

4Issues may be considered as an indicator of app quality. In fact, the topics posted with issues can be very
broad, such as feature request or usage discussion. Therefore, we consider it as an indicator of popularity.
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Table 7.12: Impact of Having Tests on the Popularity of Apps. Rw: Apps with Tests. Ro:
Apps Without Tests.

Stars* Forks*

Size Mean Median p-value Size Mean Median p-value

Rw 629 10.95 0
1.96e−10

630 3.74 0
1.83e−11

Ro 629 3.34 0 630 1.61 0

∆ 7.61 0 2.13 0

Contributors* Commits*

Size Mean Median p-value Size Mean Median p-value

Rw 630 2.76 2
9.88e−17

628 147.21 84.5
4.70e−70

Ro 630 1.55 1 628 38.07 14

∆ 1.21 1 109.14 70.5

Issues* Pull Requests*

Size Mean Median p-value Size Mean Median p-value

Rw 635 10.39 0
4.74e−30

633 8.76 0
2.27e−32

Ro 635 1.29 0 633 0.87 0

∆ 9.1 0 7.89 0

*The difference is statistically significant.

(4) We computed the mean and median of Rw and Ro and the difference between the mean

and median.

(5) To determine if the difference observed in Rw and Ro is statistically significant, as in

Section 7.4.2, we performed hypothesis testing on Rw and Ro using the Mann-Whitney U

test with a significance level of 0.05. The null hypothesis on Rw and Ro is that they were

selected from populations having the same distribution. For example, in the case of stars,

the null hypothesis is that “an app with tests (from Rw) has the same number of stars on

GitHub as an app without tests (from Ro)”. We chose the Mann-Whitney U test because

Rw and Ro are not normally distributed and did not pass the normality test of Shapiro-Wilk.

(6) The above process is repeated for all the popularity metrics.

Table 7.12 shows the results of our statistical analysis. The statistical evidence shows that

test automation is associated with all popularity metrics. Namely, on average, open-source

Android apps with tests are expected to have more stars, forks, contributors, commits, issues,
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and pull requests on GitHub. Our finding is not exactly in line with the prior work by Cruz

et al. [55], in which they only found such correlation with contributors and commits but

not other metrics. We believe this inconsistency is caused by similar reasons discussed in

Section 7.4.1.

We presented this correlation to the survey participants and asked for their opinions as to

the possible explanations. 57% (84/148) of the respondents believe that there is a cause-and-

effect relationship between test automation and popularity. The causation, however, could

be direct, reverse, bidirectional, etc., as explained by some of the respondents below:

“I would say they have a direct connection since the quality and rigidness of the app’s code

can definitely influence an app’s popularity.” (direct)

“First you build the app, then it gets popular, then you get resources/motivation to increase

it’s quality. That’s when you go to UI tests.” (reverse)

“Projects that become popular end up writing more tests because they need to ensure the

stability of the project. As the project becomes more stable (due to more testing) it provides

a positive feedback loop. The project, in part, is more likely to be popular if it is perceived as

stable, and testing helps to increase that stability.” (bidirectional)

On the other hand, 34% (50/148) of the respondents consider this correlation to be more of

a connection than causation. For example, the following responses claim common causes for

them:

“Common cause: Experienced developer who cares about making code evolvable.”

“Popular projects are usually bigger, with multiple developers and with more management.

Tests is just a part of that process.”
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Table 7.13: Impact of Having Tests on the User Satisfaction of Apps. Rw: Apps with Tests.
Ro: Apps Without Tests.

Size Mean Median p-value

Rw 211 4.14 4.25
0.0948

Ro 211 4.2 4.32

∆ -0.06 -0.07

�
�

�
�

Observation 9: Popular projects are more likely to adopt test automation practices.

57% of the developers believe it implies causality between them.

RQ10. How does test automation relate to user satisfaction?

Following the same steps, we conducted statistical analysis to investigate whether test au-

tomation relates to user satisfaction in terms of Google Play ratings. As shown in Table 7.13,

we do not find the association between them with statistical significance.

Surprisingly, when we presented this to the survey participants and asked for their opinions,

52% (77/148) of the respondents believe that test automation and user ratings should be

somehow related. Namely, the developers do not believe our finding is correct. Examples of

their reasons are as follows:

“I think it would depend on the type of application. Games and such are harder to test and

the quality of test does not correlate with how fun the game is. For a banking application

tests are essential and do effect the quality of the final product.”

“Play Store ratings are a noisy metric of app quality and overall user experience, so the no

apparent correlation doesn’t convince me that app quality isn’t impacted at least somewhat by

automated testing”�

�

�

�

Observation 10: Users’ satisfaction with apps appears to be unrelated to the adoption

of automated testing practices in their development, while half of the developers think

differently.
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7.5 Threats to Validity

External validity. The major external validity is the generalization of our findings to

all open-source Android apps. We mitigated this threat by including more than 12, 000

apps that vary in terms of size, created year, category, published market, and popularity

metrics on GitHub. However, findings in this study may not be applicable to trivial apps

or commercial apps developed privately. Furthermore, the respondents of our survey may

not be representative of the entire developer community of the subject apps, or the global

community of Android app developers. We tried to reduce this threat by collecting the

responses of 148 developers from 45 countries with various years of professional experience.

The number of responses to our survey is also comparable to other similar studies of mobile

developers [77, 90, 81].

Internal validity. We proposed certain heuristics to automatically identify non-trivial

apps. While we may have missed some complex and published apps, e.g., apps with single

Activity and multiple fragments, we believe that the findings in this chapter are still useful

for practitioners and researchers regarding test automation. Moreover, we automatically

determine the number of test cases contained in a repository based on the assumption that

the test cases are written in JUnit-based testing frameworks. While JUnit-based testing

frameworks overwhelmingly dominate Android app testing (e.g., 97% to 100% according to

a prior study [55]), it is possible that some test cases built on top of other types of frameworks

are not included in our study. To mitigate this threat, we manually verified a small set of

projects in our dataset and did not find any missed test cases. As a result, we argue that

such cases are rare and would not significantly impact our conclusions.
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7.6 Conclusion

This chapter provides a holistic view regarding how and why test automation is practically

adopted in open-source Android apps. With the analysis of more than 12, 000 non-trivial

apps on GitHub and a survey of 148 developers of these apps, we investigated (1) the trends

in the adoption of test automation; (2) working habits of mobile app developers; and (3) the

correlation between the adoption of test automation and the popularity of projects. Among

others, we found that: (1) only 8% of the non-trivial apps contain automated tests; (2)

developers tend to follow the same test automation practices across apps; and (3) popular

projects are more likely to adopt test automation practices. We believe the findings in this

chapter shed light on the current practices and future research directions pertaining to test

automation for mobile app development. In our future work, we plan to incorporate addi-

tional open-source projects, such as those hosted on Bitbucket, and investigate new research

questions, e.g., questions related to the interplay between test automation techniques and

continuous integration practices.
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Chapter 8

Conclusion

Reusability is the core concern for both practitioners and researchers in software engineering.

Case in point, code reuse is a standard software engineering practice nowadays, through

which quality software is built on reliable and practically tested code snippets, libraries, or

frameworks. Interestingly, software testing is still conducted in a relatively primitive way. In

other words, developers either test their software manually or write the scripted/automated

tests from scratch. In fact, just like code reuse that prevents useless effort in reinventing the

wheel, test reuse has great potential to be a common practice to reduce the manual effort of

software testing, the most expensive activity in the software development life cycle.

In this dissertation, I analyzed the limitations of current automated input generation tech-

niques for software testing, and proposed to address these limitations by test reuse. I pre-

sented three concrete scenarios that automated UI testing can benefit from test reuse: (1)

test transfer across similar Android apps; (2) test transfer for an app from web to Android;

and (3) feature-based test augmentation for Android apps. To demonstrate the feasibility of

these scenarios, three automated tools, namely CraftDroid, TransDroid, and Route,

were developed and evaluated with real-world applications and test cases. Furthermore, I
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conducted a large-scale empirical study focusing on non-trivial and open-source Android

apps to investigate how and why test automation is practically adopted. Together with the

proposed techniques, this empirical study shed light on future research directions pertain-

ing to automated software testing. In the following sections, I conclude my dissertation by

enumerating the contributions of my work and avenues for future work.

8.1 Research Contributions

• Fundamental contribution to UI test reuse. I designed novel algorithms for the three

proposed scenarios of UI test reuse. Although the algorithms were evaluated on specific

platforms such as Android, they addressed key challenges shared by all types of UI test

reuse. The challenges include: (1) how to map GUI controls between similar apps; (2)

how to deal with incompatible actions between the source and the target app; and

(3) how to properly reuse existing oracles. As a result, the proposed algorithms are

theoretically applicable to any GUI-based software.

• Tools and experiments. The proposed algorithms were implemented and empirically

evaluated on hundreds of test cases with appropriate metrics to demonstrate their

effectiveness and efficiency. Furthermore, the developed tools are publicly released [4,

14, 19] to help other researchers reuse and extend the proposed approaches and build

more advanced techniques on top of them.

• Large-scale empirical study focusing on non-trivial and real-world subjects. I reported

on the first large-scale analysis in over 12,000 open-source projects from 16 app markets

and spanning a period of 5 years. The findings in this study are helpful for mobile test

reuse and a number of research topics such as automated program repair, mutation

testing, and regression test management.

• Dataset
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– A dataset of 50 UI tests for Android Apps in five categories, annotated with the

mapping of the included GUI events for each pair of the tests under the same

category [4]. This dataset can be reused to evaluate other intra-platform test

transfer techniques.

– A dataset of 220 UI tests for ten pairs of web and Android app [14] that can

be reused to evaluate other inter-platform (i.e., web-to-Android) test transfer

techniques.

– A dataset of 44 original and 132 augmented UI tests for 6 apps [19] that can be

reused to evaluate other feature-based test augmentation techniques.

– A dataset of 12,562 Android projects from GitHub regarding their adoption of unit

and UI automated testing [30], as well as the survey response of 148 developers

of these projects.

8.2 Future Work

Identification and Prioritization of Reusable Tests. Test reuse or transfer is only

meaningful when applied to apps sharing similar features. In this dissertation, I relied on

manual inspection and the app store’s default categories to determine suitable apps and their

tests for reuse. To make test transfer a practical solution, we need an approach or a ranking

algorithm to automatically identify and prioritize reusable tests from other apps for the app

under test (AUT). Since software contains plenty of textual information by its nature (e.g.,

in the source code or documentation), natural language processing techniques, particularly

unsupervised document classification or text clustering, can be leveraged to develop the

proposed algorithm. The reason for adopting unsupervised approaches is that we do not need

static labels or data annotation for the potentially reusable tests, but merely how possible

the tests can be transferred to the AUT. This possibility will be primarily determined by
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the similarity between the AUT and the functionality (including the source code and the

rendered GUI screens) executed by the tests. To that end, the algorithm will first perform

both static and dynamic program analyses to retrieve textual information from the AUT

and the potentially reusable tests, by considering their related artifacts, e.g., source code,

documentation, and user reviews. Next, several well-adopted techniques in unsupervised

text classification, including statistical (e.g., [120, 56]), probabilistic (e.g., [45]), and neural

network-based (e.g., [101, 84]) approaches, will be considered to convert the collected text

into real number vectors in a vector space. The similarity between the AUT and the candidate

tests can be effectively calculated as the proximity of their corresponding vectors.

Reusing Other Associated Artifacts. Apart from existing test cases, other associated

artifacts such as bug reports and video recording of software usage are potentially reusable

sources for generating meaningful and usage-based tests. Bug reports, while rarely consid-

ered, provide invaluable hints for test generation. First, they are submitted by users and

usually reflect the use-case scenarios of the application. Secondly, certain types of bugs are

common and can be observed in many different applications [130, 33]. For example, a recent

study [124] shows that bug reports of a mobile app are very helpful for developers to find

similar bugs when they test other similar apps. Finally, many software projects may not have

automated tests but a considerable amount of bug reports. While there are techniques (e.g.,

[134]) to generate executable tests from bug reports and try to reproduce the bug on the

same app, reusing bug reports to create tests for other similar apps has not been explored.

Such reuse is feasible if we can leverage the techniques in my previous work to map the GUI

controls mentioned in bug reports to the GUI controls rendered by the application under

test. In addition to bug reports, screen recordings of application usage are common artifacts

in crowdsourcing testing and bug reporting platforms [21, 22]. Since how to translate such

videos into executable scenarios has been discussed [44], we can further extend the existing

techniques to explore the possibility of reusing screen recordings to generate tests for other

similar apps.
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