
AN EMPIRICAL STUDY OF THE INTERPLAY BETWEEN ARCHITECTURE
AND SOFTWARE QUALITY USING EVOLUTIONARY HISTORY OF SOFTWARE

by

Ehsan Kouroshfar
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Paul Ammann, Dissertation Director

Dr. Sam Malek, External Committee Member

Dr. Jeff Offutt, Committee Member

Dr. Thomas LaToza, Committee Member

Dr. Houman Homayoun, Committee Member

Dr. Sanjeev Setia, Department Chair

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2016
George Mason University
Fairfax, VA

An Empirical Study of the Interplay between Architecture and Software Quality using
Evolutionary History of Software

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ehsan Kouroshfar
Master of Science

Sharif University of Technology, 2009
Bachelor of Science

Amirkabir University of Technology, 2006

Director: Paul Ammann, Associate Professor
Department of Computer Science

Spring Semester 2016
George Mason University

Fairfax, VA

Copyright © 2016 by Ehsan Kouroshfar
All Rights Reserved

ii

Dedication

To my beloved parents, Nahid, and Kourosh.

iii

Acknowledgments

It is a pleasure to thank those who made this dissertation possible through their support,
guidance, encouragement and inspiration.

My deepest gratitude is to my adviser Dr. Sam Malek. Not only has Sam nurtured my
technical and communication skills, he also supported me as a friend in tough times. It
would have not been possible to finish this dissertation without his patience and continuous
support.

My special appreciation goes to Dr. Paul Ammann for administering the role of disser-
tation director after Sam joined the University of California, Irvine. I thank Dr. Jeff Ouffut
for detailed review and excellent comments on my proposal and dissertation documents. I
also acknowledge the other members of my committee, Dr. Thomas Latoza and Dr. Houman
Homayoun for their feedback and devoting time from their busy schedules.

I thank Dr. Joshua Garcia for his immense contributions. He helped me finish this
research. I also thank my other collaborators Dr. Mehdi Mirakhorli, Dr. Hamid Bagheri,
Dr. Yuanfang Cai, and Lu Xiao for their contributions.

I thank Dr. Audris Mockus for giving me the opportunity to work with him at Avaya
where I could apply my research expertise in an industrial setting.

I thank my former colleagues Dr. Naeem Esfahani and Dr. Ahmed Elkhodari for their
help and support when I joined Mason.

I have been fortunate to have the support of great friends at Mason. I thank Nariman
Mirzaei, Pouyan Ahmadi, and Saba Neyshabouri for their support and companionship in
all the ups and downs I faced during the last few years.

I am forever grateful to my parents, Nahid and Kourosh, for all their sacrifices, love,
and support. Without their help, I could not have started the PhD, let alone finished it.
Their presence in my life and support of my decisions has been an incredible blessing. I
thank my younger brother Erfan who has supported my parents in my absence. Finally I
thank my best friend, Julia, for all her love, support, and encouragement during the final
years of my PhD.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . x

1 Introduction . 1

2 Research Problem . 6

2.1 Problem Statement . 6

2.2 Research Hypotheses . 7

3 Related Work . 11

3.1 Defect Prediction . 11

3.2 Architectural Evolution and Decay . 17

3.3 Architectural-Quality Metrics . 17

4 The Impact of Software Architecture on Defect Proneness of Software Systems . 20

4.1 Methodology Overview . 20

4.2 Obtaining Surrogates for Architectural Module View 21

4.2.1 Package View . 22

4.2.2 Bunch View . 23

4.2.3 ArchDRH View . 26

4.2.4 LDA View . 28

4.2.5 ACDC View . 28

4.3 Measuring Effects of Co-change Dispersion 30

4.3.1 Metric Definition . 31

4.3.2 Underlying Characteristics of the Data 33

4.3.3 Analysis Method . 34

4.4 Executing the Analysis . 35

4.5 Results of the Study . 38

4.5.1 Results for RQ1.a . 38

4.5.2 Results for RQ1.b . 42

4.5.3 Results for RQ1.c . 43

4.6 Discussion . 45

v

4.6.1 Role of Architecture in Maintenance 45

4.6.2 Building Better Defect Predictors . 47

4.6.3 Architectural Bad Smell Predictors 47

4.6.4 Empirical Research . 48

4.7 Threats to Validity . 48

4.7.1 Construct Validity . 49

4.7.2 External Validity . 51

5 Architectural Decay Prediction from Evolutionary History of Software 52

5.1 Prediction Model Construction . 52

5.1.1 Obtaining Architectural Modules . 53

5.1.2 Regression Analysis Selection . 55

5.1.3 Dependent Variables . 56

5.1.4 Independent Variables . 58

5.2 Experimental Setup . 60

5.2.1 Projects Studied and Data Collection 61

5.2.2 Data Splitting and Evaluation Metrics 63

5.3 Experimental Results . 66

5.3.1 Results for RQ2.a . 68

5.3.2 Results for RQ2.b . 72

5.3.3 Results for RQ2.c . 75

5.3.4 Results for RQ2.d . 76

5.4 Discussion . 79

5.5 Threats to Validity . 84

5.6 Tool . 85

5.6.1 Data Collection . 86

5.6.2 Model Construction . 88

6 Challenges and Suggestions for the Community 97

6.1 Challenges and Limitations . 97

6.1.1 The Lack of the Availability of Software Architecture Information . 97

6.1.2 Tracing Defects to Architecture . 98

6.1.3 Obtaining Architectural Modules . 99

6.2 Opportunities and Suggestions . 100

6.2.1 Creating a Repository for Software Architecture 100

6.2.2 A Comprehensive Tool Suite for Architecture Recovery 101

6.2.3 Bringing Software Architecture to Software Engineers’ Every Day Life 101

vi

7 Conclusion . 103

7.1 Contributions . 104

7.2 Future Work . 105

Bibliography . 106

vii

List of Tables

Table Page

4.1 Studied Projects and Release Information. 36

4.2 Regression Results for Architectural Views of (a) Bunch, (b) ArchDRH, (c)

ACDC, (d) High-Level Package, (e) Low-Level Package, and (f) LDA. . . . 39

4.3 Regression Results for Hadoop and Using the Ground-Truth Architecture. . 40

4.4 Correlation Coefficients Between Defects and the Metrics for Cross-Module

Co-changes (CMC), Intra-Module Co-changes (IMC), and Number of Co-

changed Files (NCF). (Correlations Significant at the 0.01 Level are High-

lighted) . 41

4.5 Regression Results for Bunch View Including Num-Cochanged-Files. 44

4.6 Regression Results Using Random Clusters. 50

5.1 Studied Projects and Release Information. 62

5.2 Prediction of CF for Packages in HBase (Version 0.92). 73

5.3 Factors Contributing to Each Model . 78

5.4 Prediction of Defects and LO for Packages in Hive (Version 0.8.1) 96

viii

List of Figures

Figure Page

4.1 Overview of the Experimental Method. 21

4.2 Class Dependency Analyzer. 24

4.3 A Module Dependency Graph for a Compiler (Reproduced from [71] With

the Approval from the Authors). 26

4.4 The Partitioned MDG for a Compiler (Reproduced from [71] With the Ap-

proval from the Authors). 27

4.5 Architectural Module View Surrogates of a System: (a) Package View, and

(b) Cluster View. 32

5.1 Overview of My Approach for Architectural-Quality Metric Prediction. . . . 53

5.2 ROC Curve for Defect Prediction. 65

5.3 Number of Architectural Modules. 67

5.4 Percentages of Existence of Architectural-Quality Metrics. 68

5.5 AUC Performance Defects. 69

5.6 Spearman Correlation for Ranking Defective Modules. 70

5.7 AUC Performance Architectural Smells. 71

5.8 Spearman Correlation Cluster Factor. 72

5.9 Percentages of Changes of Architectural Smells. 74

5.10 Percentages of Extreme Changes of Architectural Smells 76

5.11 AUC Performance for Architectural Smell Emergence. 77

ix

Abstract

AN EMPIRICAL STUDY OF THE INTERPLAY BETWEEN ARCHITECTURE AND
SOFTWARE QUALITY USING EVOLUTIONARY HISTORY OF SOFTWARE

Ehsan Kouroshfar, PhD

George Mason University, 2016

Dissertation Director: Dr. Paul Ammann

Conventional wisdom suggests that a software system’s architecture has a significant

impact on its evolution. Well-designed software architecture employs the principle of sep-

aration of concern to allocate different functionalities and responsibilities to different ar-

chitectural elements comprising the system [42, 49] and it is easier to make changes to a

software system that has a well-designed architecture. Conversely, bad architecture, mani-

fested as architectural bad smells [42], can increase the complexity, possibly leading to poor

software quality [49].

However, a software system’s architecture is known to commonly undergo the phe-

nomenon of architectural decay [82], where changes and design decisions are added to the

system which may break the initially designed system’s software architecture. Architectural

decay has a negative impact on maintaining the system and results in defects and archi-

tectural problems in the system. Thus detecting and preferably avoiding decay will save

considerable time and other resources from developers and stakeholders in a system.

This dissertation targets empirical research in the domain of architecture-based software

maintenance. It benefits from both fields of software architecture and mining software

repository. The mining software repository (MSR) field investigates the rich data in source

code repositories and defect repositories to uncover interesting information about software

systems. For example data in source code repositories can be linked with data in defect

repositories to observe what kind of changes would result in more defects. This would help

to warn practitioners and developers about risky changes based on prior changes and faults.

In this research, I first investigate the impact of software architecture on defects from

evolutionary history of software. To do that, I designed an empirical study to see whether

there is a difference between types of changes made to a software system from software

architecture perspective. Specifically I wanted to investigate the impact of co-changes in-

volving several architectural modules versus co-changes localized within a single module.

This provided empirical evidence for the importance of considering of software architecture

while making changes to a system.

Next, I construct novel models that predict the quality of an architectural element by

utilizing multiple architectural views (both structural and semantic) and architectural met-

rics as features for prediction. Using these models, I accurately predict low architectural

quality, i.e., architectural decay in software systems. Engineers can significantly benefit

from determining which architectural elements will decay before that decay actually oc-

curs. Forecasting decay allows engineers to take steps to prevent decay, such as focusing

maintenance resources on the architectural elements most likely to decay.

This research underlines the importance of software architecture in the construction and

maintenance of software.

Chapter 1: Introduction

Software maintenance is a set of activities associated with the modification of a software

product after it has been delivered to end-users. These activities include modifications

made to fix defects (corrective maintenance), modifications performed to cope with changes

in the software environment (adaptive maintenance) and modifications that address new

requirements or improve software quality (perfective maintenance). Maintaining large soft-

ware systems is hard and expensive. Making post release changes requires not only the

understanding of the part of the system that needs to be changed but also the impact of

the changes to its dependencies that might be affected by the change.

Software engineers have developed numerous abstractions to deal with the complexity

of implementing and maintaining software systems. One of those abstractions is software

architecture, which is particularly effective for reasoning about the system’s structure, its

constituent elements and the relationships among them. Software architecture enables the

engineers to reason about the functionality and properties of a software system without

getting involved in low-level source code and implementation details.

At the outset of any large-scale software construction project is an architectural design

phase. The architecture produced at this stage is often in the form of Module View [22],

representing the decomposition of the software system into its implementation units, called

architectural modules, and the dependencies among them1. This architecture serves as a

high-level blueprint for the system’s implementation and maintenance activities.

Well-designed software architecture employs the principle of separation of concern to

1The notion of architectural module should not be confused with module traditionally used in the literature
to refer to files or classes. Here, I use the notion of module to mean architecturally significant implementation
artifacts, as opposed to its typical meaning in the programming languages. Architectural modules represent
the construction units (subsystems), and therefore, are also different from software components that represent

the runtime units of computation in the Component-Connector View [22].

1

allocate different functionalities and responsibilities to different architectural elements com-

prising the system [42,49]. Conventional wisdom suggests that it is easier to make changes

to a software system that has a well-designed architecture. Conversely, bad architecture,

manifested as architectural bad smells [42], can increase the complexity, possibly leading to

poor software quality [49]. In particular, scattered functionality, a well-known architectural

bad smell, increases the system’s complexity by intermingling the functionality across mul-

tiple architectural modules. While, certain level of concern scattering is unavoidable due to

non-functional concerns (e.g., security), a good architecture tries to minimize it as much as

possible.

Monitoring the complexity of making changes to an evolving software system and mea-

suring their effects on software quality is essential for a mature software engineering practice.

It has been shown that the more scattered are the changes among a software system’s imple-

mentation artifacts such as source files and classes, the higher is the complexity of making

those changes, therefore the higher is the likelihood of introducing faults [48]. In addition,

co-changes (i.e., multiple changed files committed to a repository at the same time) have

shown to be good indicators of logically coupled concerns [38], which are known to correlate

with the number of defects [13,30].

The first contribution of this research is presenting an empirical method designed for in-

vestigating yet unexplored but important software engineering research questions to better

understand the impact of architecturally dispersed co-changes on software qualities. Specif-

ically, I investigated whether co-changes involving several architectural modules (cross-

module co-changes) have a different impact on software quality than co-changes that are

localized within a single module (inner-module co-changes). As part of this research, I

contributed two new metrics to quantify the differences between cross-module and inner-

module co-changes. Two insights seem to suggest that not all co-changes have the same

effect. First, an architectural module supposedly deals with a limited number of concerns,

and thus co-changes localized within an architectural module are likely to deal with fewer

2

concerns than those that crosscut the modules. Second, it is reasonable to assume in a large-

scale software system, the developers are familiar with only a small subset of the modules,

and thus the more crosscutting the co-changes, the more difficult it would be for the devel-

oper to fully understand the consequences of those changes on the system’s behavior. Since

in reality many software systems do not have a complete and updated documentation of

their software architecture, my method introduces the concept of “Surrogate Architectural

Views.” Surrogate views are obtained through a set of diverse reverse engineering methods

to approximate the system’s architecture for this experimental study.

The second contribution of this research is constructing novel methods that predict the

quality of architectural elements. In a software system’s life cycle, software maintenance

tends to dominate other activities in terms of time, effort, and cost. Throughout that life

cycle, a major artifact that must undergo maintenance is a software system’s architecture,

which determines the key properties of a software system. Architectural elements abstract

away unnecessary complexity (e.g., details of source-code constructs), allowing engineers to

focus on higher-level design decisions. However, a software system’s architecture is known

to commonly undergo the phenomenon of architectural decay [82], where design decisions

are added to and may even violate an architecture, leading to defects and other major

architectural problems.

Although decay is typically treated once its detrimental effects (e.g., highly defective

module or one that is highly resistant to change) are detected in a system, engineers can

benefit from stemming architectural decay before such effects occur. To make such a deter-

mination, engineers must be able to predict which architectural elements are most likely to

undergo decay, so that they can allocate resources to those elements in the most effective

manner. Previous work has produced models for predicting only defects for packages or di-

rectories [50,94,112]. However, defects are not the only forms of architectural decay [42,43].

Futhermore, packages represent a structural architectural view [58]. Although such a view

is valuable for determining decay, a semantic architectural view is needed to identify decay

involving the concerns of architectural elements.

3

To stem architectural decay, techniques need to be constructed that predict a variety

of constructs related to architectural quality, including indicators of architectural decay,

i.e., architectural bad smells [42, 43], and the quality of an architecture’s modularization

[71]. Architectural bad smells, which are patterns of architectural constructs that may

negatively affect the maintenance of software systems, reduce the quality of a software

system’s architecture but do not constitute an error that should be fixed in all cases, unlike

a defect. Determining that an architectural module is decaying, even before it is involved in

an architectural smell or exhibits low modularization quality, can reduce maintenance time

and effort.

To forecast architectural decay, I construct novel models that predict the quality of an

architectural element (i.e., architectural module) by utilizing multiple architectural views

(both structural and semantic) and architectural metrics as features for prediction. To ob-

tain multiple architectural perspectives, I utilize two module-level views: a package-level

view and a semantic view, obtained by leveraging an information retrieval-based technique

[40, 44] shown to work accurately based on the latest evaluations of techniques for recov-

ering a software system’s architecture [40, 64]. My architectural-quality prediction models

use an effective set of prediction metrics (i.e., file-level metrics, smell-based metrics, and

architectural metrics) and metrics for representing architectural quality at the module level

(i.e. defects, smell-based metrics, and modularization quality). Each architectural view

provides an alternative perspective that can be used to prioritize architectural modules and

allocate resources to them for maintenance purposes.

The remainder of this research proposal is organized as follows. In Chapter 2, I describe

the problem and specify the scope of this thesis. In Chapter 3, I describe the prior research.

In Chapter 4, I discuss the empirical study that shows the impact of software architecture on

defect proneness of software systems. In Chapter 5, I discuss the approach for architectural

decay prediction from evolutionary history of software and its evaluation results. In Chapter

6, I discuss some of the limitations in my research followed by some suggestions for the

community. Finally, I conclude this dissertation with a summary of contributions and

4

future work in Chapter 7.

5

Chapter 2: Research Problem

In this chapter, I present the research problem, specific hypotheses, and research questions

that will be the focus of this thesis.

2.1 Problem Statement

Software architecture is effective for reasoning about the system’s structure, its constituent

elements and the relationships among them. It allows engineers to reason about the func-

tionality and properties of a software system without getting involved in low-level source

code and implementation details. Bad architectural design, often manifested as architec-

tural bad smells, can increase the complexity, possibly leading to poor software quality.

In practice, however, software architecture is being discounted, in particular by the

open source community that has traditionally placed a premium on the code rather than

the underlying architectural principles holding a system together. This is not to say such

systems are devoid of architecture, but that the architecture is not explicitly represented

and maintained during the system’s evolution.

There are numerous studies on defect prediction models [48, 76, 78, 97, 110], which help

to identify the files with the highest probability of defects. Project managers could use

that information to assign the resources more efficiently (e.g for testing purposes in order

to find defects in early stages). However, software architecture information is often ignored

in building defect prediction models. There are some studies to find defective modules but

almost all of those studies are based on a system with some sort of known modules. For

example Nachiappan et. al [77] executed their study using a number of Microsoft systems

and considered binaries as architectural modules. Some other studies use Java packages as

architectural modules [94, 95]. On the other hand, there are numerous architectural bad

6

smell and decay metrics that can help discover architectural problems in software systems.

They, however, have not been used by traditional defect prediction models.

To solve this problem, I introduce new metrics that include both change history and

architectural information. I use those metrics to empirically show the impact of architecture

on software defects. Subsequently, I build an architectural level defect predictor and inves-

tigate its usefulness to detect architecture bad smells and architecture decay in a system.

My dissertation (1) provides empirical evidence of the importance of software

architecture on defect proneness of software systems, and (2) devises an ap-

proach for using evolutionary history of a software system to detect defective

modules and architectural problems.

2.2 Research Hypotheses

This research investigates two overarching hypotheses, each of which is comprised of several

research questions.

Hypothesis 1: I hypothesize that software architecture has an impact on

defect proneness of software systems.

This hypothesis is investigated by considering the change history of the software. I

investigate three research questions to verify hypothesis 1:

RQ1.a: Are co-changes dispersed across multiple architectural modules more likely to

have defects than co-changes localized within an architectural module?

A positive answer to this question will enable the practitioners (software architects

and developers) to use co-change dispersion metrics to assess quality of software, cope

with architectural degradation, and also focus on important co-changes or architecturally

significant changes first.

7

RQ1.b: Do different surrogates for module views exhibit different results in terms of the

relationship between co-change dispersion and defects? If so, which surrogate module

view provides a better estimate of software defects?

If the co-change dispersions measured from the various surrogate module views are

different in their ability to reveal software defects, practitioners would need to use the

views that best reveal defects to further inspect the root causes of the problems; otherwise,

it would make more sense to use the view that is easier to obtain.

RQ1.c: Does a metric that differentiates cross-module co-changes have higher correla-

tion with defects than a co-change metric that does not take into account the architec-

ture?

If that is the case, then using a metric that distinguishes between the different types of

co-change could produce more accurate fault prediction models. The co-change differences,

from a software architectural perspective, is a factor that has been largely ignored in the

prior research.

Assuming the research is able to empirically corroborate the first hypothesis, a nat-

ural question that follows is how such information can be used to improve the software

engineering practice. This leads to the second hypothesis:

Hypothesis 2: I hypothesize it is possible to build a prediction model that can

help the engineers identify the defective modules and architectural problems in

a software system from its change history.

To investigate the second hypothesis, I construct multiple architectural-quality predic-

tion models. Then I seek to answer research questions that assess the effectiveness of

proposed architectural-quality prediction models. To that end, I study different regression

models, the extent of change of each architectural-smell metric, the ability of models to

predict the emergence of an architectural smell, and the metrics that work best for each of

the models. Consequently, I study the following research questions to verify hypothesis 2:

8

RQ2.a: What is the performance of each prediction model for the different

architectural-quality metrics?

I produce a different prediction model for each architectural-quality metric. To ensure

high performance of these prediction models, I intend to determine the most effective regres-

sion models for making these predictions. Note that performance in this context means the

correctness of a prediction model—i.e., performance in the sense used in prediction-model

literature.

RQ2.b: What is the amount of change across releases for each architectural-smell

metric?

To better understand the applicability of my models for predicting architectural smells,

the architectural-smell metrics I predict should exhibit change. To that end, I must deter-

mine the extent of change for each architectural-smell metric in my research. As a result, I

investigate amount of change across releases for each architectural-smell metric.

RQ2.c: Can we effectively predict architectural-smell emergence between two consecu-

tive releases?

Potentially, predicting architectural smells is most effective in the case of smell emer-

gence, i.e., the addition of smells to a software system. For example, if a module has not had

a type of smell in the current release but will have that smell in the next release, my models

should predict this occurrence, allowing an engineer to take preventive measures to stem

that decay. To that end, I aim to investigate if I can effectively predict architectural-smell

emergence between two consecutive releases:

9

RQ2.d: What are the important metrics for predicting each architectural-quality met-

ric?

Although I select prediction metrics that intuitively determine architectural quality,

the exact combinations of metrics that best predict architectural quality must be assessed

empirically. For my research, I select combinations of metrics that are (1) obtained at the

file level and aggregated to modules, and (2) are architectural in nature. Thus, as a final

research question, I investigate the importance of prediction metrics for predicting each

architectural-quality metric.

10

Chapter 3: Related Work

I overview prior work covering three areas: defect prediction, one of the most commonly

studied prediction models in software-engineering literature; studies focused on architectural

evolution or architectural decay; and studies concerned with architectural-quality metrics.

3.1 Defect Prediction

Several studies have shown that metrics mined from code change history can be effective

in locating defect-prone code areas [46, 73, 75]. Previous research has also investigated the

relationships between code dependency and software quality [15, 21]. Yet another group of

studies has investigated the relationships between change coupling (or change dependency)

and software quality [27, 97]. My research, on the other hand, is different and new as

it investigates the effects of change coupling together with syntactic dependency from an

architectural perspective.

Previous studies provided empirical evidence that code that had changed frequently or

had a large change in the past tends to have more defects than other code areas [73, 75].

Metrics that measure code dependency are also known to be useful indicators of defect-prone

code areas [19]. While code dependency can represent some level of logical relationships

between code elements, change coupling metrics are known to be useful to find hidden

logical dependency between code elements [38].

Change coupling as an approximation of logical coupling provided many useful appli-

cations. Gall et al. [38] proposed the idea of logical coupling that can be identified from

the change history. They identified that there is a stronger logical dependency between the

changed subsystems when those systems change together in a long subsequence of releases.

Such logical coupling is not always obvious from code dependency analysis.

11

Wong et al. [106] proposed an approach to detect object-oriented modularity violation

by comparing the expected change coupling and actual change coupling. They identified

expected change coupling using structural coupling identified based on the Baldwin and

Clark’s design rule theory and identified actual change coupling from software revision

history.

Breu and Zimmerman used co-changes to identify cross-cutting concerns [13]. If a call

to the same method is made in multiple code locations within a single code change (e.g.,

lock and unlock), it indicates an aspect. The idea is that a code change is likely to introduce

a crosscutting concern if various locations are modified within a single code change. This

study did not consider the architecture of the system and also did not correlate the co-

changes with defects in the system.

Figueiredo et al. [37] presents a catalog of crosscutting concern patterns recurrently

observed in software systems and they analyzed instances of the crosscutting patterns in

object-oriented and aspect-oriented versions of three evolving programs and show that a

certain category of crosscutting patterns seems to be good indicator of harmful instabilities.

This study did not consider the architecture of the system.

Eick et al. used increases in change coupling over time as an indicator of code decay

[31,32]. Since change coupling can be an evidence of concern scatteredness [13], studies on

concern scatteredness are relevant to my study. Eaddy et al. [30] showed that the degree

of concern scattering and the number of defects are strongly correlated. In their study, a

concern is an item from a non-executable specification, such as requirements specification or

design. The biggest difference between their study and mine is that they manually mapped

concerns and program elements, such as classes and methods, to find concern scatteredness,

while I use co-changes as an indirect indication of concern scatteredness. In addition, their

metrics are at class level while my approach works at the architectural level, providing

useful feedback that could be used for detecting bad smells in the architecture.

In a more recent study, Walker et al. [103] mined the patch history of the Mozilla project

to examine whether crosscutting concerns exist. Different from prior studies, they found

12

that 90% of patches show little or no evidence of scattering at file and module level. However,

the study was conducted on only one project and their module level analysis was based on

directory structure, while my study was conducted on five projects, four open-source and

one commercial, and analyzed from five different architectural perspectives. Walker et al.’s

study was also not concerned with the impact of changes on the quality of software.

D’Ambros et al.’s study [27] is closer to mine in that they identified the relationships

between change coupling and defects. However, they performed the study at the class level,

while my focus is at the architectural level. They did not distinguish between the change

coupling of classes from different architectural modules and same module.

Cataldo et al. [19] investigated the impact of three types of dependencies on software

failure. The dependencies they investigated include syntactic software dependencies based

on analysis of source code (e.g., coupling and cohesion), logical dependencies based on

change coupling, and work dependencies based on human and organizational factors. The

results suggest that all three types of dependencies are indicative of defects and their impact

is complementary. Shihab et al. [97] showed that the number of co-changed files is a good

indicator of defects that appear in unexpected locations (surprise defects). Hassan [48]

predicted defects using the entropy (or complexity) of code changes. It was shown that the

more spread the changes, the higher is the change complexity. Unlike that work, I examine

the nature of logical coupling from an architectural point of view.

Offutt et al. [79] presents techniques for measuring couplings in object-oriented relation-

ships between classes. They specifically focused on types of couplings that are not available

until after the implementation is finished and presents a tool that measures couplings be-

tween classes in Java packages. Unlike their study, I examine the change coupling of classes

by considering the architecture.

Poshyvanyk et al. [83] introduced a new set of coupling measures for software systems,

measuring conceptual coupling of classes. It is based on measuring the degree that identifiers

and comments from different classes are similar to each other. They used information

retrieval techniques to measure conceptual coupling and compared it to nine other coupling

13

metrics in a case study of Mozilla web browser and proved that conceptual coupling is a

better predictor of defects. In another study Bavota et al. [8] investigated how class coupling

(captured by structural, dynamic, semantic and logical coupling) aligns with developers’

perception of coupling. They conducted the study on three open source systems and involved

64 students, academics and industrial practitioners. They found out that the semantic

coupling measure is a better estimator of the mental model of the developer than other

coupling measures. None of these studies considered the architecture of the system.

Nagappan and Ball [75] used code dependency metrics and code change history metrics

to predict failure-proneness. However, they did not examine change-coupling effects. Ad-

ditionally, they used Windows Server 2003 as a project under study, the source code and

architecture of which is not publically available.

Rahman and Devanbu [88] compared the performance of code metrics (e.g., size and

complexity) and process metrics (e.g., number of changes, number of developers) using

logistic regression and showed that code metrics, despite widespread use in defect prediction

literature are generally less useful than process metrics for prediction. In another paper

[87], they considered the impact of code ownership and developer experience in on software

quality. They found that the implicated code (code that is modified to fix a bug) is more

associated with a single developer’s contribution. They also found that author’s specialized

experience in the target file is more important than general experience. Unlike their study,

I consider the architectural information in defect prediction.

There are a lot of studies that use different data mining and statistical methods and

try to predict the location or number of faults in a software system. Ostrand et al. [81]

developed a negative binomial regression model based on code of the file in the current

release and fault and change history of the file from previous release. They tried to predict

the number of faults for each file in the next release and showed that the 20 percent of the

files with the highest predicted number of faults contained on average, 83 percent of the

faults that were actually detected. They did not use architectural information in defect

prediction.

14

Menzies et al. [67] used different predictors based on some static code attributes and

showed that how the attributes are used to build the predictors is much more important

than which attributes are used. Their results indicate that a naive Bayes data miner with

a log-filtering preprocessor outperforms a rule base or decision-tree learning method. They

also concluded that the best set of attributes for defect prediction varies from project to

project and suggested that instead of using a particular subset of attributes for all projects,

defect predictors should be built on using all available attributes, followed by subsetting

methods to find the most appropriate subset for each specific project and domain. Unlike

my research, they did not use architectural-level metrics.

Kim et al. [51] used an SVM classifier to determine whether a new software change

is more similar to prior buggy changes or clean changes. They showed that the trained

classifier can classify changes with 78 percent accuracy. They identified the bug-introducing

and clean changes at the file level by tracing backward in the revision history and used that

as one of the attributes to train the classifier. Unlike their study, I examine the changes

from an architectural point of view and also I use different classifiers.

Turhan et al. [100] investigated the applicability of cross-company (CC) data for building

defect predictors using static code metrics. They observed that defect predictors learned

from within-company (WC) data outperformed the ones learned from CC data. They

proposed a two phase approach for building defect predictors in companies: in phase one

companies should apply analogy-based learning (i.e. nearest neighbor filtering) to CC data

and initiate defect prediction process with that and at the same time start collecting WC

(local) data. Once they have enough WC data, they should switched to phase two and

use predictors learned from WC data. Unlike their study, I build prediction models at

architectural-level.

While most of the defect prediction studies are at the file-level, some studies focus on

the subsystem level. Mockus and Weiss [73] found that in a large switching software system,

the number of subsystems modified by a change can be a predictor of whether the change

results in a fault, but the definition of subsystem was not explained, making it difficult to

15

generalize their observation to other projects. Nagappan et al. [77] used post-release defect

history of five Microsoft software systems and found that failure-prone software entities

are statistically correlated with code complexity measures. They also found that there is

no single set of complexity metrics that could be used universally and it depends on the

project. Unlike my research, they chose binary files within Windows as subsystems, making

it difficult to generalize their observation to other projects.

Zimmermann and Nagappan [110] investigated the architecture and dependencies in

Windows Server 2003, demonstrating how the complexity of a subsystem’s dependency

graph can be used to predict the number of failures. For each subsystem they measured

some graph complexity and density measures and used those as parameters in regression

analysis and principle component analysis to predict number of failures for each subsystem.

They chose binary files within Windows as subsystems.

Several studies used packages as modules. Martin and Martin [66] introduced the Com-

mon Closure Principle (CCP) as a design principle about package cohesion. This principle

implies that a change to a component may affect all the classes in that component, but

should not affect other components. Although the authors introduce CCP as a guideline

for good decomposition of architecture, they do not investigate the impact of it on software

defects. Zimmermann et. al [112] showed that complexity metrics are indicators of defects

in Eclipse using files and packages. Kamei et. al [50] showed that package-level predictions

do not outperform file-level predictions when the effort needed to review or test the code is

considered. Schroter et. al [94] showed that import dependencies can predict defects using

both files and packages. Bouwers et. al [12] investigated twelve architecture metrics for

their ability to quantify the encapsulation of an implemented architecture and used pack-

ages for evaluation. The biggest difference between these studies and my research is that,

I extract both file-level and architectural-level metrics and use the prediction models to

identify architectural problems. I also use architectural recovery techniques for identifying

modules.

16

3.2 Architectural Evolution and Decay

Several studies are concerned with architectural decay across multiple versions of a software

system. None of the following studies aim to predict architectural quality or decay.

Two studies have examined architectural decay by using the reflexion method [74],

a technique for comparing descriptive architectures (i.e., architectures as designed by its

architects) and recovered architectures (i.e., architectures as represented by implementation-

level artifacts). Brunet et al. [16] studied the evolution of architectural violations from four

subject systems. Rosik et al. [89] conducted a case study using the reflexion method to

assess whether architectural drift, i.e., unintended design decisions, occurred in their subject

system and whether instances of drift remain unsolved.

Four additional studies investigate different facets of architectural decay. Hassaine et

al. [47] present a recovery technique, that they use to study decay in three systems. van

Gurp et al. [102] conduct two qualitative studies of software systems to better understand

the nature of architectural decay and how to prevent it. D’Ambros et al. [26] present an

approach for studying software evolution that focuses on the storage and visualization of

evolution information at the code and architectural levels. Mo et al. [72] study patterns of

recurring architectural problems at the file and package level, finding evidence of proneness

to errors and changes for such entities involved in such patterns. Unlike these studies, I

build architectural-level prediction models to predict which modules would have decay in

the future. I also use multiple indicators of architectural decay such as number of defects

in each module, architectural bad smells, and modularization quality for identifying decay

in modules.

3.3 Architectural-Quality Metrics

A variety of metrics have been established in the software-engineering literature that quan-

tify architectural quality and are applicable to architectural modules. Most of the metrics

17

focus on representing coupling and cohesion between architectural entities. Other met-

rics consider the concerns (i.e., concepts, roles, or responsibilities) of the software system.

Furthermore, some metrics have been applied to studies of architectural evolution.

Several studies focus on coupling and cohesion metrics for architectural modules. Allen

and Khoshgoftaar [4] define coupling and cohesion metrics based on information theory.

Briand et al. [14] present coupling and cohesion metrics based on object-oriented design

princples. Sarkar et al. [92, 93] defined a series of metrics concerned with quality at the

module and object-oriented levels. Most of these metrics highly overlap with previous met-

rics and are based on coupling and cohesion. Many of these metrics overlap with constructs

measured by our selected metrics, while others are dependent on specific technologies or are

not fully automatable—precluding their inclusion in my study.

Sant’Anna et al. [91] present architectural metrics based on concerns. These metrics are

highly similar to concern-based architectural smells and focus on aspect-oriented systems.

They do not provide mechanisms for identifying concerns that are not aspect-oriented,

precluding the use of these metrics for my study.

Wermelinger et al. [105] apply architectural-decay metrics across multiple releases of

Eclipse, with a focus on coupling, cohesion, and stability metrics. Sangwan et al. [90] apply

architectural complexity metrics to multiple versions of Hibernate. Finally, Zimmerman

et al. [109] propose that true coupling is determined by studying revision histories and

code-level entities rather than the decomposition of modules or files. None of this previous

work aims to predict architectural quality, which is the focus of my research.

In summary, while the majority of existing studies on defect prediction are at the file

level, my study is at the architectural level. I further examine other indicators of archi-

tectural decay and quality other than defects (i.e., architectural smells and modularization

quality). Furthermore, existing studies of prediction models at the subsystem level used

either packages as architectural modules or other pre-defined modules (e.g. studies on Win-

dows that used binaries as architectural modules). In this dissertation, I use packages and

18

recovery techniques for identifying modules from source code. These recovered architec-

tural views enable us to build architectural prediction models for any system, even if a

ground-truth architecture is unavailable.

19

Chapter 4: The Impact of Software Architecture on Defect

Proneness of Software Systems

This chapter discusses the methodology to investigate the first hypothesis (See 2.2). It

discusses the empirical studies and the techniques I used, followed by the results [53,55].

4.1 Methodology Overview

The method designed and implemented to run the empirical study involves four components

represented by rectangles in Figure 4.1. The first component is Co-change Extractor, which

searches source code repositories and retrieves the groups of files that have been changed

together. It identifies the co-changes by going through the developer commits to the SVN

repository and extracting the groups of files in the same commit transaction that have been

modified together. The current implementation of the Co-change Extractor component uses

SVNKit, a Java toolkit providing APIs to access and work with subversion repositories. This

component has a modular design, and can be easily extended to support other source code

repositories as well.

The second component is Defect Extractor, which parses the commit logs of projects and

identifies the software changes that introduced the defects in the system. Defect Extractor

and Co-Change Extractor components are synchronized with each other, to implement

an n-months data collection approach, where the co-changes are extracted from the first n-

months after a certain release and the introduced faults are retrieved from the next n-months

after the co-changes are retrieved. While Co-change Extractor component obtains the

information of co-changes from the source code repository, the Defect Extractor component

retrieves the information from the next n-months, and finds which of the original co-changed

files introduced defects in the next n-months time slice.

20

Figure 4.1: Overview of the Experimental Method.

To examine the effects of co-change dispersion among the system’s architectural modules

on software defects I incorporated a third component, Architecture Explorer, which recon-

structs the module view of architecture for the experiments. At the state of practice, there

is no reverse engineering technique that can produce the “ground truth” architecture [41].

Architecture Explorer component thus utilizes different reverse engineering approaches and

obtains several Surrogate Views that approximate the system’s architecture. The surrogate

views are then used in the last experimental module, Hypothesis Testing, where the effects

of software co-change dispersion are examined from an architectural perspective.

4.2 Obtaining Surrogates for Architectural Module View

In this section, I describe the architectural representations that I used in the study.

Comprehending the architecture and architecturally significant issues of any complex

21

system requires looking at the architecture from different perspectives [7, 59]. These per-

spectives are known as architectural views, each dealing with a separate concern. According

to Clements et al. [22], three view types are commonly used to represent the architecture

of a system: Module View, Component-and-Connector View, and Allocation View. Mod-

ule View shows units of implementation, Component-and-Connector View represents a set

of elements that have runtime behavior and interactions, and Allocation View shows the

relationships between software and non-software resources of development (e.g., team of

developers) and execution environment (e.g., hardware elements).

Since this study is concerned with the construction and evolution of software, and not its

runtime or deployment characteristics, Module View is the relevant view to focus on. Mod-

ule View determines how a system’s source code is decomposed into units and it provides a

blueprint for construction of the software.

In reality, many projects lack trustworthy architecture documentation, therefore, I used

different techniques to reverse engineer five surrogate models that approximate such archi-

tecture: Package View, Bunch View [71], ArchDRH View [18], LDA View [9], and ACDC

View [101]. Although there might have been various techniques to reconstruct the architec-

ture, I chose those that have the highest degree of automation, and therefore are applicable

to the context of the empirical study.

4.2.1 Package View

An intuitive approximation of the system’s architecture in Module View is the Package

View, where packages represent the system’s architectural modules. It is reasonable to as-

sume the package structure is a good approximation of the decomposition of the system into

architecturally significant elements, as packages are created by the developers of the system.

In fact, package structuring has been used as a decomposition reference in prior research as

well [10]. Therefore, one can say that package structuring of a Java project is representa-

tive of Module View architecture in which each architectural module consists of several Java

classes (as a package) and the relation between them is is-part-of. There could be different

22

decomposition layers when we are looking at the package structuring. It can be seen as a

tree considering each class as a leaf that is part of a package, which itself may be part of a

bigger package, with a top package as the root. Package view is considered at two levels. In

the high-level package view, we consider each of the top-level directories as one of the archi-

tectural modules. For example, in OpenJPA, we consider each subfolder of the project (i.e.,

org.apache.openjpa.jdbc, org.apache.openjpa.kernel and org.apache.openjpa.persistence) as

an architectural module. In the low-level view, architectural modules are represented by

enclosing directories of each file.

4.2.2 Bunch View

Bunch [71] is a reverse engineering tool that produces clusters based on the dependencies

among the classes. Bunch is a fast, scalable and easy-to-use tool. Prior research has shown

that it is among the best available tools for reverse engineering the system’s architecture

[107]. Bunch relies on source code analysis tools to transform the source code to a directed

graph. I used Class Dependency Analyzer (CDA)1 which is a tool that extracts dependencies

between Java classes. CDA takes Jar file of a project as input. Figure 4.2 shows the Class

Dependency Analyzer tool when is loaded with version 1.6.0 of Apache Camel project. You

can export the dependencies between classes in the form of Object Dependency Exploration

Model (ODEM) which is in XML format. Dependencies between classes that are shown

in the ODEM file are binary relations that are supported by programming languages like

procedure invocation, variable access, and inheritance. Next I wrote an script to convert

the ODEM format to one that are accepted by Bunch. Each line of the input file for Bunch

has the following format:

file1 file2

This shows that file1 has a dependency on file2.

Basically, this input is a graph that represents the source code artifacts and their re-

lation dependencies, called Module Dependency Graph (MDG). The clustering output of

1http://www.dependency-analyzer.org/

23

Figure 4.2: Class Dependency Analyzer.

Bunch is a representation of Module View architecture, where the elements of this archi-

tecture correspond to the clustered classes. These clusters represent depends-on and is-a

relationships in the system.

Bunch’s approach to solve the clustering problem is to find a good partition in the

Module Dependency Graph. The term partition is used in the graph-theoretic sense, that

is, the decomposition of a set of elements (i.e., all nodes of graph) into mutually disjoint sets

(i.e., clusters). A good partition by Bunch means a partition where highly interdependent

classes are grouped in the same architectural module and conversely, independent classes

are assigned to separate subsystems.

Since projects can have a large number of classes, finding a good partition involves nav-

igating through a very large search space of all possible partitions. To solve this search

problem in an efficient way, Bunch tries to maximize an objective function called Modular-

ization Quality (MQ). MQ determines the quality of a partition as the trade-off between

24

interconnectivity (dependencies between classes of two different architectural modules) and

intraconnectivity (dependencies between the classes of the same module). Therefore Bunch

would result in creating of highly cohesive architectural modules that are not coupled ex-

cessively.

MQ for a given architecture is defines as [71]:

MQ =

|C|∑
i=1

CFi

where CFi is the “cluster factor” of module i, representing its coupling and cohesion. CFi

is defined as:

CFi =



0 µi = 0

2µi

2µi+

k∑
j=1
j 6=i

(εi,j + εj,i)

if x < 0

where µi is the number of edges within the module, which measures cohesion; and εi,j is the

number of edges from module i to module j, which measures coupling. The CF is defined as

a normalized ratio between the total weight of the internal edges (edges within a module)

and half the total weight of the external edges (edges that exits or enters a module).

Figure 4.3 shows an example of Module Dependency Graph for a small compiler devel-

oped at University of Toronto. Figure 4.4 shows the partitions generated by Bunch. Bunch

generates four modules for code generation, scope management, type checking and parsing

services of the compiler.

Bunch provides three optimization strategies to find a good partition: genetic, hill

climbing and exhaustive search. Hill climbing algorithms produce high quality results in a

reasonable time and therefore I selected the hill climbing algorithm for clustering.

25

Figure 4.3: A Module Dependency Graph for a Compiler (Reproduced from [71] With the
Approval from the Authors).

4.2.3 ArchDRH View

Based on the rationale that well-modularized systems are usually designed with stable

design rules (they are often implemented in the form of architectural level interfaces that

decouple the rest of the system into modules), Cai et al. [18] proposed an architecture

recovery algorithm called the Architectural Design Rule Hierarchy (ArchDRH).

For example, if a system employs an observer pattern, then there should be an observer

interface in the source code. This interface has a special position in the architecture. First, it

decouples subjects from concrete observers: the subjects just need to depend on the observer

interface, but not any concrete observers. Second, this interface should be stable because

both subjects and observers will be impacted by its changes. In this case, we consider

this observer interface as a design rule, and the subjects and observers as two independent

modules decoupled by the design rule. As another example, the abstract factory pattern

26

Figure 4.4: The Partitioned MDG for a Compiler (Reproduced from [71] With the Ap-
proval from the Authors).

requires creating an abstract factory interface that decouples multiple concrete factories. In

this case, the abstract factory interface is one instance of a design rule.

The strong characteristics of design rules cannot be fully recovered and exploited by

using traditional software clustering techniques (e.g. coupling and cohesion). Design rules

in a system should not belong to any modules. Instead they dominate subordinate modules

and frame the overall structure of a system.

The key features of ArchDRH algorithm are as follows. First, it finds such design

rules and gives them a special position in the architecture, rather than aggregating them

into subordinating modules as other clustering methods would do. Second, based on the

observation that a software system usually has one or more main programs that depend on

many other elements, acting as controllers or dispatchers, ArchDRH also separates these

controllers and gives them a special position in the architecture.

After that, ArchDRH separates the rest of the system into modules based on the principle

of maximize parallelism between modules. Concretely, given the dependency graph formed

by the rest of the system, it calculates its connected subgraphs. For a subgraph that is

still large, the algorithm further separates design rules and controllers within the subgraph,

27

and processes the rest of it recursively till a stop condition is met, e.g, all the subgraphs

are strongly connected. This way, the algorithm outputs a hierarchical structure, which is

called a design rule hierarchy.

ArchDRH can be used alone or be combined with other recovering techniques to re-

cover software architecture more effectively. When each module is generated by ArchDRH

algorithm, the user can plug in any other recovery techniques depending on the system un-

der study. For example if classes in the system follow strong naming convention, applying

ACDC after ArcDRH may result in more accurate architecture.

4.2.4 LDA View

Yet another way to reconstruct the modular decomposition of architecture is to use Infor-

mation Retrieval and Data Mining techniques, such as Latent Dirichlet Allocation (LDA),

which is a known approach to automatically discover the underlying structure of the data.

In the context of software engineering, this method has been used to discover the modular

decomposition of a system [9], a conceptual implementation architecture [68], and capturing

coupling among classes in OO software systems [45].

LDA analyzes the underlying latent topics, words, and terms used to implement each

class/source files and discovers the most relevant topics describing the system. Therefore,

based on the similarity of each source file and the discovered topics, it decides which source

files should be part of the same module.

Unlike the previous reconstruction approaches, which utilize the structural dependencies

between classes to find a potential modularization view, LDA uses the textual similarities

between the contents of these classes and clusters them into different modules. The number

of reconstructed modules is equal to the number of discovered underlying topics.

4.2.5 ACDC View

The Algorithm for Comprehension-Driven Clustering (ACDC) [101] clusters program en-

tities based on the principle of easing comprehension. ACDC provides meaningful names

28

for the obtained clusters rather than names such as subsystem01. It also avoids making

partitions of a system in a way that majority of classes are located in one cluster while other

clusters have very few classes. It is based on the fact that clusters with limited number of

classes (up to 20) are more manageable and easier to understand.

ACDC clusters program entities based on a list of subsystem patterns that are observed

in manual decomposition of software systems. Following is a list of some of the patterns:

• Source file pattern: If a source file contains the definition of one or more procedures,

ACDC would group them together into one cluster.

• Directory structure pattern: Directory structure of the source code may sometimes

correspond to modules.

• Body-header pattern: In languages like C++ where a procedure being split between

two different files, e.g. a .cpp file and a .h file, ACDC would put them in the same

cluster.

• Leaf collection pattern: This pattern applies when a set of files are not dependent on

each other but serve similar purposes e.g. device drivers. These files are usually leaves

of a system’s graph and should be placed in the same cluster.

• Support library pattern: If several procedures are accessed by majority of its classes,

ACDC would group them in the same cluster.

• Central dispatcher pattern: If there is a class with a large number of outgoing edges

(i.e it depends on a large number of classes), ACDC first disregards that class and its

outgoing edges and later reconsiders them in conjunction with other formed modules.

• Subgraph dominator pattern: This pattern searches a system’s dependency graph to

find subgraphs with the following characteristics: subgraph should have a node n0

(dominator node) in which, there is a path from n0 to every other node in that

subgraph.

29

The clustering algorithm of ACDC has two stages: In the first stage in creates a skeleton

of the final decomposition of the system using these patterns. The second stage aggregates

the leftover elements using a technique known as orphan adoption. I will briefly explain

these two steps:

• Skeleton construction: ACDC first starts by identifying classes according to source

file pattern and body-header pattern. Then it identifies the collection of files that are

matched with leaf collection pattern and support library pattern. Then it follows the

central dispatcher pattern and disregards classes with more than 20 outgoing depen-

dency links. Then it goes through the nodes in the graph to find dominator nodes as

explained in subgraph dominator pattern. ACDC checks the nodes from the small-

est number of outgoing dependencies to the largest. This results in creating smaller

subsystems. When ACDC discovers a set of dominated nodes, it creates a subsystem

containing both the dominated set and the dominator node. After checking all the

nodes and creating subsystems, ACDC might move subsystems with low cardinality

(less than four) to the higher level subsystems.

• Orphan adoption: This stage assigns the remaining classes (orphans) to the existing

modules. The idea is that orphans should be assigned to the subsystems that have

more connectivity to the orphan than any other subsystem.

4.3 Measuring Effects of Co-change Dispersion

The goal of my study is to examine the effects of co-change dispersion from an architectural

perspective. To that end, I formulated the three research questions described in Section

2.2. To answer those questions, I define two metrics discussed in the following subsection.

30

4.3.1 Metric Definition

To answer RQ1.a, I compare the number of co-changes made within an architectural module

and across multiple architectural modules for a given file. For this purpose, this section de-

fines metrics to quantify the number of co-changes with respect to the system’s architectural

modules.

Let S = < F,Pm, C > be a project, consisting of a set of files F, structured in a

set of modules Pm under the architectural model m, and a set of commits C. Each file is

assigned to a module and none of the modules overlap. More formally, the set Pm ⊆ P(F)

is a partition of F under the architectural model m. The relationship between a file and a

module in the m architectural model is captured by a function pm : F → Pm, and a set of

co-changed committed files is identified by a function h : C → P(F).

I can now define the two metrics for intra-module co-changes (IMC) and cross-module

co-changes (CMC) using set cardinality expression.

Definition 1 (CMC). Number of co-changes for a file, fi, where the co-changes are made

across more than one architectural module:

CMC(fi) = card({c : C| fi ∈ h(c) ∧ ∃ fj ∈ h(c) .

pm(fi) 6= pm(fj)})

Definition 2 (IMC). Number of co-changes for a file, fi, where there is at least another

co-changed file in the same architectural module:

IMC(fi) = card({c : C| fi ∈ h(c) ∧ ∃ fj ∈ h(c) .

pm(fi) = pm(fj)})

More intuitively, Figure 4.5 illustrates the differences between these two metrics using

two surrogate architectures for a small hypothetical example. Figure 4.5(a) depicts the

Package View, which includes two packages and classes inside them, denoting the is-part-

of relation. Based on this architectural view surrogate, package 1 and package 2 are the

31

F
ig

u
re

4.
5:

A
rc

h
it

ec
tu

ra
l

M
o
d

u
le

V
ie

w
S

u
rr

og
at

es
of

a
S

y
st

em
:

(a
)

P
ac

ka
ge

V
ie

w
,

an
d

(b
)

C
lu

st
er

V
ie

w
.

32

architectural modules of the system. Package 1 includes two classes of a and b; Package 2

includes three classes of c, d and e.

In Figure 4.5(b) an alternative surrogate view is shown, which is obtained by clustering

the classes using Bunch (recall Section 4.2.2). Here, there are two depends-on relationships

(i.e., a-e and b-c) and one is-a relationship (i.e., e-d). Based on these dependency relations,

Bunch generates two clusters: Cluster 1 includes classes b and c; Cluster 2 includes classes

a, e and d. These clusters here are considered as the architectural modules of the system.

As illustrated at the bottom of Figure 4.5(a) and Figure 4.5(b), suppose that a, b and

c are the co-changing files from three commits to the repository: {a, b}, {a, b, c}, {b, c}.

All the files in the same set have been changed in a single commit. I am able to calculate

the metrics from these commits. For example, in Figure 4.5(b), from the commit {b, c},

the values of IMC for both b and c increase by 1, because both of the files are in the same

architectural module. From the commit {a, b, c}, the values of CMC for a, b and c increase

by 1, because a is in a different architectural module. The IMC values for both b and c also

increase by 1, since they are in the same architectural module. Respectively Figure 4.5(a)

shows how each metric changes for the Package View surrogate.

I use regression analysis to examine the effect of cross-module co-changes and intra-

module co-changes on the number of defects per file.

4.3.2 Underlying Characteristics of the Data

Before adopting any statistical method to answer the research questions, I examined the

nature and statistical characteristics of the mined data. This section presents the char-

acteristics of the dataset and provides rationale for choosing the appropriate statistical

methods.

The data used in the experiments are non-negative integers, representing the numbers

of faults, therefore can be considered as count or frequency data. By using Q-Q normal

plot, I realized that the data does not follow a normal distribution. Also by using scat-

ter plot of cross-module co-changes and intra-module co-changes with defects, I observed

33

that these two metrics do not have a linear relationship with defects. The collected data,

moreover, contains numerous zeroes (i.e., files that do not change or do not have defects).

The same phenomena have also been observed by other researchers [81, 95, 108]. In fact, it

has been shown that the distribution of fault data over modules in real systems are highly

unbalanced [108].

4.3.3 Analysis Method

Considering the characteristics of the data (see 4.3.2), I ruled out the option of using Linear

Regression as it assumes the defects to be normally distributed [108], which is certainly

not the case here. Unlike linear regression, negative binomial regression (NBR) makes

no assumptions on either the linearity of the relationship between the variables, or the

normality of the variables distributions [23]. Therefore NBR is an appropriate technique to

relate the number of defects in a source file to the two co-change metrics.

This model is thus applicable to count data and even more importantly addresses cir-

cumstances such as over-dispersion [23], as used in previous studies [81,84].

I want to model the relationships between the number of defects (Y) in the source

files and the two metrics. Suppose that yi represents the number of defects for file i and

xi is a vector of the two metrics (CMC and IMC) for that file. NBR specifies that yi,

given xi, has a Poisson distribution with mean λi = γie
β′xi , where β is a column vector

of regression coefficients (β′ is the transpose β) and γi is a random variable drawn from a

gamma distribution [81].

Specifically, the output of this regression model is the vector β = [β1, β2], where β1 is the

coefficient of CMC and β2 is the coefficient of IMC. By using NBR, the expected number

of defects varies as a function of CMC and IMC in multiplicative factor (unlike the case of

linear regression, where the outcome is an additive function of the explanatory variables).

Since the co-changes data have a long tail (some files have a lot of co-changes compared

to others), I use the log2 transformation of the metrics to reduce the influence of extreme

34

values [23]. Furthermore, as NBR models the natural log of the dependent variable (number

of faults), the coefficients can be interpreted as follows: for one unit of change in the

independent variable (e.g., cross-module co-changes), the log of the dependent variable

(number of faults) is expected to change by the value of the regression coefficient (β1). To

make the idea concrete, suppose that the coefficient of CMC is 0.8. This means that a unit

change in log2 of cross-module co-changes is associated with an increase of 0.8 in natural

logarithm of the expected number of defects. In essence, this would result in multiplicative

factor of e0.8 = 2.22 in defects.

I hypothesize that co-changes across different architectural modules are more correlated

with defects than co-changes within the same architectural module. If my hypothesis is

true, β1 should be greater than β2.

4.4 Executing the Analysis

This section describes in detail how I conducted an experimental study to investigate the

research questions about impacts of architecture and modularity on bugs.

Projects Studied. The experimental subjects are seven projects from diverse domains,

listed in Table 4.1.

The first five projects, i.e., HBase, Hive, OpenJPA, Camel and are Cassandra are Java-

based and open-source, maintained by the Apache Software Foundation. Hive is a data

warehouse system for Hadoop; OpenJPA is an open-source implementation of the java per-

sistence API; HBase is a distributed, scalable, big data store; Camel is a rule-based routing

and mediation engine that provides a Java object-based implementation of the Enterprise

Integration Patterns using an API (or declarative Java Domain Specific Language) to con-

figure routing and mediation rules and Cassandra is an open source distributed database

management system designed to handle large amounts of data across many servers, Hadoop,

the sixth subject system, is a middleware framework widely used for distributed processing

35

T
ab

le
4
.1

:
S

tu
d

ie
d

P
ro

je
ct

s
an

d
R

el
ea

se
In

fo
rm

at
io

n
.

P
ro

je
ct

D
es

cr
ip

ti
o
n

R
el

ea
se

s
S
L

O
C

A
rc

h
it

ec
tu

re

H
B

a
se

D
is

tr
ib

u
te

d
S
ca

la
b
le

D
a
ta

S
to

re
0
.1

.0
,0

.1
.3

,0
.1

8
.0

,0
.1

9
.0

,
0
.1

9
.3

,
0
.2

0
.2

,
0
.8

9
.2

0
1
0
0
6
2
1
,

3
9
K

-2
4
6
K

R
ec

ov
er

ed
0
.8

9
.2

0
1
0
0
9
2
4
,

0
.9

0
.2

,
0
.9

0
.4

,
0
.9

2
.0

,
0
.9

4
.0

H
iv

e
D

a
ta

W
a
re

h
o
u
se

S
y
st

em
fo

r
H

a
d
o
o
p

0
.3

.0
,

0
.4

.1
,

0
.5

.0
,

0
.6

.0
,

0
.7

.0
,

0
.7

.1
,

0
.8

.1
,

0
.9

.0
6
6
K

-2
2
6
K

R
ec

ov
er

ed

O
p

en
J
P

A
J
av

a
P

er
si

st
en

ce
F

ra
m

ew
o
rk

1
.0

.1
,

1
.0

.3
,

1
.1

.0
,

1
.2

.0
,

1
.2

.1
,

1
.2

.2
,

2
.0

.0
,

1
5
3
K

-4
0
7
K

R
ec

ov
er

ed
2
.0

.0
-M

3
,

2
.0

.1
,

2
.1

.0
,

2
.1

.1
,

2
.2

.0

C
a
m

el
In

te
g
ra

ti
o
n

F
ra

m
ew

o
rk

b
a
se

d
o
n

1
.6

.0
,2

.0
.M

,2
.2

.0
,2

.4
.0

,
2
.5

.0
,

2
.6

.0
,

2
.7

.1
,

9
9
K

-3
9
0
K

R
ec

ov
er

ed
E

n
te

rp
ri

se
In

te
g
ra

ti
o
n

P
a
tt

er
n
s

2
.8

.0
,

2
.8

.3
,

2
.9

.1

C
a
ss

a
n
d
ra

D
is

tr
ib

u
te

d
D

a
ta

b
a
se

M
a
n
a
g
em

en
t

S
y
st

em
0
.3

.0
,0

.4
.1

,0
.5

.1
,0

.6
.2

,
0
.6

.5
,

0
.7

.0
,

0
.7

.5
,

0
.7

.8
5
0
K

-9
0
K

R
ec

ov
er

ed

H
a
d
o
o
p

D
is

tr
ib

u
te

d
C

o
m

p
u
ti

n
g

F
ra

m
ew

o
rk

0
.1

9
2
2
4
k

G
ro

u
n
d
-t

ru
th

S
y
st

em
J

A
n

In
d
u
st

ri
a
l

P
ro

d
u
ct

-
3
0
0
K

R
ec

ov
er

ed

36

of large-scale data across clusters. For the Hadoop project, I had access to its ground-

truth architecture, obtained through a manual recovery process by other researchers and

verified by the key developers of Hadoop [41]. The last project that I studied is an indus-

trial software project, called System J, which is a code-name for a system that has also

been the subject of a prior empirical study [95]. It is a two-year old development project,

comprised of about 300 KSLOC of Java in 900 files, and structured in 165 Java packages.

The system aggregates a certain type of data from many sources and uses it to support

both market and operational decision-making at a time granularity of minutes to hours. It

has a service-oriented architecture and a transactional database, both implemented with

third-party platform technologies.

Data Collection. There are several techniques for linking a bug database and a version

archive of a project for finding fix-inducing changes e.g, searching the commit logs for specific

tokens like bugs, fixes, and defects followed by a number [98]. Unfortunately, developers do

not always report which commits are defect fixes. Prior work suggests that such links can

be a biased sample of entire population of fixed defects [6]. But in the software repositories

(Apache Foundation) and the projects studied in this dissertation, the commits that are

defect fixes are distinguishable as they specify project name and defect number as a value

pair in their commit logs in SVN. For example, all of the defect fixes in HBASE start with

“HBASE-bug number” (e.g., HBASE-3172). This enabled the Defect Extractor component

(recall Section 4.1) to find all defect fixes by just parsing the log of commits in SVN and

finding the keyword “HBASE-bug number.”

For co-change metrics, I considered a maximum of 30 for the number of files that are

changed together in a single commit. The reason is that often when lots of files are changed

together, it is due to simple refactoring (e.g., a change in the naming convention or com-

menting style), which neither requires the developer to understand the impact of changes

on the application logic, nor poses a possibility of introducing bugs.

I intentionally chose equal periods of time for collecting both co-changes and bug fixes

to have a meaningful comparison of the results. I performed the study using both 3 and

37

6 months time intervals, which produced consistent results. The results reported here are

based on a 3 months time interval. In the first 3 months, I obtain the information of co-

changes from the source code repository. Subsequently, in the next three months, I find

the files that have been changed to fix bugs. This is repeated for the entire duration of the

revision history.

At first it may seem that I could have simply used the time between consecutive releases,

but I observed that in many cases, the periods of time between releases are not consistent.

For example, the intervals between 4 consecutive releases of HBase project (0.90.3-0.90.6)

are 66, 153, and 85 days. If I were to follow the release dates, one data point would be

based on collecting the co-changes in 66 days and bug fixes in 153 days, while the next data

point would be based on collecting the co-changes in 153 days and the bug fixes in 85 days.

Rather, to have unbiased results required for conducting this study, I take the approach

of using equal time for collecting both co-changes and bug fixes, which is consistent with

previous studies in the literature [76].

Interested readers may access the research artifacts at:

http://www.sdalab.com/projects/ccdispersion.

4.5 Results of the Study

This section describes the results of empirically analyzing the data in the manner described

in the previous section.

4.5.1 Results for RQ1.a

To address the first research question—whether co-changes dispersed across architectural

modules are more likely to have defects than intra-module co-changes—I use NBR to model

the count data against the two metrics I defined (recall Section 5.1.4). I include the file size

(LOC) to control for the relationship between the size of files and the number of defects,

as it could be argued that the larger files are more likely to have bugs and be a party in

cross-module co-changes, thus creating a confounding effect [33,108].

38

T
ab

le
4
.2

:
R

eg
re

ss
io

n
R

es
u

lt
s

fo
r

A
rc

h
it

ec
tu

ra
l

V
ie

w
s

of
(a

)
B

u
n

ch
,

(b
)

A
rc

h
D

R
H

,
(c

)
A

C
D

C
,

(d
)

H
ig

h
-L

ev
el

P
ac

ka
g
e,

(e
)

L
ow

-
L

ev
el

P
a
ck

ag
e,

an
d

(f
)

L
D

A
.

P
ro

je
ct

M
et

ri
cs

B
u
n
ch

V
ie

w
A

rc
h
D

R
H

V
ie

w
A

C
D

C
V

ie
w

H
ig

h
-l

ev
el

P
a
ck

a
g
e

L
ow

-l
ev

el
P

a
ck

a
g
e

L
D

A
V

ie
w

E
st

P
r(
>

|z
|)

E
st

P
r(
>

|z
|)

E
st

P
r(
>

|z
|)

E
st

P
r(
>

|z
|)

E
st

P
r(
>

|z
|)

E
st

P
r(
>

|z
|)

H
B

a
se

(I
n
te

rc
ep

t)
-3

.5
9

<
2
e-

1
6

-3
.5

7
<

2
e-

1
6

-3
.6

4
<

2
e-

1
6

-3
.7

1
<

2
e-

1
6

-3
.7

4
<

2
e-

1
6

-3
.7

4
<

2
e-

1
6

lo
g
(I

M
C

)
-0

.0
3

0
.5

6
2

0
.1

5
0
.0

0
1
6
9

0
.0

2
0
.5

8
8

0
.1

3
0
.0

1
6
1

0
.1

5
0
.0

0
7
7
2

0
.1

4
0
.0

1
5
1

lo
g
(C

M
C

)
0
.5

7
<

2
e-

1
6

0
.4

0
5
.4

3
e-

1
0

0
.5

2
<

2
e-

1
6

0
.4

0
3
.7

e-
1
2

0
.3

8
2
.3

9
e-

0
9

0
.3

6
9
.8

6
e-

0
9

lo
g
(L

O
C

)
0
.3

6
<

2
e-

1
6

0
.3

7
<

2
e-

1
6

0
.3

7
<

2
e-

1
6

0
.3

9
<

2
e-

1
6

0
.3

9
<

2
e-

1
6

0
.3

9
<

2
e-

1
6

H
iv

e

(I
n
te

rc
ep

t)
-4

.0
6

<
2
e-

1
6

-4
.3

4
<

2
e-

1
6

-4
.0

6
<

2
e-

1
6

-3
.6

5
<

2
e-

1
6

-3
.6

8
<

2
e-

1
6

-4
.2

1
<

2
e-

1
6

lo
g
(I

M
C

)
0
.1

5
0
.1

0
2

0
.1

3
0
.1

7
1

0
.2

6
0
.0

0
3
1
5

0
.1

6
0
.0

4
0
.0

5
0
.4

5
4

0
.2

2
0
.0

2
5
2

lo
g
(C

M
C

)
0
.5

3
1
.2

9
e-

0
7

0
.6

7
1
.1

5
e-

0
9

0
.4

8
7
.7

6
e-

0
6

0
.5

0
1
.1

9
e-

1
0

0
.7

2
<

2
e-

1
6

0
.5

6
4
.0

9
e-

0
7

lo
g
(L

O
C

)
0
.3

2
<

2
e-

1
6

0
.3

3
2
.6

6
e-

1
5

0
.3

1
<

2
e-

1
6

0
.2

8
<

2
e-

1
6

0
.2

4
<

2
e-

1
6

0
.3

1
<

2
e-

1
6

O
p

en
J
P

A

(I
n
te

rc
ep

t)
-4

.4
7

<
2
e-

1
6

-4
.7

0
<

2
e-

1
6

-4
.4

1
<

2
e-

1
6

-4
.3

7
<

2
e-

1
6

-4
.4

1
<

2
e-

1
6

-4
.4

2
<

2
e-

1
6

lo
g
(I

M
C

)
0
.0

1
0
.9

2
2

0
.1

9
0
.0

0
8
1
4

0
.0

5
0
.4

8
4

0
.2

9
8
.8

8
e-

0
5

0
.0

2
0
.7

0
9

0
.0

5
0
.4

3
8

lo
g
(C

M
C

)
0
.5

9
6
.0

2
e-

1
0

0
.4

4
5
.9

6
e-

0
6

0
.5

5
1
.0

2
e-

0
8

0
.2

3
0
.0

0
5
2
6

0
.6

2
4
.6

8
e-

1
0

0
.5

4
2
.7

3
e-

0
9

lo
g
(L

O
C

)
0
.3

7
<

2
e-

1
6

0
.4

0
<

2
e-

1
6

0
.3

7
<

2
e-

1
6

0
.3

9
<

2
e-

1
6

0
.3

6
<

2
e-

1
6

0
.3

7
<

2
e-

1
6

C
a
m

el

(I
n
te

rc
ep

t)
-4

.1
4

<
2
e-

1
6

-4
.1

8
<

2
e-

1
6

-4
.1

7
<

2
e-

1
6

-4
.2

5
<

2
e-

1
6

-4
.3

0
<

2
e-

1
6

-4
.1

6
<

2
e-

1
6

lo
g
(I

M
C

)
0
.1

1
0
.0

0
1
5
5

0
.0

9
0
.0

0
9
7
1

0
.1

4
8
.7

0
e-

0
5

0
.1

8
9
.5

2
e-

0
7

0
.1

4
8
.2

9
e-

0
5

0
.0

7
0
.0

3
5
8

lo
g
(C

M
C

)
0
.2

1
4
.2

2
e-

0
9

0
.2

5
1
.9

6
e-

1
1

0
.1

7
1
.9

2
e-

0
5

0
.1

7
4
.1

3
e-

0
7

0
.2

2
1
.0

3
e-

0
8

0
.2

5
3
.6

2
e-

1
0

lo
g
(L

O
C

)
0
.5

2
<

2
e-

1
6

0
.5

2
<

2
e-

1
6

0
.5

3
<

2
e-

1
6

0
.5

3
<

2
e-

1
6

0
.5

3
<

2
e-

1
6

0
.5

2
<

2
e-

1
6

C
a
ss

a
n
d
ra

(I
n
te

rc
ep

t)
-3

.6
0

<
2
e-

1
6

-3
.4

8
<

2
e-

1
6

-3
.5

4
<

2
e-

1
6

-3
.2

0
<

2
e-

1
6

-3
.2

7
<

2
e-

1
6

-3
.2

8
<

2
e-

1
6

lo
g
(I

M
C

)
0
.2

0
0
.0

1
6
6

-0
.0

5
0
.3

3
6
7
9
9

-0
.0

6
0
.4

1
8

-0
.0

5
0
.5

5
8
7
2

-0
.0

1
0
.9

6
2
6
4
0

-0
.0

1
0
.8

4
9
8
8

lo
g
(C

M
C

)
0
.4

1
1
.3

6
e-

0
5

0
.6

3
<

2
e-

1
6

0
.6

9
1
.1

3
e-

1
1

0
.6

9
7
.7

5
e-

1
2

0
.6

4
1
.7

7
e-

1
0

0
.6

4
8
.7

2
e-

1
3

lo
g
(L

O
C

)
0
.2

1
1
.8

9
e-

0
5

0
.1

8
0
.0

0
0
1
9
2

0
.1

9
5
.4

6
e-

0
5

0
.1

4
0
.0

0
1
6
3

0
.1

5
0
.0

0
0
9
4
2

0
.1

5
0
.0

0
1
1
5

S
y
st

em
J

(I
n
te

rc
ep

t)
-3

.5
8

<
2
e-

1
6

-2
.8

9
<

2
e-

1
6

-2
.8

2
<

2
e-

1
6

-2
.9

3
<

2
e-

1
6

-2
.9

8
<

2
e-

1
6

-
-

lo
g
(I

M
C

)
-0

.0
5

0
.6

8
-0

.0
2

0
.7

9
0
.0

9
0
.3

1
-0

.0
7

0
.4

6
-0

.0
3

0
.5

3
-

-
lo

g
(C

M
C

)
0
.8

2
<

2
e-

1
6

0
.7

5
<

2
e-

1
6

0
.7

2
<

2
e-

1
6

0
.7

8
<

2
e-

1
6

0
.8

1
<

2
e-

1
6

-
-

39

Table 4.2 summarizes the results for the five surrogate models of Bunch, ArchDRH,

ACDC, Package, and LDA view. Since we did not have access to the source code of the

commercial project, we could not generate the data for the LDA view. Each row shows

the regression coefficient for a variable along with the p-value. For example, the regression

result for Bunch view in Hive project (Table 4.2) indicates that the coefficient of IMC is

0.15 and its significance level is at 89% (the p-value is 0.102), while the coefficient of CMC

is 0.53 and its significant level is more than 99% (the p-value is 6.02e-10).

We can see from these regression models that for the projects studied, the coefficient

of CMC is highly significant and is greater than the coefficient of IMC in all surrogate

views except the high-level package view—which will be discussed in the next subsection.

In addition, we can observe that in several instances, the attribution of IMC in the model

is not even significant. These data support the proposition that cross-module co-changes

have a bigger impact on the number of bugs than intra-module co-changes. We also observe

no difference between the open-source projects and the commercial project.

Table 4.3 shows the results of the regression analysis for the ground truth architecture

of Hadoop. The results of analyzing the ground truth architecture in this project are

in line with those obtained using surrogate models for the other projects (i.e., CMC is

highly significant and larger than IMC), thereby, giving us confidence in the validity of my

conclusions.

Furthermore I compared the Spearman correlation of CMC and IMC with defects (see

table 4.4). As we can see, in all of the projects, CMC has higher correlation with defects.

I used the Spearman rank correlation method, since it makes no assumption about the

distribution of data, and thus more appropriate for data that is not normally distributed.

Table 4.3: Regression Results for Hadoop and Using the Ground-Truth Architecture.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -4.5085 0.9461 -4.77 1.9e-06
log(IMC) 0.9368 0.2614 3.58 0.00034
log(CMC) 1.8020 0.3113 5.79 7.1e-09
log(LOC) 0.0987 0.1237 0.80 0.42524

40

T
ab

le
4
.4

:
C

o
rr

el
a
ti

o
n

C
o
effi

ci
en

ts
B

et
w

ee
n

D
ef

ec
ts

an
d

th
e

M
et

ri
cs

fo
r

C
ro

ss
-M

o
d

u
le

C
o-

ch
a
n

g
es

(C
M

C
),

In
tr

a-
M

o
d

u
le

C
o-

ch
a
n

g
es

(I
M

C
),

a
n

d
N

u
m

b
er

of
C

o-
ch

an
ge

d
F

il
es

(N
C

F
).

(C
or

re
la

ti
on

s
S

ig
n

ifi
ca

n
t

at
th

e
0
.0

1
L

ev
el

ar
e

H
ig

h
li

gh
te

d
)

H
B

a
se

H
iv

e
O

p
en

J
P

A
C

a
m

el
C

a
ss

a
n
d
ra

S
y
st

em
J

C
M

C
IM

C
N

C
F

C
M

C
IM

C
N

C
F

C
M

C
IM

C
N

C
F

C
M

C
IM

C
N

C
F

C
M

C
IM

C
N

C
F

C
M

C
IM

C
N

C
F

B
u
n
ch

0
.3

9
0
.2

4
0
.2

2
0
.3

3
0
.2

8
0
.3

1
0
.3

0
0
.1

3
0
.1

5
0
.2

0
0
.1

3
0
.0

7
0
.3

3
0
.3

1
0
.2

4
0
.4

9
0
.0

5
0
.4

9

A
C

D
C

0
.3

9
0
.2

1
0
.2

2
0
.3

7
0
.2

9
0
.3

1
0
.3

1
0
.1

3
0
.1

5
0
.2

0
0
.1

1
0
.0

7
0
.3

4
0
.2

7
0
.2

4
0
.5

2
0
.3

3
0
.4

9

A
rc

h
D

R
H

0
.3

8
0
.2

7
0
.2

2
0
.3

3
0
.2

3
0
.3

1
0
.2

6
0
.1

8
0
.1

5
0
.2

1
0
.1

0
.0

7
0
.3

3
0
.0

6
0
.2

4
0
.5

2
0
.1

8
0
.4

9

P
a
ck

a
g
e

H
ig

h
0
.3

6
0
.2

9
0
.2

2
0
.3

1
0
.2

8
0
.3

1
0
.2

1
0
.2

1
0
.1

5
0
.1

9
0
.1

6
0
.0

7
0
.3

2
0
.2

6
0
.2

4
0
.5

1
0
.2

1
0
.4

9

P
a
ck

a
g
e

L
ow

0
.3

6
0
.2

6
0
.2

2
0
.3

8
0
.2

2
0
.3

1
0
.3

2
0
.1

5
0
.1

5
0
.2

2
0
.1

2
0
.0

7
0
.3

2
0
.2

7
0
.2

4
0
.5

2
0
.1

9
0
.4

9

L
D

A
0
.3

6
0
.2

4
0
.2

2
0
.3

6
0
.2

9
0
.3

1
0
.3

1
0
.1

5
0
.1

5
0
.2

0
0
.1

5
0
.0

7
0
.3

3
0
.2

5
0
.2

4
-

-
-

41

Conclusion 1: Co-changes crosscutting the system’s architectural modules have more

impact on defects than co-changes localized within the same architectural modules.

4.5.2 Results for RQ1.b

Up to this point, I described the effect of co-change dispersion across architectural modules

using the five surrogate models. In all of the projects that I investigated, co-changes cross-

cutting multiple architectural modules had a stronger impact on faults than co-changes

localized within the same architectural module. But which view is a better predictor of

defects and should be used to analyze the effect of co-changes? The answer to this question

is relevant, as it helps the practitioners understand which view should be employed for

collecting the data in practice.

To that end, I calculated the Spearman correlation between CMC and defects in all

projects using the five views. Table 4.4 summarizes correlation coefficients between defects

and the CMC metric calculated for five different surrogate views of each project. The data

show consistently similar correlation between CMC and defects in all surrogate architectural

views except in the high-level package view, where the correlation is relatively lower than

other surrogate views. I also observed that (cf. Table 4.2) in two cases—i.e., OpenJPA and

Camel high-level package views—IMC is even greater than CMC. Further analysis showed

that the high-level package view is not a proper representation for the architectural modules

of a system due to its coarse granularity. For instance, nearly 65% of files in the Camel

(version 2.9.1) are located in one of its top level packages (called “components”).

The data suggest that developers can use any of the available surrogate views except the

high-level packages to monitor the changes being made in the system. In fact, it means that

even using the low-level package structure and not any complex reverse engineering methods

can be helpful in monitoring the health of a system from its change history (e.g., identify

co-changes that may indicate architectural bad smells, as further discussed in Section 4.6).

42

Conclusion 2: No surrogate view is conclusively better than others, as they all—except

the high-level package view—produce similar results in terms of the relationship between

co-change dispersion and defects.

4.5.3 Results for RQ1.c

To address the third research question—whether a co-change metric considering architec-

tural modules has higher correlation with defects than one that does not—I compare my

CMC architecture-relevant metric with the num-co-changed-files (NCF) metric of Shihab

et al. [97] to see which one is more correlated with defects. Their metric does not take into

account the notion of architectural modules.

Shihab et al. [97], in their extensive study of defect prediction, extracted 15 different

metrics from three categories of (1) traditional metrics (e.g., file-size), (2) co-change met-

rics (e.g., num-co-changed-files) and (3) time factors (e.g., latest-change-before-release) to

predict defects. Since some of these metrics are highly correlated, they performed a mul-

ticollinearity test to remove the metrics that have overlapping degree of impact. After

removing the overlapping metrics, five were left that covered all of the three categories.

One of these five metrics was num-co-changed-files, which indicates the total number of files

a file has co-changed with. Note that NCF measures the magnitude of change, as opposed

to whether the co-changed files were from different architectural modules or not.

I compared NCF with CMC to see which one is more correlated with defects. Table 4.4

shows the results of Spearman correlation with defects. As we can see, in all of the projects,

CMC has higher correlation with defects.

To further evaluate the effect of the NCF metric, I first regressed NCF and LOC against

defects, and corroborated the earlier study that NCF has a significant positive impact on

defects. However, as shown in Table 4.5, when I added NCF in a regression model including

my metrics (i.e., CMC and IMC), I see that the effect of NCF is often not statistically

significant, and it does not have a positive impact on defects. This is while CMC remains

43

T
ab

le
4
.5

:
R

eg
re

ss
io

n
R

es
u

lt
s

fo
r

B
u
n

ch
V

ie
w

In
cl

u
d

in
g

N
u

m
-C

o
ch

an
ge

d
-F

il
es

.

H
B

as
e

H
iv

e
O

p
en

J
P

A
C

a
m

el
C

a
ss

a
n

d
ra

S
y
st

em
J

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

(I
n
te

rc
ep

t)
-3

.2
0

<
2e

-1
6

-4
.4

9
<

2
e-

1
6

-4
.3

5
<

2
e-

1
6

-3
.8

2
<

2
e-

1
6

-2
.5

9
2
.2

4
e-

1
3

-2
.7

7
0
.0

0
0
4
4

lo
g2

(I
M

C
)

0.
04

0.
49

55
15

0.
07

0
.4

4
5
8
0

0
.0

4
0
.5

8
2

0
.2

0
5
.4

1
e-

0
7

0
.2

7
0
.0

0
1
3

-0
.0

6
0
.5

9
4
2
9

lo
g2

(C
M

C
)

0.
74

<
2e

-1
6

0.
38

0
.0

0
1
4
9

0
.6

7
2
.1

5
e-

0
9

0
.3

7
1
.3

3
e-

1
5

0
.7

7
1
.3

3
e-

0
9

1
.0

0
1
.0

0
E

-0
7

lo
g2

(N
C

F
)

-0
.1

7
0.

00
01

89
0.

16
0
.0

1
7
4
3

-0
.0

7
0
.2

2
7

-0
.1

5
6
.6

7
e-

0
8

-0
.4

0
1
.0

4
e-

0
5

-0
.2

7
0
.2

6
4
2
1

lo
g2

(L
O

C
)

0.
34

<
2e

-1
6

0.
33

<
2
e-

1
6

0
.3

7
<

2
e-

1
6

0
.5

1
<

2
e-

1
6

0
.2

2
5
.7

1
e-

0
6

-
-

44

positively correlated with defects, and its effect is consistently significant across the projects.

This result is interesting, as it indicates that the type of change (i.e., cross-module

versus intra-module) is more important than the magnitude of change. It also suggests

that using a metric that distinguishes cross-module co-changes has the potential to improve

bug prediction accuracy. The co-change differences, in particular from an architectural

perspective, is a factor that has been largely ignored in the prior research.

Conclusion 3: A co-change metric that considers architectural modules have higher cor-

relation with defects than one that does not distinguish cross-module co-changes.

4.6 Discussion

In this section I summarize the findings and the implications of my study to investigate the

first hypothesis.

4.6.1 Role of Architecture in Maintenance

In Section 4.5.1, I showed co-changes that crosscut multiple architectural modules are more

correlated with defects than co-changes that are localized in the same module. This could

be attributed to the fact that an architectural module supposedly deals with a limited

number of concerns, and thus co-changes localized within an architectural module is likely

to deal with less complicated issues than those that crosscut the modules. In addition, it is

reasonable to assume in a large scale software system, the developers are familiar with only

a small subset of the modules, and thus the more architecturally disperse the co-changes,

the more difficult it would be for the developer to fully understand the consequences of

those changes on the system’s behavior, and therefore more likely to make changes that

induce defects.

There are also cases where dispersed co-changes, which have introduced defects, have

45

happened in source files without any apparent architectural dependencies. Further explo-

ration, however, revealed the existence of indirect dependencies among these files. Metrics

were shown to be effective in bringing awareness of these hidden coupling and complexities

in the system’s software architecture.

As an example, the cross-module co-changes metric helped us to discover one such case

in Hbase project. This system uses ZooKeeper, an external middleware for providing high

performance coordination in distributed environments. Furthermore, Hbase implements

a master-slave architecture, where functionalities are clearly divided into separate roles of

Master and Slave servers. But when looking at the recovered architecture of the system, and

manually investigated the change logs of this system: I recognized that HRegionServer.java

and HRegion.java files, located in the slave module, and HBase.java and HMaster.java,

located in the master module exhibit very high cross-module co-changes, even though there

is no direct dependency between them.

My analysis showed that despite the fact that these files do not have any direct method

calls, they are communicating with one another through ZooKeeper. Therefore, archi-

tectural decisions impacting one module would often impact the other module, thereby

bringing about the observed co-change effect. Such architectural decisions included regular

synchronization between master and slaves, leader election mechanism to handle the failure

of a master, and data locking and unlocking used to manage access to shared resources.

The existence of this indirect dependency has turned this part of the system into a critical

spot, exposing inherent complexities that have resulted in various bugs. I observed defects

such as deadlock due to problematic implementation or modification of locking decision,

performance issues due to excess synchronization between master and slaves, and various

other defects as the developers tweaked the code snippets related to the leader election

mechanism originally used to handle fail over of master servers. The recurring defects in

this part of the system could be attributed to the lack of visible architectural dependency

in the code, which my metrics could detect.

46

This result is useful, as it corroborates the conventional wisdom that the software ar-

chitectural decisions (e.g., how a software system is decomposed into its elements) have a

significant impact on the system’s evolution. In addition, it underlines the impact of soft-

ware architecture on open-source projects, a community that has not been generally at the

forefront of adopting software modeling and architecting practices. I hope this study serves

as an impetus for the open-source community to document and maintain the architecture

of such systems alongside the code.

4.6.2 Building Better Defect Predictors

Co-changes have been used extensively in the past for building defect predictors [97]. My

study shows that not all co-changes have the same effect on the system’s quality. Moreover,

in Section 4.5.3, I showed that the co-change metric (cross-module co-changes) has a higher

correlation with defects than a co-change metric that has been used previously in bug

prediction models (num-co-changed-files). This implies that by distinguishing between the

types of co-changes, it is possible to develop more accurate defect prediction models.

4.6.3 Architectural Bad Smell Predictors

I experimented with different surrogate representations of the system’s architecture in the

study. My study shows that the correlation of cross-module co-changes and defects is

statistically significant at 99% confidence interval in all data points using all of the views

(recall Table 4.2). I believe these experiments could inform future research in the discovery

of architectural bad smells, i.e., architectural choices that have detrimental effects on system

lifecycle properties. One approach to identify the architectural bad smells is to leverage the

metrics introduced in this paper. For instance, by collecting the number of crosscutting

co-changes per architectural module over several releases of a software system, one is able

to identify the architectural modules that contribute the most to crosscutting co-changes

and thus likely to harbor bad smells.

47

4.6.4 Empirical Research

Surprisingly few empirical studies have explored the impact of software architecture on its

evolution. I believe this is mainly because many open-source software projects commonly

used in the empirical software engineering research do not explicitly document and maintain

the architecture of the system as it evolves. Thus, an implicit contribution of my work is the

research methodology, whereby in the absence of actual models, multiple surrogate models

were used as approximation of the system’s software architecture. Although these surrogate

models inevitably pose a threat to the validity of the results (as discussed in more detail

in the next section), they also present a unique opportunity for the research community

to investigate and learn from the vast information available in the open-source software

repositories.

The potential of applying this methodology to study other relevant questions in light

of the system’s software architecture are promising. For instance, it is said that multi-

component defects (i.e., defects requiring changes to multiple components of a software

system) tend to expedite architectural degeneration of a system [63]. Similarly, it is said that

architectural defects could account for as much as 20 percent of all defects, but compared to

other types of defects they could consume twice as much time to fix [62]. However, adequate

empirical research on open-source projects has not actually verified these behaviors. I believe

the research methodology followed in my work (i.e., using the reverse engineered views of the

system’s architecture) could pave the way for empirically investigating such hypothesized

phenomena.

4.7 Threats to Validity

This section describes the main threats to validity of the findings in chapter 4

48

4.7.1 Construct Validity

Construct validity issues arise when there are errors in measurement. First threat to validity

is in the way I link bugs with the classes in the system. The pattern matching technique

that I use to find bug references in commit logs does not guarantee to find all the links.

Furthermore, since I am using bug fixes, not reported bugs, I do not consider faults that

are reported, but not yet fixed. There may be architectural modules with several reported

defects that have not been fixed in the period of analysis, although the chances of that

happening are low.

There is also a threat to validity of the results regarding the 3 months interval for data

collection. However, as mentioned in Section 4.4, when I repeated the experiments using

the 6 months interval, I obtained consistent results as those reported in the proposal. In

fact, using equal periods for collecting co-changes and bug fixes is an approach that I have

borrowed from prior research [76].

There is also a threat to validity regarding the reverse engineering methods that I used.

For example, Bunch uses several heuristics in a hill climbing approach to find the clusters

and therefore the clustering results may be slightly different in consecutive runs on the

same project. That said, Mitchell et al. [71] have showed that the result of Bunch is

mostly stable over individual runs. Moreover, I did some sensitivity analysis and observed

that these differences would not have a considerable effect on the results of my study. The

other reverse engineering techniques have been previously used by other researchers; I also

manually examined their accuracy and usefulness of their output before incorporating them

in the proposal.

One could argue our findings are not due to the recovered architectures and basically

any clustering of files would have produced the same results. To assess this threat, we

repeated the experiments by replacing the surrogate architectural modules with randomly

constructed clusters. The results (summarized in Table 4.6) are not consistent across the

projects. In HBase and Cassandra, CMC is greater than IMC, while in the other three

projects we observe the reverse of that.

49

T
ab

le
4
.6

:
R

eg
re

ss
io

n
R

es
u

lt
s

U
si

n
g

R
a
n

d
om

C
lu

st
er

s.

H
B

as
e

H
iv

e
O

p
en

J
P

A
C

a
m

el
C

a
ss

a
n

d
ra

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

E
st

.
P

r(
>
|z
|)

(I
n
te

rc
ep

t)
-3

.7
0

<
2e

-1
6

-4
.0

4
<

2
e-

1
6

-4
.4

3
<

2
e-

1
6

-4
.1

9
<

2
e-

1
6

-3
.4

7
<

2
e-

1
6

lo
g2

(I
M

C
)

0.
20

0.
00

07
8

0
.4

6
5
.7

5
e-

0
7

0
.3

7
1
.6

3
e-

0
5

0
.2

2
1
.7

3
e-

0
8

-0
.0

7
0
.4

6
6
1
7
2

lo
g2

(C
M

C
)

0.
35

1.
35

e-
08

0
.3

1
1
.7

2
e-

0
5

0
.1

3
0
.0

5
9
5

0
.1

1
0
.0

0
0
6
8

0
.6

9
3
.0

2
e-

1
0

lo
g2

(L
O

C
)

0.
38

<
2e

-1
6

0
.3

3
<

2
e-

1
6

0
.4

0
<

2
e-

1
6

0
.5

2
<

2
e-

1
6

0
.1

8
0
.0

0
0
1
7
9

50

4.7.2 External Validity

External threats deal with the generalization of the findings. First, I intentionally chose

projects that have bug-fix information in the commit logs, but this information may not be

available for other projects.

The second threat is related to the projects that I used in this empirical study, since all

of them are developed in Java. An interesting future work could be to replicate this study

on software projects implemented in other object oriented languages, like C++.

The third threat is the way I defined Package View, which is based on package structuring

of Java language and is only applicable to Java projects, although one may be able to use

similar concepts in other programming languages, e.g., namespace in C#.

51

Chapter 5: Architectural Decay Prediction from

Evolutionary History of Software

This chapter discusses the methodology to investigate the second hypothesis (See 2.2). It

discusses the techniques I used followed by the results [54].

5.1 Prediction Model Construction

Figure 5.1 overviews my approach for predicting architectural quality. My approach begins

with a set of source files, a version control repository, and architectural modules identified

by an Architectural Module Extractor from the source files. Given those three artifacts,

four Metrics Extractors—Lifted File-Level Extractor, Architectural Co-Change Extractor,

Architectural Smell Extractor, and Architectural Dependency Extractor—compute 19 met-

rics that are used as independent variables for a stepwise regression analysis. A user selects

a metric among six architectural-quality metrics to be predicted, which serves as the depen-

dent variable inputted to the stepwise regression analysis. The result of regression analysis

is a prediction model for the selected quality metric. Each prediction model produced by

our approach utilizes independent variables of release k of system s and predicts the selected

architectural-quality metric for k + 1 of system s.

In the remainder of this section, I describe the major parts of my approach: the tech-

niques I leveraged to obtain architectural modules, my selected regression models, the six

quality metrics to be predicted, and the metrics extracted and used as independent vari-

ables.

52

Metrics Extractors

Architectural Quality Metrics

Independent Variables

Architectural Smells

Lifted File-Level

LOC

Architectural Dependency

TCMD

TOMD

IMD

XMDOMD

CMD

Architectural Co-Change

IMCCMC

SCC

DIT CBO

LCM

NC NCF

SF

CO

DC

LO

SF

CO

DC

LO

CF

DEF

Lifted
File-Level
Extractor

Architectural
Smell Extractor

Architectural
Co-Change
Extractor

Architectural
Dependency

Extractor

Source
Files

Stepwise
Regression

Analysis

Dependent Variable

Selected
Metric

Metric Selection by User

Prediction
Model for

Selected Metric
Architectural

Module
Extractor

Version
Control

Architectural
Modules

Figure 5.1: Overview of My Approach for Architectural-Quality Metric Prediction.

5.1.1 Obtaining Architectural Modules

I consider two different techniques for recovering architectural modules, which are used

by Architectural Module Extractor. As a result, I obtain multiple architectural views [59],

allowing an engineer to obtain architectural-quality metrics from different perspectives.

This maximizes the possibility of identifying architectural-quality problems throughout a

software system. Note that an architecture-recovery technique can be substituted for a

ground-truth architecture verified as correct by a software system’s architects. In such a

situation, my prediction models would likely achieve better performance, since they would

not need to correct for improperly recovered modules.

The package structure of a system can be treated as a proxy for the decomposition of the

53

system into architecturally significant elements, as packages are created by the developers

of the system. In fact, package structuring has been used as a decomposition reference in

prior research [10, 25, 52]. Packages and their sub-packages can be represented in a tree

structure corresponding to the packaging hierarchy. Each leaf of the tree is a Java class

contained in a package, which itself may belong to a higher level package. The root of the

tree is the top-level package.

In section 4, I showed that high-level packages are not suitable for studying the evo-

lution of architecture—due to the coarse granularity—and low-level packages should be

used instead. Therefore, I use low-level packages in this part of study. In low-level pack-

ages, architectural modules correspond to packages that only contain Java classes and no

sub-packages.

In addition to packages, I include a semantic view of modules obtained using an architecture-

recovery technique called Architectural Recovery using Concerns (ARC) [40, 44, 60], which

utilizes hierarchical clustering and information retrieval to produce modules. ARC lever-

ages a statistical language model, Latent Dirichlet Allocation (LDA) [11], to represent each

source file of a system as textual documents consisting of concerns, which are extracted

from the identifiers and comments of each file. A concern could be a role, concept, or

responsibility of a system. The number of modules recovered by ARC is selectable by an

engineer, enabling the consideration of recovered modules at a high level and low level, just

as in the case of packages.

Once modules have been identified or recovered, I must be able to determine which

module mk in release k is the same module mk+1 in release k + 1. This determination

allows us to make predictions for mk+1 based on our metrics for mk. I leverage a technique

described in prior work that traces modules across releases based on the degree of overlap

among them [60].

I use a metric, c2c, that calculates the similarity between modules [40]. c2c is calculated

as follows:

54

c2c(mk,mk+1) =
|mk ∩mk+1|
|mk|

× 100%

For this study, normalizing over |mk| ensures that I identify the module in release k + 1

most similar to module mk. To use c2c to identify similarity among modules, I must select

a threshold for similarity expressed as a percentage. I utilize a 50% similarity threshold,

which means that a module mk+1 is the same as a module mk if c2c(mk,mk+1) > 50%.

Consequently, mk+1 is similar to module mk if they have mostly the same files in the module.

5.1.2 Regression Analysis Selection

I constructed the prediction models in this study using the releases of each project. I use

three well-known regression models in this study and compare the results: linear regression

(LR), negative binomial regression (NBR), and random forest (RF). I used the MASS library

in R [1] for building LR and NBR and the randomForest library for RF [2].

Although LR is popular and more widely used in the literature, some have argued that

NBR is a more appropriate regression model for defect prediction [81]. Unlike LR, NBR

makes no assumptions about the linearity of the relationship between the variables, or the

normality of the variable distributions. NBR is applicable to non-negative integers and,

more importantly, can be used for over-dispersed count data (i.e., when the conditional

variance of the data exceeds the conditional mean) [23]. I also chose RF since it has been

shown to perform best for software defect prediction [61], making RF potentially suitable

for predicting architectural quality. For NBR, we use the log2 transformation of our metrics

to reduce the influence of extreme values, similar to prior work [23].

I do not want my prediction metrics to exhibit multicollinearity, a phenomenon where

prediction metrics are correlated, since this can cause my prediction models to become

unstable [36]. To avoid the multicollinearity problem, I use stepwise regression to build the

models. I leverage the stepAIC function in the MASS library of R for this purpose. Akaike

Information Criteria (AIC) is a commonly used static measure for goodness of fit. Models

55

can be built in two ways: forward and backward. Forward stepwise regression begins with

no variable in the model. The variable that improves the model the most is identified and

added to the model. The process continues until none of the remaining variables can improve

the model. Backward stepwise regression starts with the full model, improves the model by

deleting variables, and repeats this deletion until no further improvement is possible. To

determine the optimal model, I ran both forward and backward stepwise regression. I used

stepwise regression when building models with LR and NBR. I utilized all of the metrics

when building models using RF because it works well with a large number of independent

variables [86], where our model includes only 19 such variables.

5.1.3 Dependent Variables

I selected the following six metrics that serve as representations of architectural decay: the

number of defects in a module; four architectural-smell metrics, where each metric indicates

whether a module has a specific type of smell; and a metric that indicates a module’s quality

in terms of coupling and cohesion. Each of these metrics is a dependent variable for a single

architectural-quality prediction model.

The number of defects per module is determined by summing up the defects in each file

contained within an architectural module.

The coupling and cohesion of a module is a strong indicator of the module’s quality. To

that end, I select a metric, Cluster Factor (CF) [71], used widely in previous architectural

studies [40,71,85,107] that represents the coupling and cohesion of a module. We calculate

CF for a module m as follows:

CFm =
µi

µi + 0.5×
∑

j εij + εji

where µi is the number of dependencies between entities within a module, and εij + εji is

the number of dependencies between module i and module j.

56

The presence or absence of architectural bad smells in a module may inform my pre-

diction models as to the future occurrence of architectural decay. To that end, I select

four architectural smells for my study that represent structural or semantic maintainability

problems of a module. Each smell falls into one of two categories: concern-based smells or

dependency-based smells. Concern-based smells are caused by inappropriate or inadequate

separation of concerns; dependency-based smells arise due to module interactions resulting

from code relationships among entities within a module.

I identify the following smells that a module may suffer from, which have been studied

in previous work [39,42,43].

• Scattered Functionality (SF) is a concern-based architectural smell that describes a

system in which multiple modules are responsible for realizing the same high-level

concern, while some of those modules are also responsible for additional, orthogonal

concerns.

• Concern Overload (CO) is a concern-based architectural smell that occurs for a module

when it implements an excessive number of concerns.

• Dependency Cycle (DC) is a dependency-based architectural smell that occurs when

a set of modules are linked in such a way that they form a cycle, causing changes to

one module to possibly affect all other modules involved in the cycle.

• Link Overload (LO) is a dependency-based smell that occurs when a module is in-

volved in an excessive number of dependencies to other modules. A module can have

an excessive number of incoming links, outgoing links, or both.

To represent each of these smells as an architectural-quality metric to be predicted, I

create a binary metric for each smell: ssf , sco, sdc, and slo. If a module m has a smell s,

then s = 1. Otherwise, s = 0. For example, if a module m1 has CO, then sco = 1 for m1.

As another example, if module m2 is involved in a DC with other modules, sdc = 1 for m2.

57

5.1.4 Independent Variables

I use four types of metrics extractors to obtain a combination of file-level and architectural-

level metrics for predicting architectural quality. Many prediction models from existing

literature have focused on predicting software defects [19, 28, 67, 81]. I chose a subset of

metrics from the prior literature, particularly at the file level, as independent variables for

prediction, since they may be indicators of architectural problems.

Lifted File-Level Extractor obtains the following file-level metrics:

• The lines of code (LOC) of a file is a measure of the size of a file determined by

counting the number of non-empty non-comment lines.

• Sum cyclomatic complexity (SCC) of any structured program with only one entry

point and one exit point is equal to the number of decision points contained in that

program plus one.

• The depth of inheritance tree (DIT) is the depth of a class within an inheritance

hierarchy calculated as the maximum number of nodes from the class node to the

root of the inheritance tree.

• Coupling between objects (CBO) for a class C is the number of other classes to which

C is coupled. Class A is coupled to class B if class A uses a type, data, or member

from class B.

• Lack of cohesion in methods (LCM) is calculated as 100% minus average cohesion

for class data members. Average cohesion is calculated as the percentage of pairs of

methods in a class that have at least one field in common. A lower percentage means

higher cohesion between class data and methods.

• Number of changes (NC) is the number of times that a file is committed to a repository.

• Number of co-changed files (NCF) is the number of other files that a file f is changed

with [97].

58

To represent file-level metrics at the module-level, I lift them up to the architectural

level by summing up the values of each file-level metric across all files inside each module.

The resulting sum is then used as a representation of each file-level metric for a module.

For example, in the case of SCC, a module m with four files can have the following SCC

values, one for each file: 2, 5, 6, and 9. The SCC for module m is the sum of all SCCs of

its constituent files, i.e., 22. It is worth nothing that it is possible to use other approaches

for lifting up the metrics, such as considering the maximum value of each file-level metric

across all files inside each module or calculating the weighted average. I used the sum of

values since it has been used for predicting defects for packages [50,112].

Among our architectural metrics, I include metrics involving co-changes between mod-

ules that are extracted by Architectural Co-Change Extractor. Co-changes are process met-

rics that represent modifications that occur simultaneously within or across modules. Sec-

tion 4 demonstrated that architectural co-changes correlate with defects. Consequently,

architectural co-change metrics may potentially improve my prediction models. I select the

following architectural co-change metrics:

• Cross-module co-changes (CMC) is the number of co-changes for a file, where the

co-changes are made across more than one architectural module.

• Inner-module co-changes (IMC) is the number of co-changes for a file, where there is

at least another co-changed file in the same architectural module.

A number of our selected architectural-quality metrics are based on dependencies be-

tween modules, which are code relationships among source-level entities within a module

(e.g., method invocations, field accesses, import statements, etc.). To predict architectural

quality based on such dependencies, Architectural Dependency Extractor obtains module-

dependency metrics.

I consider two methods for measuring the dependencies between modules. The first

method models the dependencies as a binary variable, meaning that I only measure whether

a module has a dependency on another module. The second method is to count all of the

59

dependencies between the modules, which considers the number of dependencies between the

files inside each of the modules. Using these two methods, I select the following dependency-

based metrics:

• Incoming module dependency (CMD) is a binary metric for a module m1 with a value

of 1 if there is at least one dependency from another modulem2 tom1, and 0 otherwise.

• Outgoing module dependency (OMD) is a binary metric for a module m1 with a value

of 1 if there is at least one dependency fromm1 to another modulem2, and 0 otherwise.

• Total incoming module dependencies (TCMD) is the total number of dependencies to

a module m1 and originating from other modules in a software system.

• Total outgoing module dependencies (TOMD) is the total number of dependencies

from a module m1 to other modules in a system.

• Internal module dependencies (IMD) is the total number of dependencies among all

files within a module.

• External module dependencies (XMD) is the total number of incoming and outgoing

dependencies of a module.

The existence of architectural smells in a module may indicate further architectural

decay in the future for that module. For example, a module with CO may be more likely to

exhibit LO in the future. As another example, LO may be an indicator of future reductions

in a module’s CF. To that end, Architectural Smell Extractor identifies the four architectural

smells described in Section 5.1.3 and computes the corresponding metrics.

5.2 Experimental Setup

To evaluate my prediction models, this section discusses the experimental setup I use to

answer our research questions.

60

5.2.1 Projects Studied and Data Collection

My experimental subjects include five projects, listed in Table 5.1. They are all written

in Java and are maintained by Apache Software Foundation (ASF). However, they vary in

their sizes and application domains, allowing me to draw broader conclusions.

To enable prediction of architectural quality, I collect data about defect fixes and metrics

at both the code and architectural levels. I utilize different tools for that purpose.

I obtain code-level metrics per file and for each release. The first five file-level metrics

(LOC, SCC, DIT, CBO and LCM) are measured using Understand from Scitools1 for

each release.

The change metrics (NC, NCF, CMC and IMC) are calculated by processing the de-

veloper commits from an SVN repository and extracting the groups of files in the same

commit transaction that have been modified together (i.e., co-changes). I use SVNKit, a

Java toolkit providing APIs to subversion repositories.

To obtain architectural metrics, I leverage Architecture Recovery, Change, And Decay

Evaluator (ARCADE) [39, 60], a workbench containing tools for addressing architectural

decay. Specifically, ARCADE consists of algorithms for detecting architectural smells and

computing architectural dependency information, enabling the extraction of four selected

architectural smell metrics (SF, CO, DC, and LO) and six architectural dependency-based

metrics (CMD, OMD, TCMD, TOMD, IMD, and XMD).

In the ASF software repositories and, by extension, the projects studied in this disser-

tation, the commits that are defect fixes are identifiable since defects are referred to by a

project name and defect number in SVN commit logs. For example, all of the defect fixes

in HBASE begin with HBASE-<bug number> (e.g., HBASE-3172). This enabled me to

find all defect fixes by just parsing the log of commits in SVN and finding the keyword

HBASE-<bug number>. To determine the number of defects for each module, I sum up

the number of defect fixes in all files within each module.

1http://www.scitools.com/

61

T
ab

le
5
.1

:
S

tu
d

ie
d

P
ro

je
ct

s
an

d
R

el
ea

se
In

fo
rm

at
io

n
.

P
ro

je
ct

D
es

cr
ip

ti
on

R
el

ea
se

s
S

L
O

C

H
B

a
se

D
is

tr
ib

u
te

d
S

ca
la

b
le

D
at

a
S

to
re

0.
1.

0
,0

.1
.3

,0
.1

8.
0

,0
.1

9.
0,

0.
19

.3
,

0.
2
0.

2
,

0
.8

9
.2

0
10

06
21

,
39

K
-2

4
6K

0.
89

.2
01

00
92

4,
0.

90
.2

,
0.

90
.4

,
0
.9

2
.0

H
iv

e
D

a
ta

W
a
re

h
ou

se
S

y
st

em
fo

r
H

ad
o
op

0.
3.

0,
0.

4.
1,

0.
5.

0,
0.

6.
0,

0.
7.

0,
0.

8
.1

6
6K

-2
26

K

O
p

en
J
P

A
J
av

a
P

er
si

st
en

ce
F

ra
m

ew
or

k
1.

0.
1,

1.
0.

3,
1.

1.
0,

1.
2.

0,
2.

0.
0-

M
3
,

2
.0

.1
,

2
.1

.0
15

3K
-4

07
K

C
am

el
E

n
te

rp
ri

se
In

te
gr

at
io

n
F

ra
m

ew
or

k
1.

6.
0

,2
.0

.M
,2

.2
.0

,2
.4

.0
,

2.
5.

0,
2.

6
.0

,
2.

7
.1

,
2.

8
.0

,
2.

8
.3

9
9K

-3
90

K

C
as

sa
n

d
ra

D
is

tr
ib

u
te

d
D

a
ta

b
a
se

M
a
n

ag
em

en
t

S
y
st

em
0.

3.
0

,0
.4

.1
,0

.5
.1

,0
.6

.2
,

0.
6.

5,
0.

7
.0

,
0.

7
.5

50
K

-9
0
K

62

5.2.2 Data Splitting and Evaluation Metrics

I first discuss the splitting strategy I select for training my models and testing them. I

then cover the two criteria I chose to evaluate the performance of my prediction models:

predictive power and ranking.

Data Splitting. In order to evaluate the performance of the models, I use data splitting,

a commonly used evaluation technique, where a data set is divided into subsets for building

and evaluating the model. Specifically, I randomly split the data set as follows: two-thirds

of the data are used to train and build the prediction model, and one-third of the data

is used to test the performance of the model. For generating a stable analysis result, I

conduct the experiments 100 times and use the average results over all those experiments.

I train the model on a given release and evaluate its performance on the next release.

Specifically, I calculate all the metrics described in Section 5.1.4 on the k-th release and

use them as independent variables of our models. I then predict each of the architectural-

quality metrics for the k+1-th release. Consequently, each architectural-quality metric is a

dependent variable for each prediction model.

Predictive Power. I assess the predictive power of a model by selecting an appropri-

ate performance measure. I considered a variety of measures often utilized to evaluate the

performance of predictive models for software-engineering purposes. I will briefly discuss

some commonly used measures—accuracy, precision, and recall—and why they are unde-

sirable for my study. I then follow that discussion with an introduction and justification of

my chosen measure for predictive performance: area under the curve (AUC) of the receiver

operating characteristic (ROC).

Precision and recall are pairs of performance measures commonly used together for

prediction models. Precision is a measure of a model’s ability to predict modules without

falsely marking them as having low architectural quality. Recall is a measure of a model’s

ability to correctly predict all modules with low architectural quality. Precision is defined

as tp
tp+fp . tp is the number of true positives, where a true positive occurs for a module

when it is correctly predicted as having low architectural quality. fp is the number of

63

false positives, where a false positive occurs for a module when it is predicted having low

architectural quality when it, in fact, does not. Recall is defined as tp
tp+fn . fn is the number

of false negatives, where a false negative occurs for a module when it is predicted as not

having low architectural quality, even though it, in fact, does. A prediction model should

have a high precision and recall; however, increasing one often decreases the other.

Accuracy is the proportion of correct predictions, and is defined as tp+tn
tp+tn+fp+fn . tn is

the number of true negatives, where a true negative for a module occurs when a model

correctly predicts the module as not having low architectural quality. However, accuracy

can be a bad performance measure for imbalanced data [99]. For example, if we only have

a few defective modules in our data set, a model that considers all modules as clean would

have a high accuracy.

Precision, recall, and accuracy all require the arbitrary setting of discrimination thresh-

olds to declare a module as having low architectural quality. To avoid arbitrary setting

of thresholds in our experiments, I utilize AUC of ROC as the performance measure for

comparing prediction models, as suggested by [61], and further described below.

Receiver operating characteristic (ROC) is a curve that plots true-positive rates (y-axis)

against false-positive rates (x-axis) for all possible thresholds between 0 and 1—precluding

the need to arbitrarily set thresholds. AUC is a scalar performance measure derived from

ROC and is the area enclosed by the curve and the x-axis. AUC separates predictive

performance from class and cost distributions, which are based on characteristics of projects.

The best possible model is a curve close to y = 1 with AUC of 1.0; a random classifier would

obtain AUC of 0.5. In code-level defect prediction literature, an AUC of 0.7 or above is

considered a high level of performance for a prediction model [61,67]. Given the similarity

of architectural decay and defects, I also consider AUC of 0.7 and above as a high level of

performance for architectural-quality prediction.

For illustration, Figure 5.2 shows an ROC curve corresponding to one of our models for

predicting defects in architectural modules of OpenJPA project. By choosing a different dis-

crimination threshold for declaring a module defective, the prediction model would produce

64

a different performance, as shown in this curve. Rather than reporting the results using

an arbitrary threshold, I use AUC to holistically compare the classification performance of

different prediction models under all possible thresholds.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NBR classifier
Random classifier

Figure 5.2: ROC Curve for Defect Prediction.

My approach for evaluating the prediction models is orthogonal to how the engineers

would use the models in software projects. In practice, the engineer can choose a discrim-

ination threshold that achieves the desired balance of precision and recall based on the

characteristics of a project. For instance, if a project is understaffed and there are in-

sufficient resources to thoroughly review the system’s architecture/code, the engineer may

choose a threshold that achieves a higher precision and a lower recall, meaning less wasted

effort investigating false positives, at the expense of not fixing all architectural issues in time.

On the other hand, if a project has the necessary staff and resources to thoroughly review

65

the system’s architecture and code, the engineer may choose a threshold that achieves a

lower precision and a higher recall, meaning more wasted effort of investigating false posi-

tives, but increased likelihood of fixing all architectural concerns. As another example, in a

safety-critical software project, the engineers may choose to use thresholds that maximize

the recall to reduce architectural decay factors, and thereby improve the quality of software,

as much as possible.

Ranking. Determining the modules with the lowest architectural quality allows en-

gineers to prioritize their efforts to those modules first. To that end, I assess if a model

can correctly predict the order of modules according to their architectural-quality metrics.

Ranking is not applicable to architectural smells since they are binary variables. However,

we can obtain ranking results for defects and CF. In defect ranking, we build the prediction

models using data splitting, predict the number of faults for each module, and compare

the ordering of the predicted defect numbers with actual defect numbers using Spearman

correlation. Similarly, we predict CF values for each module and compare the ranking of

predicted CF values with the ranking of actual CF values.

We consider a Spearman correlation greater than 0.4 that is statistically significant at

the 0.01 level to be a reliable ranking of modules. A correlation of 1.0 denotes a perfect

ranking. Previous work on code-level defect prediction has considered Spearman correlation

values greater than 0.4 to be noteworthy [111,112]. Given the similarity of predicting code-

level defects and architectural decay, this consideration is sensible for our prediction models.

Note that all the Spearman correlations that we report are significant at the 0.01 level.

5.3 Experimental Results

Given my approach and the experimental design described in the previous sections, I now

discuss the results obtained for each of the research questions. I begin by presenting some

information about the modules. I continue by assessing the overall performance of my

prediction models for each architectural-quality metric. I follow that study by assessing

the degree of change for each architectural-smell metric. Afterwards, I focus on prediction

66

Figure 5.3: Number of Architectural Modules.

results for smell emergence. Lastly, I determine the metrics that best predict architectural

quality.

I start by presenting some information about the data in my study. Figure 5.3 shows

the number of modules in different projects. The projects are marked in x-axis as 1: Camel,

2: Cassandra, 3: HBase, 4: Hive, 5: OpenJPA using both ARC (A) and packages (P). As

it is shown the number of modules varies across projects and projects with more LOC has

more clusters. Also in some projects (e.g. Cassandra) the number of modules don’t change

much while in some others (e.g. Camel), we see different number of modules across releases.

Figure 5.4 shows the percentages of existence of each of architectural-quality metrics

across releases (D stands for defects). As it is shown (33-58)% of ARC’s modules have

defects while (47-80)% of packages have defects across different releases. Also among the

architectural smells, most of the modules shows to have DC.

67

Figure 5.4: Percentages of Existence of Architectural-Quality Metrics.

5.3.1 Results for RQ2.a

I now discuss the results obtained for each of the research questions in chapter 2.2.

RQ2.a: What is the performance of each prediction model for the different architectural

quality metrics?

I first assess my model’s ability to predict whether a module has at least one defect,

which I refer to as defect existence prediction. Figure 5.5 shows AUC results for defect

existence prediction for RF (F), LR (L), and NBR (N), using both ARC and packages. The

results show that the prediction performance of NBR is higher than LR and RF. Particularly

in the case of NBR, our models predict module defectiveness with AUC of at least 0.76.

I further observe that AUC results for module-level defect prediction are higher for

packages than ARC. This higher performance for packages may result from the fact that

68

Figure 5.5: AUC Performance Defects.

no special technique is needed to obtain packages and are, thus, less susceptible to error.

However, given that my models can obtain at least 0.76 AUC, they exhibit resilience to

errors that may exist in ARC.

Only predicting which modules have defects in future releases does not help in prior-

itizing modules for defect analysis and removal. Particularly, roughly 50% of modules in

our study tend to have defects, which provides engineers with little information as to which

modules should be allocated more maintenance resources. To address this issue, my models

can predict the amount of defects a module may have, rather than simply whether a module

has a defect. Predicting the magnitude of a module’s defectiveness allows an engineer to

prioritize modules for defect analysis and removal.

I assess my model’s ability to predict the extent of a module’s defectiveness by using

Spearman correlation to compare the actual ranking of defective modules with our model’s

predicted rankings. Figure 5.6 shows these results. As in the case of defect existence

prediction of modules, NBR outperforms LR and RF: Prediction for ARC modules obtains

Spearman correlation of 0.48-0.69; for packages, my models obtain a spearman correlation of

0.62-0.73. Similar to defect existence prediction for modules, ranking results are higher for

69

Figure 5.6: Spearman Correlation for Ranking Defective Modules.

packages than ARC. Again, this is likely due to error introduced by ARC when recovering

modules.

For smell prediction, I determine whether my models can predict the occurrence of

different types of smells. To that end, I utilize AUC as our performance measure. Figure

5.7 shows the AUC results for predicting smells in ARC. I have the results of all four smells

from ARC; however, two of the smells are concern-based and only applicable to ARC. Thus,

for packages, I have results for DC and LO only. As shown in Figure 5.7, I can predict the

occurrences of smells in modules with a high AUC of 0.84 or above. Furthermore, LR, NBR,

and RF obtain similar prediction results, in terms of AUC, for smells. Overall, prediction

results are better for packages than ARC modules, which is consistent with the prediction

results for defects.

The overwhelming majority of modules in projects have low architectural quality as

measured by CF. We consider a module m as having a low CF when CF < 0.3 for m. This

CF value indicates that the vast majority of m’s dependencies are with entities outside of

m, as opposed to within m, indicating high coupling and low cohesion. Given that modules

mostly have low CF values, it is particularly important that engineers identify the modules

70

Figure 5.7: AUC Performance Architectural Smells.

with the worst CF. With such information, engineers can allocate maintenance resources

to those modules first. To that end, we focus on the ranking results of CF, as opposed to

AUC results.

Figure 5.8 depicts the ranking results for CF values compared using Spearman correla-

tion. For both ARC and packages, NBR and RF perform similarly, achieving more than 0.7

correlation, with RF performing slightly better than NBR. Both models outperform LR.

The superior performance of NBR and RF is significantly more pronounced for ARC. This

difference in CF may be due to ARC ignoring dependency-based coupling and cohesion,

which is what CF is based on.

To illustrate how the results of this research might be used by the engineers, I describe

one of the prediction models from Figure 5.8 in more detail. I show the CF prediction

results for a subset of packages in HBase version 0.92. Table 5.2 shows the actual values of

CF for packages, the predicted value of CF, and also the corresponding ranking. As shown,

71

Figure 5.8: Spearman Correlation Cluster Factor.

the predicted values of CF is very close to the actual values of CF. Out of 15 modules, 12

modules are ranked correctly by the prediction model, while for the 3 remaining modules

(i.e., handler, executor, and replication) the actual and predicted rankings are quite close.

Engineers could use such information to identify architectural problems (e.g., identify the

modules with low CF) and prioritize their effort (e.g., refactor the modules with lowest CF).

In summary, the results show that my models can effectively predict the different

architectural-quality metrics. For most cases, NBR provides superior results and is the

best overall model for predicting architectural quality.

5.3.2 Results for RQ2.b

Next I report the results of the amount of change for each architectural-smell metric.

RQ2.b: What is the amount of architectural change across releases for each

architectural-smell metric?

Figure 5.9 shows the percentages of changes across all releases and systems for each

72

T
ab

le
5
.2

:
P

re
d

ic
ti

o
n

o
f

C
F

fo
r

P
a
ck

ag
es

in
H

B
as

e
(V

er
si

on
0.

92
).

P
ac

ka
ge

N
am

e
C

F
P

re
d

ic
te

d
C

F
R

a
n

k
o
f

C
F

R
a
n

k
o
f

P
re

d
ic

te
d

C
F

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

m
ap

re
d

u
ce

0
.1

1
0
.1

1
1
0

1
0

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

fi
lt

er
0
.2

7
0
.3

1
1
5

1
5

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

io
.h

fi
le

0
.2

5
0
.2

8
1
4

1
4

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

cl
ie

n
t.

co
p

ro
ce

ss
o
r

0
.0

1
0
.0

2
2

2
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

m
ap

re
d

0
.1

3
0
.1

4
1
1

1
1

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

io
0
.0

3
0
.0

3
3

3
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

m
as

te
r.

h
a
n

d
le

r
0
.0

5
0
.0

5
5

6
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

re
gi

o
n

se
rv

er
0
.1

8
0
.2

0
1
2

1
2

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

ex
ec

u
to

r
0
.0

4
0
.0

4
4

5
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

re
st

.c
li

en
t

0
.1

1
0
.1

0
9

9
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

th
ri

ft
.g

en
er

a
te

d
0
.0

0
0
.0

1
1

1
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

re
p

li
ca

ti
o
n

.r
eg

io
n

se
rv

er
0
.0

9
0
.0

8
8

8
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

re
p

li
ca

ti
o
n

0
.0

5
0
.0

4
6

4
or

g.
ap

ac
h

e.
h

ad
o
op

.h
b

as
e.

re
st

0
.2

2
0
.2

4
1
3

1
3

or
g.

ap
ac

h
e.

h
ad

o
op

.h
b

as
e.

u
ti

l.
h
b

ck
0
.0

6
0
.0

6
7

7

73

Figure 5.9: Percentages of Changes of Architectural Smells.

architectural smell. Although all types of architectural smells change across releases, the

amount of change varies: SF, DC, and CO exhibit relatively little change; LO changes

drastically across all releases of our systems.

The results for smell changes indicate that, for the selected systems, modules that suffer

from concern-based smells (CO and SF) tend to retain those smells across releases—with

little addition or removal of such smells afterwards. At the same time, change for SF is

significantly higher than CO.

For each dependency-based architectural smell (DC and LO), change across releases

varies significantly. The amount of change represented by LO varies drastically between

ARC and packages. This difference is likely due to the fact that ARC does not take depen-

dencies into account, which are used to compute LO.

DC exhibits a similar amount of architectural change, across releases and systems, for

both ARC and packages. Furthermore, the amount of change for DC is quite low (largely

between 1%-26%). Consequently, across releases, the same modules tend to be involved in

a DC, for our selected systems.

Overall, I find that architectural smells do exhibit significant change worth predicting.

74

However, we would like to determine if my prediction models can forecast a particular type

of architectural-quality change, i.e., smell emergence, so that engineers can possibly take

action before a smell occurs—resulting in possible savings of future time and effort. To that

end, I examine the results for my next research question:

5.3.3 Results for RQ2.c

RQ2.c: Can we effectively predict architectural-smell emergence between two consecu-

tive releases?

As part of answering this research question, I first assess the frequency of smell emergence.

Figure 5.10 shows the percentages of smell emergence in architectural modules across all

systems and releases. LO is the most frequent type of smell emergence with a median of 9%

occurring for modules. SF and DC smell emergence occurs less than 5% in ARC; DC smell

emergence does not occur in most projects. Although smell emergence occurs infrequently,

this phenomenon is intuitively difficult to predict and preventing its occurrence may reduce

future maintenance issues.

To build a model for predicting smell emergence cases, I created new binary variables

for each smell: seco, sedc, selo, sesf . se variables are equal to one whenever the value of the

corresponding smell is 0 in the current release and 1 in the next release—meaning that the

smell does not exist in the previous release, but it emerges in the next release. I created

models for predicting smell emergence using these new dependent variables.

Figure 5.11 shows the AUC prediction results for smell emergence for all systems and

releases. Although the number of smell-emergence instances are low, we predict those

instances with AUC of 0.75-0.97 using NBR.

The performance of RF drops considerably for smell-emergence prediction compared to

LR and NBR. This occurs because RF can lose significant performance when a dataset is ex-

tremely imbalanced [20]; however, stepwise regression with LR and NBR are less susceptible

to imbalanced data.

75

Figure 5.10: Percentages of Extreme Changes of Architectural Smells

In summary, my models can predict smell emergence—and architectural-quality metrics

in general—with high performance. To obtain such prediction models, it is important to

identify the metrics that best improve our prediction models. I make that determination

as I answer the following research question:

5.3.4 Results for RQ2.d

RQ2.d: What are the important metrics for predicting each architectural-quality met-

ric?

My previous results show that prediction models using NBR significantly outperform LR and

RF in the majority of cases. Consequently, to answer RQ2.d I focus on identifying the best

metrics, obtained through stepwise regression, for NBR. I produced 50 prediction models for

architectural quality using NBR. These were obtained from the combination of five systems,

two architectural views (ARC and packages), and six dependent variables (defects, SF, CO,

DC, LO and CF), where SF and CO are only applicable for ARC. Similarly, I constructed

several prediction models for smell emergence. Due to the number of prediction models and

76

Figure 5.11: AUC Performance for Architectural Smell Emergence.

space constraints, I do not report the coefficient values and significance level of all of the

independent variables in each model.2

Table 5.3 showcases the factors, i.e., independent variables, that contribute to prediction

models for each quality metric: Each column represents an independent variable; each row

represents a dependent variable. Factors for smell-emergence models are denoted by “-

SE.” Values in the table depict the number of times each independent variable contributes

to a prediction model. The maximum value in each cell is 10 (the combination of two

architectural views and five systems). However, for concern-based architectural smells (SF,

CO, SF-SE and CO-SE), 5 is the maximum value, because the package view does not include

such smells. For example, LOC contributes to all models for predicting defects and, thus,

is included in all 10 models.

2Readers may find the study artifacts, including the prediction models and results, at: https://seal.

ics.uci.edu/projects/decayprediction

77

https://seal.ics.uci.edu/projects/decayprediction
https://seal.ics.uci.edu/projects/decayprediction

T
ab

le
5
.3

:
F

ac
to

rs
C

on
tr

ib
u
ti

n
g

to
E

a
ch

M
o
d

el

L
O
C

S
C
C

D
IT

C
B
O

L
C
M

N
C

N
C
F

C
M

C
IM

C
S
F

C
O

D
C

L
O

C
M

D
O
M

D
T
C
M

D
T
O
M

D
IM

D
X
M

D

D
e
fe
c
ts

1
0

2
4

7
1

8
4

6
7

0
3

5
1

1
6

1
4

4
6

S
F

1
4

1

C
O

1
5

1
1

D
C

1
0

L
O

3
1

4
1

3
3

1
1

2
2

9
2

1
4

3
4

4

C
F

1
1

2
1

9
5

S
F
-S

E
1

2
1

1
2

1
2

1
1

1
1

C
O
-S

E
1

1
1

1
1

D
C
-S

E
1

3
1

1
1

3
1

2
3

3
1

2
2

L
O
-S

E
4

1
4

1
3

1
2

2
1

2
1

4
3

3
2

3
8

78

A wide variety of metric types, from all categories, are important factors–with values of

at least 5—for predicting defects: lifted file-level metrics (LOC, CBO, and NC), architec-

tural co-changes (CMC and IMC), architectural smells (DC), and architectural-dependency

metrics (OMD and XMD).

In general, for three of the four types of architectural smells (SF, CO, and DC), the

important factor for predicting those smells is if the smell exists for a module in the current

release. For example, if a module has CO, it is likely to continue having CO in the next

release. However, a wider variety of metrics are important factors for predicting LO.

Overall, these smell results indicate that architectural smells are rarely restructured,

meaning that smell-oriented decay tends to remain in a system once it emerges. This result

further motivates the need to predict smell emergence and prevent smell occurrence.

The factors for predicting CF are mainly from the architectural-dependency metrics.

Given that CF is a measure of coupling and cohesion based on architectural dependencies,

this result is intuitive and expected.

The important factors for predicting smell emergence are starkly different from predict-

ing the general case of architectural quality: A wide variety of metrics predicted each type

of smell emergence. This result indicates that smell emergence originates from a complex

set of factors that warrants further research.

Overall, my results indicate that all categories of independent variables are important

for predicting architectural quality. Unlike previous work for predicting defects in packages

[77, 94], which only used lifted file-level metrics, I show that both lifted file-level metrics

and architectural metrics are important for predicting architectural quality. Futhermore,

stepwise regression using NBR provides the best results for such prediction.

5.4 Discussion

In the previous section, I relied on statistical criteria to empirically assess the performance

of our prediction models. To determine the usefulness of these predictions from a practical

perspective, I also manually studied some of the results produced by my models. Without

79

being exhaustive, here I describe some of our findings in the case of the Camel project,

providing concrete evidence as to how the prediction models can be useful in practice for

identifying the architectural problems.

I manually investigated whether architectural quality metrics, such as architectural

smells, used in the construction of my prediction models, are indeed architectural prob-

lems the developers care about and aim to resolve. I found many cases corroborating the

validity of my quality metrics through the developers’ commit logs and changes that in-

volved restructuring of the system’s architecture. As a case in point, my metrics identified

the following four packages to have DC on 2/17/09:

• /org/apache/camel/component/cxf

• /org/apache/camel/component/cxf/util

• /org/apache/camel/converter/stream

• /org/apache/camel/converter

But those packages did not have a DC in a version that was released two months later.

To confirm our DC metric is indeed properly capturing an issue in the architecture of

the system, I looked at the log commits of Camel, filtered the changes that include those

packages, and found the following messages:

• revision: 749227

author: davsclaus

date: Mon Mar 02 03:20:07 EST 2009

log message: CAMEL-588: LoggingLevel moved from model to root

pacakge to improve API package structuring.

changed paths:

/org/apache/camel/util/MessageHelperTest.java

/org/apache/camel/converter/stream/StreamCacheConverterTest.java

/org/apache/camel/converter/stream/StreamCache.java

80

/org/apache/camel/converter/stream/StreamCacheConverter.java

/org/apache/camel/util/MessageHelper.java

• revision: 749236

author: davsclaus

date: Mon Mar 02 03:48:10 EST 2009

log message: CAMEL-588: Fixed bad package tangle.

changed paths:

/org/apache/camel/util/SystemHelper.java

/org/apache/camel/util/IOHelper.java

/org/apache/camel/converter/IOConverter.java

/org/apache/camel/converter/IOConverterTest.java

• revision: 749561

author: davsclaus

date: Tue Mar 03 03:15:15 EST 2009

log message: CAMEL-588: Removed package dependency and using the

type converter API to find the right converter instead of direct

usage.

changed paths:

/org/apache/camel/converter/stream/StreamCacheConverterTest.java

/org/apache/camel/converter/stream/StreamCacheConverter.java

I also looked at CAMEL-588 in Jira; the description of the issue starts

as follows: ‘‘Currently there is a bad dependency cycle between camel, spi and

model...’’. These comments clearly describe the same phenomenon intended to be mea-

sured by DC metric (recall Section 5.1.3). Experience such as this provide concrete evidence

that architectural smell metrics can be effective in practice with helping the practitioners

identify architectural problems and decaying elements.

I also found many cases in which our smell emergence predictions were found to be issues

81

that the developers had acknowledged in their commit logs and had attempted to resolve.

A concrete example of this situation occurred with the /org/apache/camel/language/simple

package, which did not have DC for multiple releases, but our model predicted that it will

start to have DC from version 2.5 (10/31/2010). When I manually investigated the commit

logs, excerpts of which are shown below, not only did I find evidence of DC emergence, but

also attempts by the developers to fix the problem afterwards:

• revision: 1150991

author: davsclaus

date: Tue Jul 26 01:49:04 EDT 2011

log message: CAMEL-3961: Polished and reduced some package tangling.

changed paths:

/org/apache/camel/language/simple/SimpleLanguageSupport.java

/org/apache/camel/language/simple/SimpleLanguage.java

• revision: 1171490

author: cschneider

date: Fri Sep 16 06:25:25 EDT 2011

log message: CAMEl-4457 Move types of the simple language to a new

package simple.types to avoid dependency cycle

changed paths:

/org/apache/camel/language/simple/SimpleParserException.java

/org/apache/camel/language/simple/TokenType.java

/org/apache/camel/language/simple/BinaryOperatorType.java

/org/apache/camel/language/simple/SimplePredicateParser.java

/org/apache/camel/language/simple/SimpleTest.java

/org/apache/camel/language/simple/SimpleTokenType.java

/org/apache/camel/language/simple/SimpleIllegalSyntaxException.java

/org/apache/camel/language/simple/SimpleParserPredicateInvalidTest.java

/org/apache/camel/language/simple/SimpleTokenizer.java

82

/org/apache/camel/language/simple/SimpleToken.java

/org/apache/camel/language/simple/SimpleOperatorTest.java

/org/apache/camel/language/simple/BaseSimpleParser.java

/org/apache/camel/language/simple/UnaryOperatorType.java

/org/apache/camel/language/simple/SimpleExpressionParser.java

/org/apache/camel/language/simple/SimpleParserExpressionInvalidTest.java

/org/apache/camel/language/simple/LogicalOperatorType.java

/org/apache/camel/language/simple/SimpleBackwardsCompatibleParser.java

The description of CAMEl-4457 in Jira summarizes the issue: ‘‘Currently we have

a big dependency cycle between language.simple and language.simple.ast’’.

I believe using my smell emergence prediction models, Camel developers could have

identified and refactored the decaying architectural modules earlier.

My experience were not limited to DC. As another case in point, we were able to

predict /org/apache/camel/component/log will not have the LO smell in a future release,

even though it had that smell in preceding releases. When I investigated the commit logs,

I found evidence that the architecture of the system had been refactored in between the

releases:

• revision: 749193

author: davsclaus

date: Mon Mar 02 00:30:35 EST 2009

log message: CAMEL-588: Package tangle fixes. Tokenizer in spring

renamed to Tokenize. And fixed a CamelCase.

changed paths:

/org/apache/camel/component/log/LogFormatter.java

/org/apache/camel/model/language/TokenizerExpression.java

• revision: 749212

author: davsclaus

83

date: Mon Mar 02 02:04:20 EST 2009

log message: CAMEL-588: Moved LoggingLevel from model to core

package, to fix bad tangle.

changed paths:

/org/apache/camel/component/log/LogComponent.java

In summary, my analysis suggests that not only can I accurately predict many architec-

tural quality concerns, but that such concerns are indeed taken seriously by the developers

of open-source software, as evidenced by commit logs showcasing their attempts to fix de-

graded architectural modules. I believe my prediction models could help developers detect

software architectural decay in a systematic fashion, possibly prior to its full manifestation

in code.

5.5 Threats to Validity

I now describe the main threats to validity of my findings.

Construct validity is concerned with whether we are actually or accurately measuring

the constructs we are interested in studying. One such threat involves the correctness of

my linking of modules and their constituent files with defects. However, recall from Section

5.2.1 that the process used by engineers in ASF to link bug-fixing commits and issues

significantly mitigates this threat.

Another threat to construct validity has to do with the accuracy of the architectural

modules I obtain. I address this threat in several ways: I selected a technique, ARC, that

has exhibited higher accuracy when compared to other techniques in previous work [40]. I

further complement the semantic view provided by ARC with a structural view obtained

through packages. Additionally, any inaccuracies in our identification of architectural mod-

ules would only degrade the results of our predictions. However, my models still achieve

high performance. Nevertheless, to ensure that the architectural modules I obtained are

meaningful, I attempted to use my prediction models on randomly generated modules for

84

each of our five subject systems. Given that the resulting modules have random files in

them, no traceability can be achieved between modules—i.e., there is no longer a module

mk+1 in release k + 1 that is similar to a module mk in release k. This result further

validates that I obtain meaningful architectural modules.

The final threat to construct validity involves whether my selected metrics actually

represent architectural decay or the factors that predict architectural quality. To ensure

that I have a comprehensive set of metrics that represent architectural decay, I included

three types of architectural-quality metrics: architectural defects, architectural smells, and

CF. For the factors that may indicate architectural decay, i.e., the independent variables of

my models, I selected a wide variety of metrics that do not overlap, in order to avoid the

multicollinearity problem.

Threats to external validity involve the generalizability of my findings. One such threat

is that all our projects are from ASF and are implemented in Java. To mitigate this threat,

I selected projects from different application domains that vary in their sizes. Furthermore,

Java is a widely used language, making our results more generalizable.

Another threat involves the fact that I only include open-source projects. However, ASF

projects are widely used, even in industrial settings, which allows my projects to generalize

further.

5.6 Tool

Now I discuss the tool that I implemented for predicting architectural quality. It consists

of two parts:

• Data collection: It is implemented in Java and is responsible for collecting the required

data for building prediction models from various sources.

• Model construction: This part is implemented in R and constructs the prediction

models and evaluates the results on the data.

85

5.6.1 Data Collection

This part of the tool is a Jar file that takes a number of arguments and generates the data

file for building the prediction models. Here I discuss the input parameters to the Jar file:

• Release date: This is the release date of the version of the project that I want to do

the analysis on and it is in the format “mm/dd/yyyy” e.g. “3/5/2012”.

• Architectural modules: The is the path to the file that shows the architectural modules

in the system and the files inside each module. Each line of the file contains a file and

the module that it belongs to in this format:

contain module file

• Repository address: This is the address to the repository of the project. For example

Camel repository address is:

http://svn.apache.org/repos/asf/camel/trunk/

The address is used to obtain the change metrics (NC, NCF, CMC and IMC) that

are calculated by processing the developer commits from an SVN repository and

extracting the groups of files in the same commit transaction that have been modified

together (i.e., co-changes). I use SVNKit, a Java toolkit providing APIs to subversion

repositories.

• Prefix for file names: While I was running the experiments, I found out that sometimes

a project contains files that belongs to other projects. Since I wanted to make sure

that I only consider the files that are specific to the project under study, I use this

input parameter to filter outer projects files. For example the prefix of all files that

belongs to Camel is /org/apache/camel/

• Regular expression for finding defect fixes: In section 5.2.1 I described that in the ASF

software repositories and, by extension, the projects studied in this dissertation, the

commits that are defect fixes are identifiable since defects are referred to by a project

86

name and defect number in SVN commit logs. This input is used to find defect fixes.

To make the code more general purpose and to be able to use it with more projects,

this parameter is in the format of Java regular expression and can be tuned based on

the characteristics of a project. For example for Camel I put it as: “.*CAMEL.*”.

• Lifted file-level metrics : This is the input file that contains the first five file-level

metrics (LOC, SCC, DIT, CBO and LCM) that are measured using Understand

from Scitools3 for each release. The input to the Understand tool is the source code

of a project.

• Architectural smell metrics: This is the input file to the four architectural smell met-

rics of (SF, CO, DC, and LO). I used Architecture Recovery, Change, And Decay

Evaluator (ARCADE) [39, 60], a workbench containing tools for addressing architec-

tural decay, to extract these metrics. Each line of the input file shows a module and

its related smell.

module smell

• Architectural dependency-based metrics: This is the input file to the six architectural

dependency-based metrics (CMD, OMD, TCMD, TOMD, IMD, and XMD). I used

ARCADE to extract these metrics.

• Architectural smell metrics for the next version of project: This is the input file that

contains the smell metrics for the next version of the project. This information is

needed for evaluating the performance of my prediction models.

• Architectural dependency-based metrics for the next version of project: This is the

input file that contains the dependency-based metrics for the next version of the

project. I use this information for evaluating the performance of my prediction models.

• Mapping between architectural modules: In section 5.1.1 I explained that to use the

data of current release to make prediction for next release, I must be able to determine

3http://www.scitools.com/

87

which module mk in release k is the same module mk+1 in release k+1. This parameter

includes that information. Each line of the file shows mk mk+1.

The Jar file generates a file which includes architectural modules and corresponding

metrics values for each module. that can be used to do the analysis.

5.6.2 Model Construction

The model construction part of the tool is implemented in R. In this section I discuss the

code that I used to build my prediction models. I explained the details of approach in

sections 5.1 and 5.2. The code starts by loading the required libraries:

require(MASS)

require(ROCR)

require(randomForest)

Next I load the input data that was created using the Jar file in the previous section.

(e.g. data for packages in Hive)

change <- read.csv("/Users/Ehsan/Workspace/RData/Data.csv", header = T)

Here I explain the code for building defect prediction models for modules (to build pre-

diction models for other architectural quality metrics, I only need to change the dependent

variable in the code and replace that with one of the dependent variables (SF, DC, CF,

CO and LO) in my study). To build defect prediction models, I choose defect (number of

defects per module) as the dependent variable in the code. For building the model using

NBR, first I need to create the model and then use stepwise regression to select the best

subset of metrics:

summary(m1 <- glm.nb(defects ∼ log2(LOC+1) + log2(NC+1) + log2(CBO+1)

+ log2(DIT+1) + log2(LCM+1) + log2(SCC+1) + log2(CMC+1) + log2(IMC+1)

+ log2(NCF+1) + CO + SF + DC + LO + log2(CMD+1) + log2(OMD+1) +

log2(IMD+1) + log2(XMD+1) + log2(TCMD+1) + log2(TOMD+1), data = change))

I increase the values of independent variables by one before log2 transformation to avoid

encountering log2(0) in case some of the variables are 0. Next I use stepwise regression

88

to avoid the multicollinearity problem and find the best subset of metrics for building

prediction models (for NBR and LR).

step <- stepAIC(m1, direction = "both")

step$anova #display results

For example the results of stepwise regression for Hive packages is:

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

glm.nb(defects ∼ log2(LOC+1) + log2(NC+1) + log2(CBO+1) + log2(DIT+1)

+ log2(LCM+1) + log2(SCC+1) + log2(CMC+1) + log2(IMC+1) + log2(NCF+1)

+ CO + SF + DC + LO + log2(CMD+1) + log2(OMD+1) + log2(IMD+1) +

log2(XMD+1) + log2(TCMD+1) + log2(TOMD+1)

Final Model:

defects ∼ log2(LOC+1) + log2(CBO+1) + log2(LCM+1) + log2(CMC+1) +

log2(OMD+1) + log2(IMD+1) + log2(TOMD+1)

Which shows that LOC, CBO, LCM, CMC, OMD, IMD and TOMD are the optimal

subset of metrics for predicting defects for packages in Hive.

Next I use the optimal set of metrics and populate them in the function that I wrote to

assess the predictive power of models (see 5.2.2).

predictivePowerNBR <- function(train, test)

{

model.glm.nb <- glm.nb(defects ∼ log2(LOC + 1) + log2(CBO + 1) +

log2(LCM + 1) + log2(CMC + 1) + log2(OMD + 1) + log2(IMD + 1) +

log2(TOMD + 1), data = train)

test.prob <- predict(model.glm.nb, test, type = "response")

pred <- prediction(test.prob, test$defects > 0)

auc <- performance(pred, "auc")@y.values[[1]]

return(list(auc = auc))

89

}

predictivePowerNBR function builds a prediction model using train input data and

returns the AUC prediction performance of model by using the test input data.

In the next step, I use the optimal subset of metrics and evaluate the ranking perfor-

mance of prediction:

rankingNBR <- function(train, test)

{

model.glm.nb <- glm.nb(defects ∼ log2(LOC+1) + log2(CBO+1) +

log2(LCM+1) + log2(CMC+1) + log2(OMD+1) + log2(IMD+1) + log2(TOMD+1),

data = train)

test.pred <- predict(model.glm.nb, test, type = "response")

spearman <- cor(test$defects, test.pred, method = "spearman")

spearman.p <- cor.test(test$defects, test.pred, method = "spearman",

exact = FALSE)$p.value

return(list(spearman = spearman, spearman.p = spearman.p))

}

rankingNBR function builds a prediction model using train input data and returns the

ranking performance of model using the test input data.

The procedure for building LR prediction models is similar to NBR except using lm

instead of glm.nb in the above code.

I use all of the metrics for RF without using stepwise regression. The following is the

code for predictive power and ranking functions for RF:

predictivePowerRF <- function (train, test)

{

randomForest <- randomForest(defects ∼ log2(LOC+1) + log2(NC+1) +

log2(CBO+1) + log2(DIT+1) + log2(LCM+1) + log2(SCC+1) + log2(CMC+1)

+ log2(IMC+1) + log2(NCF+1) + CO + SF + DC + LO + log2(CMD+1) +

log2(OMD+1) + log2(IMD+1) + log2(XMD+1) + log2(TCMD+1) + log2(TOMD+1),

90

data=train)

test.prob <- predict(randomForest, test, type="response")

pred <- prediction(test.prob, test$defects>0)

auc <- performance(pred,"auc")@y.values[[1]]

return(list(auc=auc))

}

rankingRF <- function(train, test)

{

randomForest <- randomForest(defects ∼ log2(LOC+1) + log2(NC+1) +

log2(CBO+1) + log2(DIT+1) + log2(LCM+1) + log2(SCC+1) + log2(CMC+1)

+ log2(IMC+1) + log2(NCF+1) + CO + SF + DC + LO + log2(CMD+1) +

log2(OMD+1) + log2(IMD+1) + log2(XMD+1) + log2(TCMD+1) + log2(TOMD+1),

data = train)

test.pred <- predict(randomForest, test, type = "response")

spearman <- cor(test$defects, test.pred, method = "spearman")

spearman.p <- cor.test(test$defects, test.pred, method = "spearman",

exact = FALSE)$p.value

return(list(spearman = spearman, spearman.p = spearman.p))

}

Recall from 5.2.2 that I use data splitting for evaluating the performance of models.

The code below is for k splitting that I invoke it with k = 3 for my experiments. It runs

the experiment for 100 times and returns the average.

dataSplittingPredictivePower <- function(inputData, k, method)

{

counter <- 100

auc <- 0

for (j in 1: counter)

{

91

change2 <- inputData[sample(nrow(inputData)),]

folds <- cut(seq(1, nrow(change2)), breaks = k, labels = FALSE)

#Segement the data by fold using the which() function

testIndexes <- which(folds == 1, arr.ind = TRUE)

testData <- change2[testIndexes,]

trainData <- change2[-testIndexes,]

if (method == "LR")

results <- predictivePowerLR(trainData, testData)

if (method == "NBR")

results <- predictivePowerNBR(trainData, testData)

if (method == "RF")

results <- predictivePowerRF(trainData, testData)

auc <- results$auc + auc

}

print(paste0(" AUC:", auc/counter))

}

This is the code for evaluating the performance of prediction model using data split-

ting. It split the inputData to training and test data and then invokes the appropriate

predictivePower function based on the method (NBR, LR or RF).

Similarly I implemented a method that invokes the ranking functions:

dataSplittingRanking <- function(inputData, k, method)

{

counter <- 100

spearman <- 0

spearman.p <- 0

for (j in 1: counter)

{

change2 <- inputData[sample(nrow(inputData)),]

92

folds <- cut(seq(1,nrow(change2)), breaks = k, labels = FALSE)

#Segement the data by fold using the which() function

testIndexes <- which(folds == 1, arr.ind = TRUE)

testData <- change2[testIndexes,]

trainData <- change2[-testIndexes,]

if (method == "LR")

results <- rankingLR(trainData, testData)

if (method == "NBR")

results <- rankingNBR(trainData, testData)

if (method == "RF")

results <- rankingRF(trainData, testData)

spearman <- results$spearman + spearman

spearman.p <- results$spearman.p + spearman.p

}

print(paste0(method, " spearman: ", spearman/counter, "

spearman.p: ", spearman.p/counter))

}

dataSplittingRanking function splits the input data and invokes the appropriate ranking

method and runs the experiment for 100 times and returns the average result.

These are the commands for invoking dataSplittingPredictivePower and dataSplittin-

gRanking functions:

dataSplittingPredictivePower(change, 3, "LR")

dataSplittingPredictivePower(change, 3, "NBR")

dataSplittingPredictivePower(change, 3, "RF")

dataSplittingRanking(change, 3,"LR")

dataSplittingRanking(change, 3,"NBR")

dataSplittingRanking(change, 3,"RF")

This is the result of the defect prediction models for packages in Hive:

93

> dataSplittingPredictivePower(change, 3, "LR")

[1] " AUC:0.763423051239963"

> dataSplittingPredictivePower(change, 3, "NBR")

[1] " AUC:0.835438933833255"

> dataSplittingPredictivePower(change, 3, "RF")

[1] " AUC:0.82699183813707"

> dataSplittingRanking(change, 3,"LR")

[1] "lm spearman: 0.567862954885859 spearman.p: 0.000641306444207375"

> dataSplittingRanking(change, 3,"NBR")

[1] "glm.nb spearman: 0.678524030390626 spearman.p:

8.12849987046284e-07"

> dataSplittingRanking(change, 3,"RF")

[1] "randomForest spearman: 0.637010274169935 spearman.p:

1.95707472862749e-06"

These results show the performance of the prediction models. We can use the models

to show the prediction values instead of the performance of models. For example table 5.2

shows the actual and predicted values of CF for packages in HBase. Now I explain how to

use the models to show the prediction values. Suppose that version 0.8.1 of Hive project

is just released and we want to predict the number of defects for packages for that version.

First I build the prediction model using the available data of previous releases (Here I use

the data for versions 0.3.0, 0.4.1, 0.5.0, 0.6.0, and 0.7.0. The train data set includes the

data for all of the dependent and independent variables for above releases:

trainData <- read.csv("/Users/Ehsan/Workspace/RData/trainData.csv",

header = T)

Next I extract that data for independent variables for version 0.8.1 (since I want to

predict the values of dependent variables) and put them in the test data set:

testData <- read.csv("/Users/Ehsan/Workspace/RData/testData.csv",

header = T)

94

After using the step wise regression on the train data set, I build the model using the

best subset of metrics:

modelNBR <- glm.nb(defects ∼ log2(LOC+1) + log2(CBO+1) + log2(LCM+1)

+ log2(CMC+1) + log2(OMD+1) + log2(IMD+1) + log2(TOMD+1), data =

trainData)

Now I use the model to predict the number of defects for modules in test data:

prediction <- predict(modelNBR, testData, type = "response")

testData$predictedDefects <- round(prediction)

testData[, c("Name", "predictedDefects")]

The results are shown in table 5.4

Likewise if I want to predict other architectural quality metrics, I just need to build the

model using the dependent variable for that architectural quality metric. For example for

predicting to see which of the packages in version 0.8.1 of Hive would have architectural

smell of LO, I change the dependent variable of defects with LO. After running the step

wise regression on the train data set, I build the model for predicting LO using best subset

of metrics:

modelNBR <- glm.nb(LOnextRelease ∼ log2(NC+1) + log2(IMC+1) +

log2(NCF+1) + DC + LO + log2(XMD+1) + log2(TOMD+1), data = trainData)

Now I can use the model to predict which packages have LO:

prediction <- predict(modelNBR, testData, type = "response")

testData$predictedLO <- round(prediction)

testData[, c("Name", "predictedLO")]

Table 5.4 shows the packages in version 0.8.1 of Hive and the predicted values of defects

and LO for each package.

95

Table 5.4: Prediction of Defects and LO for Packages in Hive (Version 0.8.1)

Name predicted defects predicted LO

org.apache.hadoop.hive.service 0 0
org.apache.hadoop.hive.serde2.objectinspector 0 1
org.apache.hadoop.hive.serde2 0 1
org.apache.hadoop.hive.serde2.lazybinary 0 0
org.apache.hadoop.hive.ql.optimizer.unionproc 0 0
org.apache.hadoop.hive.ql.optimizer.physical 1 0
org.apache.hadoop.hive.thrift.client 0 0
org.apache.hadoop.hive.metastore.api 1 1
org.apache.hadoop.hive.ql.processors 0 0
org.apache.hadoop.hive.conf 6 1
org.apache.hadoop.hive.ql.udf.generic 2 0
org.apache.hadoop.hive.serde2.thrift 0 0
org.apache.hadoop.hive.ql.index.compact 1 0
org.apache.hadoop.hive.ql.index 0 0
org.apache.hadoop.hive.metastore 10 0
org.apache.hadoop.hive.ql.optimizer 6 0
org.apache.hadoop.hive.shims 4 0
org.apache.hadoop.hive.serde2.objectinspector.primitive 0 1
org.apache.hadoop.hive.ql.io.rcfile.merge 0 0
org.apache.hadoop.hive.ql.stats.jdbc 1 0
org.apache.hadoop.hive.jdbc 1 0
org.apache.hadoop.hive.ql.exec 27 1
org.apache.hadoop.hive.serde2.lazy 0 0
org.apache.hadoop.hive.ql.plan 4 1
org.apache.hadoop.hive.ql 1 0
org.apache.hadoop.hive.ql.lockmgr.zookeeper 1 0
org.apache.hadoop.hive.hbase 1 0
org.apache.hadoop.hive.ql.parse 6 1
org.apache.hadoop.hive.serde2.typeinfo 0 0
org.apache.hadoop.hive.ql.metadata 3 1
org.apache.hadoop.hive.serde2.dynamic type 0 0
org.apache.hadoop.hive.ql.session 1 0
org.apache.hadoop.hive.ql.io 4 0
org.apache.hadoop.hive.thrift 6 0

96

Chapter 6: Challenges and Suggestions for the Community

In this section, I describe the challenges and limitations I faced throughout my research

followed by some suggestions for the community.

6.1 Challenges and Limitations

I briefly discuss some of the challenges of software architecture-based empirical studies in

this section.

6.1.1 The Lack of the Availability of Software Architecture Information

The first and most important problem to conduct software architecture-based empirical

research is the lack of availability of software architecture information for software systems.

Buse and Zimmermann conducted an study in which they surveyed 110 developers and

managers at Microsoft about the data and analysis needs of professional software engineers

[17]. In one part of their study, they asked the participants about a number of popular

artifacts and metrics (e.g. bug reports, code clones, dependencies, architecture, change

type, test coverage, ownership, etc.) and whether they currently use it or if they would use

it if it was made available. More than 95% of developers said that they would use software

architecture information (highest ranked) if it is made available to them while only 30% of

them said they currently use software architecture information. This clearly shows that the

reason that most of the developers do not use architecture information is due to the lack of

availability of it, although most of them want to benefit from it.

One reason for this lack of information about software architecture could be based on the

fact that developers and other stakeholders in a project do not see the benefits of spending

time and resources for up-front architectural design. This is more valid in the software

97

development environments that use agile processes, which has become more common in

recent years. To maximize agility, agile developers often avoid or minimize architectural

planning since architectural planning often seen as delivering little values to customers [3].

In many companies, e.g. start-up companies, the top priority is to develop the business

idea and deliver the product as quickly as possible. Instead of putting so much effort for

up-front designing of architecture that is scalable to millions of users, they rather have

the software ready for a smaller crowd as quickly as possible to make sure not to lose the

business [104]. Later when they have millions of users, they would deal with the scalability

issues and may have to rewrite most of the code and replace the architecture completely.

My research can be very beneficial to agile developers as they can use the decay prediction

models for identifying the architectural problems and refactoring the code.

6.1.2 Tracing Defects to Architecture

One of the key factors for doing research in defect prediction and change impact analysis is

the ability to identify the files/modules that contain defects. When facing a problem and

failure in a software system, usually a developer or a user opens an issue in an issue tracking

system e.g. Bugzilla or Jira. It is recommended that when a developer makes some changes

to one or more files to fix an issue, he/she should include the related issue number that

is trying to fix along with the commit in the source version repository. That enables us

to trace the failure to its source and identify which parts of the code contains defects and

are responsible for that failure. This practice is forced in some open source projects (e.g.

Apache Foundation). Another approach is to search in the commit logs for specific tokens

like bugs, fixes and defects followed by a number.

For conducting such a study at architectural level one needs to know which architec-

tural modules contain defects. One way to do this is to find the files involved in defects

as explained above and then consider the architectural modules that include those files as

faulty. This requires having the information that for each file in the system, what architec-

tural module contains it. The problem is that often architectural documentation does not

98

exist (e.g. in open source projects) or even if there are some documents regarding software

architecture, they show the high level structure of the system and do not explicitly contain

the information regarding the exact location of each file in architectural modules in the

system. That is why we need to have an approach for extracting the architectural module

information from the source code which include the location of each file in those modules

as well.

6.1.3 Obtaining Architectural Modules

Architecture recovery is the process of extracting architecture from source code and as ex-

plained before, is essential for doing architectural related empirical studies. Architectural

recovery is also needed for architectural decay investigation, since we need to recover the ar-

chitecture of a system throughout its evolution. Although there have been many approaches

for architectural recovery [29], not all of them are applicable to use when conducting em-

pirical studies. In empirical studies one needs to evaluate hypotheses on multiple software

systems in which he/she probably is not familiar with the domain and the code. Therefore

manual architectural recovery techniques are not suitable here.

My experience with automatic recovery techniques is that I could not easily access some

of the available tools and for some cases I had to contact the authors of the tools to have

access to them. Also I observed that different tools often generate different architectural

modules for the same system. This makes it harder for the researcher or practitioner to

choose which tools to use. One recent study showed that although there have been a lot of

research in architectural recovery, there is still a dire need to have more accurate recovery

techniques [65].

For addressing this problem I used different architectural recovery techniques:

Bunch [71], ArchDRH [18], ACDC [101] and ARC [44] in my research. This is in line

with the fact that comprehending the architecture and architecturally significant issues of

any complex systems requires looking at the architecture from different perspectives [7,59].

These perspectives are known as architectural views, each dealing with a separate concern

99

and different recovery techniques represents different architectural views. According to

Clements et al. [22] three view types are commonly used to represent the architecture of a

system: Module View, Component-and-Connector View, and Allocation View. Module View

shows units of implementation, Component-and-Connector View represents a set of elements

that have runtime behavior and interactions, and Allocation View shows the relationship

between software and non-software resources of development (e.g., team of developers) and

execution environment (e.g., hardware elements).

I also used package structuring of a system since The package structure of a system can

be treated as a proxy for the decomposition of the system into architecturally significant

elements, as packages are created by the developers of the system.

6.2 Opportunities and Suggestions

In this section, I provide some suggestions about research opportunities that would benefit

the community.

6.2.1 Creating a Repository for Software Architecture

As I discussed before, the biggest challenge for conducting software architectural empirical

studies is the lack of availability of software architecture for software systems especially open

source systems. This means that every researcher and practitioner has to use different re-

covery techniques to recover the architecture of the systems he wants to study. A designated

repository that holds the architecture information of different systems could have numerous

benefits for the community. First, researchers do not need to recover the architecture of

the same system from scratch and repeating the same thing over and over again. They can

refer to the repository and use the architecture of the systems available there. This also

results in having different architectural views for a system and researchers and practitioners

could use the view that is most appropriate for their research. Architects and developers of

open source software systems can put the ground-truth architecture of the systems in the

repository which would be a valuable source of information for the community.

100

6.2.2 A Comprehensive Tool Suite for Architecture Recovery

A tool suite that contains all the existing well-known recovery techniques can tremendously

benefit the community. Researchers and practitioners can use the tool without wasting time

trying to find and educate themselves about different techniques. They can recover multiple

architectural views of the system under the study and use the ones that are suitable for

their needs. Another important factor is the ability to add new recovery techniques to the

tool. The tool should provide some facility that makes it easy for the researchers to be able

to add their recovery techniques to the tool.

6.2.3 Bringing Software Architecture to Software Engineers’ Every Day

Life

One of the most important contributions in this field is to make sure that developers and

other stakeholders realize the importance of having software architecture information and

how they can benefit from it. The important challenge here is that how we can incorporate

software architecture in the tools and other resources that developers and other stakeholders

use daily. For example by having architectural information in IDEs, developers can monitor

the impact of their changes on the architecture while committing their code. We should

facilitate the infrastructure in version control systems and issue tracking systems that it

makes it easy for the developers to log the architectural changes and architectural problems

in the system. We should embed architectural information in defect prediction models so

we can avoid making the changes that would lead to architectural problems in software

systems.

Software architecture information and architectural-level prediction models would enable

the architect to make informed decisions for designing the architecture of a system or

selecting the appropriate architecture from different architectural choices. They can also be

used in architecture-based adaptation, which is the process of reasoning about and adapting

a systems software at the architectural level [57, 80]. Architecture-based adaptation is

used to satisfy quality objectives such as reliability of a system [24] based on different

101

architectural configurations or in presence of uncertainty in a system [35].

Having architectural information is vital in addressing technical debt. Technical debt

metaphor is widely used to encapsulate numerous software quality problems. A recent

study showed that architectural decisions are the most important source of technical debts

[34] and the authors suggested that the research in technical debt tooling should focus on

monitoring the gap between development and architecture. Architectural decay prediction

models can be used to address technical debt as we can use them avoid making changes

that would result in architectural decay.

Another place that can benefit from software architecture is in code review. Baccehelli

and Bird survey developers and managers about motivations, challenges and outcomes of

tool-based code reviews and found that while finding defects remain the main motivation

for code review, reviews are less about defects than expected and instead provide additional

benefits such as knowledge transfer, increased team awareness and creation of alternative

solutions to problems [5] By incorporating architecture in code review tools, we can have

architects review the code when it would result in a major architectural change. Having

the architectural models and documents can help developers with knowledge transfer and

understanding the code and the system especially when the original developers are not

involved in the project anymore. It is worth nothing that architectural models can include

other design related information too e.g. knowledge about design patters used in the projects

[56, 96] or using techniques and tools that can identify architectural tactics in the system

[69,70].

102

Chapter 7: Conclusion

Conventional wisdom suggests that a software system’s architecture plays an important role

in its evolution and maintenance, in particular the ease with which changes can be made to

that system. In this dissertation, I have tried to collect empirical evidence as to the role of

software architecture in the evolution of a software system. In this chapter I conclude my

dissertation by summarizing the findings and the contributions of my research and avenues

for future work.

Chapter 4 reports on an empirical study that aims to provide concrete evidence of the

impact of architecture on the quality of software during its evolution. Although several

studies have used the co-change history to build defect prediction models, no prior study

investigated the impact of co-changes involving several architectural modules versus co-

changes localized within a single module. In the absence of explicit architectural models

in open-source projects, to conduct this study I used surrogate models that approximate

the architecture of a system. My findings show that co-changes that crosscut multiple

architectural modules are more correlated with defects than co-changes that are localized

in the same module. I also arrived at the same conclusion when I performed the study using

a commercial project, as well as an open-source project with a documented architecture.

My study corroborates the importance of considering software architecture as one of the

key factors affecting the quality of a changing software system. I am formulating a research

agenda that aims to correlate the revision/defect history of software with its architecture

to shed light on the root cause of problems. The insight in my research is that predicting

where defects are likely to occur, which has received much attention in the past decade, is

not as useful to the developers as helping them understand why they occur. To that end, I

believe architecture provides an appropriate level of granularity for understanding the root

cause of a large class of defects that are due to bad architectural choices.

103

Chapter 5 discusses my approach for addressing architectural decay. Architectural de-

cay is a phenomenon of software systems that leads to defects and increases maintenance

time and effort. To address this issue, I constructed models for predicting three types of

architectural decay: architectural defects, architectural smells, and modularization quality.

For 40 versions of five software systems, I can predict architectural decay with high per-

formance across two architectural views—one semantic view and another structural view.

Even when architectural smells suddenly emerge in a module, I can predict these rare cases

with high performance (AUC of 0.79-0.96). I further discovered that architectural smells

tend to remain in modules once they emerge. Lastly, I discovered that a wide variety of

metrics—of which file-level metrics are only a subset—are needed to predict architectural

decay.

7.1 Contributions

The following is a concrete list of contributions of this research:

• Fundamental contribution to software architecture-based empirical re-

search: Due to some limitations that I described in section 6.1, there is a limited

number of empirical studies with the focus of software architecture. My research in-

cludes a methodology on how to benefit from software architecture information in

empirical studies and how to explore the impact of software architecture on evolu-

tion of software systems especially open source projects where mostly there is no

documented architecture.

• Presenting new architectural-level metrics: As part of my thesis, I proposed

new metrics that distinguishes between the types of co-changes by considering software

architecture and I empirically showed that using those metrics would enable us to

identify architectural problems and develop more accurate defect prediction models.

• Architectural quality prediction:

104

I proposed and empirically evaluated an approach for constructing models to predict

architectural quality and decay in a software systems. My approach utilizes multiple

file-level and architectural-level metrics (including architectural bad smell metrics)

and can be used predict different architectural-quality metrics.

• Tool: I implemented a tool that can be used to collect and aggregate multiple file-

level and architectural-level metrics and use the data to build architectural quality

prediction models that can effectively predict architectural decay in software systems.

This tool is implemented in Java and R.

7.2 Future Work

In the future, I intend to move beyond prediction of architectural decay by determining

the specific actions that can be taken to prevent decay once it occurs. One possible direc-

tion is the utilization of the important factors of our prediction models to identify specific

preventative measures. As an example, a promising possibility is applying architectural

restructurings that removes architectural bad smells e.g. dependency cycle. Once such

preventive measures are applied, I can perform further assessment. For example, I can con-

duct a study to examine whether engineers can more quickly or easily perform maintenance

tasks, after restructurings are applied.

Another promising future work is to embed the architectural quality prediction technique

in development tools such as IDEs, code review and technical debt tools to help software

engineers with maintaining software systems.

105

Bibliography

106

Bibliography

[1] CRAN - Package MASS. http://cran.r-project.org/web/packages/MASS/index.html.

[2] CRAN - Package randomForest. http://cran.r-
project.org/web/packages/randomForest/index.html.

[3] Abrahamsson, P., Babar, M. A., and Kruchten, P. Agility and architecture:
Can they coexist? IEEE Softw. 27, 2 (Mar. 2010), 16–22.

[4] Allen, E., and Khoshgoftaar, T. Measuring coupling and cohesion: an
information-theory approach. In Software Metrics Symposium, 1999. Proceedings.
Sixth International (1999), pp. 119–127.

[5] Bacchelli, A., and Bird, C. Expectations, outcomes, and challenges of mod-
ern code review. In Proceedings of the 2013 International Conference on Software
Engineering (San Francisco, CA, USA, 2013), ICSE ’13, pp. 712–721.

[6] Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and Bernstein, A. The
missing links: bugs and bug-fix commits. In 18th ACM SIGSOFT international
symposium on Foundations of software engineering (Santa Fe, New Mexico, Nov.
2010), FSE ’10, ACM, pp. 97–106.

[7] Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, 2 ed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[8] Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., and
De Lucia, A. An Empirical Study on the Developers’ Perception of Software Cou-
pling. In Proceedings of the 2013 International Conference on Software Engineering
(San Francisco, CA, USA, May 2013), ICSE ’13, IEEE Press, pp. 692–701.

[9] Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., and De Lucia,
A. Improving Software Modularization via Automated Analysis of Latent Topics and
Dependencies. Accepted to appear in ACM Transactions on Software Engineering and
Methodology (TOSEM).

[10] Beck, F., and Diehl, S. Evaluating the Impact of Software Evolution on Soft-
ware Clustering. In 17th Working Conference on Reverse Engineering (Beverly, Mas-
sachusetts, Oct. 2010), pp. 99–108.

[11] Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent Dirichlet Allocation. J. Mach.
Learn. Res. 3 (Mar. 2003), 993–1022.

107

[12] Bouwers, E., van Deursen, A., and Visser, J. Quantifying the Encapsulation
of Implemented Software Architectures. In 30th IEEE International Conference on
Software Maintenance and Evolution (ICSME) (Victoria, BC, Canada, Oct. 2014),
pp. 211–220.

[13] Breu, S., and Zimmermann, T. Mining Aspects from Version History. In 21st
IEEE/ACM International Conference on Automated Software Engineering (Tokyo,
Japan, Sept. 2006), pp. 221–230.

[14] Briand, L., Morasca, S., and Basili, V. Measuring and assessing maintain-
ability at the end of high level design. In Proceedings of the Conference on Software
Maintenance (Montreal, Canada, Sept. 1993).

[15] Briand, L. C., Wust, J., Daly, J. W., and Victor Porter, D. Exploring
the relationships between design measures and software quality in object-oriented
systems. Journal of Systems and Software 51, 3 (May 2000), 245–273.

[16] Brunet, J., Bittencourt, R. A., Serey, D., and Figueiredo, J. On the
evolutionary nature of architectural violations. In Reverse Engineering (WCRE),
2012 19th Working Conference on (2012), IEEE.

[17] Buse, R. P. L., and Zimmermann, T. Information needs for software development
analytics. In Proceedings of the 34th International Conference on Software Engineer-
ing (Zurich, Switzerland, 2012), ICSE ’12, pp. 987–996.

[18] Cai, Y., Wang, H., Wong, S., and Wang, L. Leveraging design rules to improve
software architecture recovery. In Proceedings of the 9th international ACM Sig-
soft conference on Quality of software architectures (Vancouver, Canada, June 2013),
QoSA ’13, ACM, pp. 133–142.

[19] Cataldo, M., Mockus, A., Roberts, J., and Herbsleb, J. Software Depen-
dencies, Work Dependencies, and Their Impact on Failures. IEEE Transactions on
Software Engineering 35, 6 (2009), 864–878.

[20] Chen, C., Liaw, A., and Breiman, L. Using random forest to learn imbalanced
data. Tech. rep., University of California, Berkeley, Statistics Department, 2004.

[21] Chidamber, S. R., and Kemerer, C. F. A Metrics Suite for Object Oriented
Design. IEEE Trans. Softw. Eng. 20, 6 (June 1994), 476–493.

[22] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.,
Merson, P., Nord, R., and Stafford, J. Documenting Software Architectures:
Views and Beyond. Pearson Education, Oct. 2010.

[23] Cohen, J., and Cohen, J. Applied multiple regression/correlation analysis for the
behavioral sciences. L. Erlbaum Associates, Mahwah, N.J., 2003.

[24] Cooray, D., Kouroshfar, E., Malek, S., and Roshandel, R. Proactive self-
adaptation for improving the reliability of mission-critical, embedded, and mobile
software. IEEE Transactions on Software Engineering 39, 12 (Dec 2013), 1714–1735.

108

[25] Corazza, A., Di Martino, S., Maggio, V., and Scanniello, G. Investigating
the use of lexical information for software system clustering. In Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on (March 2011), pp. 35–
44.

[26] D’Ambros, M., Gall, H., Lanza, M., and Pinzger, M. Analysing software
repositories to understand software evolution. Springer, 2008.

[27] D’Ambros, M., Lanza, M., and Robbes, R. On the Relationship Between Change
Coupling and Software Defects. In 16th Working Conference on Reverse Engineering
(Lille, France, Oct. 2009), pp. 135–144.

[28] D’Ambros, M., Lanza, M., and Robbes, R. An extensive comparison of bug
prediction approaches. In 7th IEEE Working Conference on Mining Software Repos-
itories (Cape Town, South Africa, May 2010), pp. 31–41.

[29] Ducasse, S., and Pollet, D. Software architecture reconstruction: A process-
oriented taxonomy. IEEE Trans. Softw. Eng. 35, 4 (July 2009), 573–591.

[30] Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy, G., Nagap-
pan, N., and Aho, A. Do Crosscutting Concerns Cause Defects? IEEE Transactions
on Software Engineering 34, 4 (2008), 497–515.

[31] Eick, S., Graves, T., Karr, A., Marron, J., and Mockus, A. Does code
decay? Assessing the evidence from change management data. IEEE Transactions
on Software Engineering 27, 1 (Jan. 2001), 1–12.

[32] Eick, S., Graves, T., Karr, A., Mockus, A., and Schuster, P. Visualizing
software changes. IEEE Transactions on Software Engineering 28, 4 (2002), 396–412.

[33] El Emam, K., Benlarbi, S., Goel, N., and Rai, S. The confounding effect of
class size on the validity of object-oriented metrics. IEEE Transactions on Software
Engineering 27, 7 (July 2001), 630–650.

[34] Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I. Measure
it? manage it? ignore it? software practitioners and technical debt. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,
Italy, 2015), ESEC/FSE 2015, ACM, pp. 50–60.

[35] Esfahani, N., Kouroshfar, E., and Malek, S. Taming uncertainty in self-
adaptive software. In Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering (Szeged, Hungary,
2011), ESEC/FSE ’11, ACM, pp. 234–244.

[36] Farrar, D. E., and Glauber, R. R. Multicollinearity in regression analysis: The
problem revisited. The Review of Economics and Statistics 49, 1 (1967), pp. 92–107.

[37] Figueiredo, E., Silva, B., Sant’Anna, C., Garcia, A., Whittle, J., and
Nunes, D. Crosscutting patterns and design stability: An exploratory analysis. In
IEEE 17th International Conference on Program Comprehension, 2009. ICPC ’09
(Vancouver, Canada, May 2009), pp. 138–147.

109

[38] Gall, H., Hajek, K., and Jazayeri, M. Detection of logical coupling based
on product release history. In International Conference on Software Maintenance
(Bethesda, Maryland, Nov. 1998), pp. 190–198.

[39] Garcia, J. A unified framework for studying architectural decay of software systems.
PhD thesis, University of Southern California, 2014.

[40] Garcia, J., Ivkovic, I., and Medvidovic, N. A comparative analysis of software
architecture recovery techniques. In IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE) (Palo Alto, CA, USA, Nov. 2013), pp. 486–
496.

[41] Garcia, J., Krka, I., Mattmann, C., and Medvidovic, N. Obtaining ground-
truth software architectures. In Proceedings of the International Conference on Soft-
ware Engineering (San Francisco, CA, USA, May 2013), ICSE ’13, IEEE Press,
pp. 901–910.

[42] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. Identifying Ar-
chitectural Bad Smells. In 13th European Conference on Software Maintenance and
Reengineering (Kaiserslautern, Germany, Mar. 2009), pp. 255–258.

[43] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. Toward a Cata-
logue of Architectural Bad Smells. In Proceedings of the 5th International Conference
on the Quality of Software Architectures: Architectures for Adaptive Software Systems
(East Stroudsburg, PA, USA, June 2009), QoSA ’09, Springer-Verlag, pp. 146–162.

[44] Garcia, J., Popescu, D., Mattmann, C., Medvidovic, N., and Cai,
Y. Enhancing Architectural Recovery Using Concerns. In Proceedings of the
26th IEEE/ACM International Conference on Automated Software Engineering
(Lawrence, KS, USA, Nov. 2011), ASE ’11, IEEE Computer Society, pp. 552–555.

[45] Gethers, M., and Poshyvanyk, D. Using Relational Topic Models to capture cou-
pling among classes in object-oriented software systems. In IEEE International Con-
ference on Software Maintenance (ICSM) (Timisoara, Romania, Sept. 2010), pp. 1–10.

[46] Graves, T., Karr, A., Marron, J., and Siy, H. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering 26, 7 (2000),
653–661.

[47] Hassaine, S., Guéhéneuc, Y., Hamel, S., and Antoniol, G. Advise: Archi-
tectural decay in software evolution. In Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on (2012), IEEE.

[48] Hassan, A. E. Predicting faults using the complexity of code changes. In 31st
International Conference on Software Engineering (Vancouver, Canada, May 2009),
ICSE ’09, IEEE Computer Society, pp. 78–88.

[49] Hochstein, L., and Lindvall, M. Combating architectural degeneration: a survey.
Inf. Softw. Technol. 47, 10 (July 2005), 643–656.

110

[50] Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.-i., Adams, B., and
Hassan, A. E. Revisiting Common Bug Prediction Findings Using Effort-aware
Models. In Proceedings of the 2010 IEEE International Conference on Software Main-
tenance (Timisoara, Romania, Sept. 2010), ICSM ’10, IEEE Computer Society, pp. 1–
10.

[51] Kim, S., Whitehead, E., and Zhang, Y. Classifying Software Changes: Clean or
Buggy? IEEE Transactions on Software Engineering 34, 2 (2008), 181–196.

[52] Kobayashi, K., Kamimura, M., Kato, K., Yano, K., and Matsuo, A. Feature-
gathering dependency-based software clustering using dedication and modularity. In
Software Maintenance (ICSM), 2012 28th IEEE International Conference on (Sept
2012), pp. 462–471.

[53] Kouroshfar, E. Studying the effect of co-change dispersion on software quality. In
Proceedings of the International Conference on Software Engineering, ACM Student
Research Competition Track, (San Francisco, CA, USA, 2013), ICSE ’13, IEEE Press,
pp. 1450–1452.

[54] Kouroshfar, E., Garcia, J., and Malek, S. Architectural decay prediction
from evolutionary history of software. Submitted to IEEE Transactions on Software
Engineering (2016).

[55] Kouroshfar, E., Mirakhorli, M., Bagheri, H., Xiao, L., Malek, S., and
Cai, Y. A study on the role of software architecture in the evolution and qual-
ity of software. In Proceedings of the 12th Working Conference on Mining Software
Repositories (Florence, Italy, 2015), MSR ’15, IEEE Press, pp. 246–257.

[56] Kouroshfar, E., Yaghoubi Shahir, H., and Ramsin, R. Process patterns for
component-based software development. In Proceedings of the 12th International
Symposium on Component-Based Software Engineering (East Stroudsburg, PA, USA,
2009), CBSE ’09, Springer-Verlag, pp. 54–68.

[57] Kramer, J., and Magee, J. Self-managed systems: an architectural challenge. In
Int’l Conf. on Software Engineering (Minneapolis, Minnesota, May 2007), pp. 259–
268.

[58] Kruchten, P. The 4+1 view model of architecture. Software, IEEE 12, 6 (Nov
1995), 42–50.

[59] Kruchten, P. Architecture blueprints–the ’4+1’ view model of software architecture.
In Tutorial Proceedings on Ada’s Role in Global Markets: solutions for a changing
complex world (Anaheim, CA, USA, Nov. 1995), TRI-Ada ’95, ACM, pp. 540–555.

[60] Le, D., Behnamghader, P., Garcia, J., Link, D., Shahbazian, A., and Med-
vidovic, N. An empirical study of architectural change in open-source software
systems. To appear in the 12th Working Conference on Mining Software Repositories
(2015).

111

[61] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. Benchmarking Classi-
fication Models for Software Defect Prediction: A Proposed Framework and Novel
Findings. IEEE Transactions on Software Engineering 34, 4 (July 2008), 485–496.

[62] Leszak, M., Perry, D., and Stoll, D. A case study in root cause defect analysis.
In International Conference on Software Engineering (Limerick, Ireland, June 2000),
pp. 428–437.

[63] Li, Z., Gittens, M., Murtaza, S., Madhavji, N., Miranskyy, A., Godwin, D.,
and Cialini, E. Analysis of pervasive multiple-component defects in a large software
system. In IEEE International Conference on Software Maintenance (Edmonton,
Alberta, Sept. 2009), pp. 265–273.

[64] Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovic,
N., and Kroeger, R. Comparing software architecture recovery techniques us-
ing accurate dependencies. In Proceedings of the 37th International Conference on
Software Engineering (2015).

[65] Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidović,
N., and Kroeger, R. Comparing software architecture recovery techniques us-
ing accurate dependencies. In Proceedings of the 37th International Conference on
Software Engineering - Volume 2 (Florence, Italy, 2015), ICSE ’15, pp. 69–78.

[66] Martin, R. C., and Martin, M. Agile principles, patterns, and practices in C#.
Prentice Hall, Upper Saddle River, NJ, 2007.

[67] Menzies, T., Greenwald, J., and Frank, A. Data Mining Static Code Attributes
to Learn Defect Predictors. IEEE Transactions on Software Engineering 33, 1 (2007),
2–13.

[68] Mirakhorli, M., Carvalho, J., Cleland-Huang, J., and Mader, P. A
Domain-Centric Approach for Recommending Architectural Tactics to Satisfy Qual-
ity Concerns. In Third International Workshop on the Twin Peaks of Requirements
and Architecture (Rio de Janeiro, Brazil, July 2013), pp. 1–8.

[69] Mirakhorli, M., Fakhry, A., Grechko, A., Wieloch, M., and Cleland-
Huang, J. Archie: A tool for detecting, monitoring, and preserving architecturally
significant code. In Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (Hong Kong, China, 2014), FSE 2014,
pp. 739–742.

[70] Mirakhorli, M., Shin, Y., Cleland-Huang, J., and Cinar, M. A tactic-centric
approach for automating traceability of quality concerns. In Proceedings of the 34th
International Conference on Software Engineering (Zurich, Switzerland, 2012), ICSE
’12, pp. 639–649.

[71] Mitchell, B., and Mancoridis, S. On the automatic modularization of software
systems using the Bunch tool. IEEE Transactions on Software Engineering 32, 3
(2006), 193–208.

112

[72] Mo, R., Cai, Y., Kazman, R., and Xiao, L. Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture (WICSA) (May 2015), pp. 51–60.

[73] Mockus, A., and Weiss, D. M. Predicting risk of software changes. Bell Labs
Technical Journal 5, 2 (2000), 169–180.

[74] Murphy, G., Notkin, D., and Sullivan, K. Software reflexion models: Bridging
the gap between design and implementation. IEEE TSE 27, 4 (2001), 364–380.

[75] Nagappan, N., and Ball, T. Use of relative code churn measures to predict system
defect density. In 27th International Conference on Software Engineering (St. Louis,
Missouri, May 2005), pp. 284–292.

[76] Nagappan, N., and Ball, T. Using Software Dependencies and Churn Metrics to
Predict Field Failures: An Empirical Case Study. In First International Symposium
on Empirical Software Engineering and Measurement (Madrid, Spain, Sept. 2007),
pp. 364–373.

[77] Nagappan, N., Ball, T., and Zeller, A. Mining Metrics to Predict Component
Failures. In Proceedings of the 28th International Conference on Software Engineering
(Shanghai, China, May 2006), ICSE ’06, ACM, pp. 452–461.

[78] Nagappan, N., Murphy, B., and Basili, V. The Influence of Organizational
Structure on Software Quality: An Empirical Case Study. In Proceedings of the 30th
International Conference on Software Engineering (Leipzig, Germany, May 2008),
ICSE ’08, ACM, pp. 521–530.

[79] Offutt, J., Abdurazik, A., and Schach, S. R. Quantitatively measuring object-
oriented couplings. Software Quality Journal 16, 4 (Dec. 2008), 489–512.

[80] Oreizy, P., Medvidovic, N., and Taylor, R. N. Architecture-based runtime
software evolution. In Int’l Conf. on Software Engineering (Kyoto, Japan, Apr. 1998),
pp. 177–186.

[81] Ostrand, T., Weyuker, E., and Bell, R. Predicting the location and number
of faults in large software systems. IEEE Transactions on Software Engineering 31,
4 (2005), 340–355.

[82] Perry, D. E., and Wolf, A. L. Foundations for the Study of Software Architecture.
SIGSOFT Softw. Eng. Notes 17, 4 (Oct. 1992), 40–52.

[83] Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimthy, T. Using Information
Retrieval Based Coupling Measures for Impact Analysis. Empirical Softw. Engg. 14,
1 (Feb. 2009), 5–32.

[84] Posnett, D., D’Souza, R., Devanbu, P., and Filkov, V. Dual Ecological
Measures of Focus in Software Development. In Proceedings of the 2013 International
Conference on Software Engineering (San Francisco, CA, USA, May 2013), ICSE ’13,
IEEE Press, pp. 452–461.

113

[85] Praditwong, K., Harman, M., and Yao, X. Software module clustering as a
multi-objective search problem. Software Engineering, IEEE Transactions on 37, 2
(March 2011), 264–282.

[86] Prinzie, A., and Van den Poel, D. Random multiclass classification: Generalizing
random forests to random mnl and random nb. In Database and Expert Systems
Applications, R. Wagner, N. Revell, and G. Pernul, Eds., vol. 4653 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, pp. 349–358.

[87] Rahman, F., and Devanbu, P. Ownership, experience and defects: a fine-grained
study of authorship. In Proceedings of the 33rd International Conference on Software
Engineering (Honolulu, Hawaii, May 2011), pp. 491–500.

[88] Rahman, F., and Devanbu, P. How, and Why, Process Metrics Are Better. In
Proceedings of the 2013 International Conference on Software Engineering (San Fran-
cisco, CA, USA, May 2013), ICSE ’13, IEEE Press, pp. 432–441.

[89] Rosik, J., Le Gear, A., Buckley, J., Babar, M. A., and Connolly, D. As-
sessing architectural drift in commercial software development: a case study. Software:
Practice and Experience (2011).

[90] Sangwan, R. S., Vercellone-Smith, P., and Neill, C. J. Use of a multidimen-
sional approach to study the evolution of software complexity. Innovations in Systems
and Software Engineering (2010).

[91] Sant’Anna, C., Figueiredo, E., Garcia, A., and Lucena, C. On the modu-
larity of software architectures: A concern-driven measurement framework. In Soft-
ware Architecture, F. Oquendo, Ed., vol. 4758 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 207–224.

[92] Sarkar, S., Kak, A., and Rama, G. Metrics for measuring the quality of modu-
larization of large-scale object-oriented software. Software Engineering, IEEE Trans-
actions on 34, 5 (Sept 2008), 700–720.

[93] Sarkar, S., Rama, G., and Kak, A. Api-based and information-theoretic metrics
for measuring the quality of software modularization. Software Engineering, IEEE
Transactions on 33, 1 (Jan 2007), 14–32.

[94] Schroter, A., Zimmermann, T., and Zeller, A. Predicting Component Failures
at Design Time. In Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering (Rio de Janeiro, Brazil, Sept. 2006), ISESE ’06, ACM,
pp. 18–27.

[95] Schwanke, R., Xiao, L., and Cai, Y. Measuring architecture quality by structure
plus history analysis. In Proceedings of the 2013 International Conference on Software
Engineering (San Francisco, CA, USA, May 2013), ICSE ’13, IEEE Press, pp. 891–
900.

[96] Shahir, H., Kouroshfar, E., and Ramsin, R. Using design patterns for refactor-
ing real-world models. In 35th Euromicro Conference on Software Engineering and
Advanced Applications, 2009. SEAA ’09. (Aug 2009), pp. 436–441.

114

[97] Shihab, E., Mockus, A., Kamei, Y., Adams, B., and Hassan, A. E. High-
impact defects: a study of breakage and surprise defects. In 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering
(Szeged, Hungary, Sept. 2011), ESEC/FSE ’11, ACM, pp. 300–310.

[98] Sliwerski, J., Zimmermann, T., and Zeller, A. When do changes induce fixes?
SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1–5.

[99] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data Mining.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[100] Turhan, B., Menzies, T., Bener, A. B., and Di Stefano, J. On the Relative
Value of Cross-company and Within-company Data for Defect Prediction. Empirical
Softw. Engg. 14, 5 (Oct. 2009), 540–578.

[101] Tzerpos, V., and Holt, R. C. ACDC: An Algorithm for Comprehension-Driven
Clustering. In Proceedings of the Seventh Working Conference on Reverse Engineering
(Washington, DC, USA, Nov. 2000), WCRE ’00, IEEE Computer Society, p. 258.

[102] van Gurp, J., Brinkkemper, S., and Bosch, J. Design preservation over subse-
quent releases of a software product: A case study of Baan ERP: Practice articles. J.
Softw. Maint. Evol. 17, 4 (July 2005), 277–306.

[103] Walker, R. J., Rawal, S., and Sillito, J. Do crosscutting concerns cause mod-
ularity problems? In 20th International Symposium on the Foundations of Software
Engineering (Cary, North Carolina, Nov. 2012), FSE ’12, ACM, pp. 49:1–49:11.

[104] Waterman, M., Noble, J., and Allan, G. How much up-front?: A grounded
theory of agile architecture. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (Florence, Italy, 2015), ICSE ’15, pp. 347–357.

[105] Wermelinger, M., Yu, Y., Lozano, A., and Capiluppi, A. Assessing architec-
tural evolution: a case study. Empirical Software Engineering (2011).

[106] Wong, S., Cai, Y., Kim, M., and Dalton, M. Detecting software modularity vio-
lations. In Proceedings of the 33rd International Conference on Software Engineering
(Honolulu, Hawaii, May 2011), ICSE ’11, ACM, pp. 411–420.

[107] Wu, J., Hassan, A., and Holt, R. Comparison of clustering algorithms in the
context of software evolution. In 21st IEEE International Conference on Software
Maintenance (Budapest, Hungary, Sept. 2005), pp. 525–535.

[108] Zhou, Y., Xu, B., Leung, H., and Chen, L. An In-depth Study of the Poten-
tially Confounding Effect of Class Size in Fault Prediction. ACM Trans. Softw. Eng.
Methodol. 23, 1 (Feb. 2014), 10:1–10:51.

[109] Zimmermann, T., Diehl, S., and Zeller, A. How history justifies system ar-
chitecture (or not). In Software Evolution, 2003. Proceedings. Sixth International
Workshop on Principles of (2003), IEEE.

115

[110] Zimmermann, T., and Nagappan, N. Predicting Subsystem Failures using Depen-
dency Graph Complexities. In The 18th IEEE International Symposium on Software
Reliability (Trollhattan, Sweden, Nov. 2007), pp. 227–236.

[111] Zimmermann, T., and Nagappan, N. Predicting Defects Using Network Analy-
sis on Dependency Graphs. In Proceedings of the 30th International Conference on
Software Engineering (Leipzig, Germany, May 2008), ICSE ’08, ACM, pp. 531–540.

[112] Zimmermann, T., Premraj, R., and Zeller, A. Predicting Defects for Eclipse.
In Proceedings of the Third International Workshop on Predictor Models in Software
Engineering (Minneapolis, MN, USA, May 2007), PROMISE ’07, IEEE Computer
Society, pp. 9–.

116

Curriculum Vitae

Ehsan Kouroshfar started his PhD with the Department of Computer Science at George
Mason University (GMU) in 2009. His current research mainly focuses on empirical software
engineering, mining software repositories, and software architecture. Ehsan received his MS
degree in Computer Engineering with an emphasis on Software Engineering from Sharif
University of Technology (SUT) in 2009 and his BS degree in Computer Engineering with
an emphasis on Software Engineering from Amirkabir University of Technology (AUT) in
2006.

117

	List of Tables
	List of Figures
	Abstract
	 Introduction
	 Research Problem
	Problem Statement
	Research Hypotheses

	 Related Work
	Defect Prediction
	Architectural Evolution and Decay
	Architectural-Quality Metrics

	 The Impact of Software Architecture on Defect Proneness of Software Systems
	Methodology Overview
	Obtaining Surrogates for Architectural Module View
	Package View
	Bunch View
	ArchDRH View
	LDA View
	ACDC View

	Measuring Effects of Co-change Dispersion
	Metric Definition
	Underlying Characteristics of the Data
	Analysis Method

	Executing the Analysis
	Results of the Study
	Results for RQ1.a
	Results for RQ1.b
	Results for RQ1.c

	Discussion
	Role of Architecture in Maintenance
	Building Better Defect Predictors
	Architectural Bad Smell Predictors
	Empirical Research

	Threats to Validity
	Construct Validity
	External Validity

	 Architectural Decay Prediction from Evolutionary History of Software
	Prediction Model Construction
	Obtaining Architectural Modules
	Regression Analysis Selection
	Dependent Variables
	Independent Variables

	Experimental Setup
	Projects Studied and Data Collection
	Data Splitting and Evaluation Metrics

	Experimental Results
	Results for RQ2.a
	Results for RQ2.b
	Results for RQ2.c
	Results for RQ2.d

	Discussion
	Threats to Validity
	Tool
	Data Collection
	Model Construction

	 Challenges and Suggestions for the Community
	Challenges and Limitations
	The Lack of the Availability of Software Architecture Information
	Tracing Defects to Architecture
	Obtaining Architectural Modules

	Opportunities and Suggestions
	Creating a Repository for Software Architecture
	A Comprehensive Tool Suite for Architecture Recovery
	Bringing Software Architecture to Software Engineers' Every Day Life

	 Conclusion
	Contributions
	Future Work

	Bibliography

