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ABSTRACT 

 

 

 

RESISTING RELIABILITY DEGRADATION THROUGH PROACTIVE 

RECONFIGURATION 

Deshan Cooray, M.S. 

George Mason University, 2010 

Thesis Director: Dr. Sam Malek 

 

Situated software systems are an emerging class of systems that are 

predominantly pervasive, embedded, and mobile. They are marked with a high degree of 

unpredictability and dynamism in the execution context. At the same time, such systems 

often need to satisfy strict reliability requirements. Most current software reliability 

analysis approaches are not suitable for situated software systems. We propose an 

approach geared to such systems, which continuously furnishes refined reliability 

predictions at runtime by incorporating various sources of information. The reliability 

predictions are leveraged to proactively place the software in the optimal configuration 

with respect to changing conditions. Our approach considers two representative 

architectural reconfiguration decisions that impact the system’s reliability: reallocation of 

components to processes and changing the architectural style. We have realized the 

approach as part of a framework intended for mission-critical settings, called REsilient 



 

 

SItuated SofTware system (RESIST), and evaluated it using a mobile emergency 

response system. 
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1. INTRODUCTION 

 

Software systems are fast permeating a variety of domains, including emergency 

response, industrial automation, navigation, health care, power grid, and civil 

infrastructure. We call this emerging class of systems situated software systems, which 

are predominantly mobile, embedded, and pervasive. They are characterized by their 

highly dynamic configuration, unknown operational profile, and fluctuating conditions. 

At the same time, given the mission critical nature of the domains in which they are 

deployed (e.g., emergency response), majority of situated systems are expected to satisfy 

stringent reliability requirements. 

Engineers of a situated software system typically spend significant effort to 

determine a good configuration for the system to ensure its adherence to functional and 

non-functional requirements. For instance, they may perform a trade-off analysis between 

the system’s efficiency and reliability when they decide the allocation of software 

components to operating system (OS) processes. Clearly the overall reliability of such 

systems depends on problems both internal (e.g., software bugs) and external (e.g., 

network disconnection, hardware failure) to the software. The key underlying insight in 

our research is that some internal software problems may manifest themselves only under 

certain dynamic characteristics external to the software (e.g., physical location), which is 

traditionally referred to as context [1]. 
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Due to variability in the execution context, the optimal configuration for a 

situated system cannot be determined prior to its deployment, and no particular 

configuration can be optimal for the system’s entire operational lifetime. Thus, runtime 

reconfiguration of the system may be necessary to achieve the system’s maximum 

potential. Given the mission critical nature of situated systems, we define the optimal 

configuration as one that satisfies the reliability requirement, while taking into 

consideration other quality attributes of concern (e.g., efficiency). 

In this thesis, we describe and evaluate REsilient SItuated SofTware system 

(RESIST), a framework intended to address reliability concerns in mission critical, 

dynamic, and mobile setting. RESIST furnishes a compositional approach to reliability 

estimation starting with analysis at the component level, which in turn makes it possible 

to assess the impact of adaptation choices on the system’s reliability. The analysis is 

performed continuously at runtime by incorporating various sources of information. In 

addition to the architectural models and the monitoring data, RESIST incorporates 

contextual information to predict the reliability of the system in its near future operation. 

RESIST uses the reliability predictions to (1) proactively determine when the 

system should be adapted, and (2) find the optimal configuration for the near future 

operation of the system. Our evaluations show that our reliability predictions are accurate 

with respect to the observed system reliability. We thus consider the predicted reliability 

as an indicator for decision making. An important contribution of our work is proactive 

adaptation based on our reliability analysis that reconfigures the system at runtime prior 
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to actual reliability degradation. This trait clearly sets our work apart from the majority of 

existing self-adaptive frameworks that are reactive in their decision making [2][3]. 

We have developed a prototype implementation of RESIST on top of a tool-suite, 

which consists of an existing context-aware architectural middleware integrated with a 

visual architectural modeling and analysis environment. Finally, RESIST is evaluated 

using a robotics emergency response system.  

1.1. Research Hypotheses 

This research investigates the following hypotheses. 

1.1.1. Architecture-based Software Reliability Prediction 

Insight: Some internal software problems may manifest themselves only under 

certain dynamic characteristics external to the software (e.g., a system’s physical 

environment) which is traditionally referred to as context. The execution context of many 

software systems can be determined a priori (e.g., an ecommerce system experiences 

higher workload certain times of the year).  

Insight: Knowledge embodied in a system’s architectural models (e.g., behavioral 

and structural models of the components and the system) could be used to reason about 

its runtime characteristics, including its reliability. 

Hypothesis #1: Given the future execution context of a software system and its 

architectural models, it is possible to estimate the future reliability of the system and its 

components. 
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1.1.2. Proactive Architecture-based Adaptation 

Insight: A software system’s architectural configuration (e.g., architectural style, 

deployment architecture) has a significant impact on the system’s quality attributes. 

Insight: Due to variability in the execution context, the optimal configuration for 

a software system cannot be determined prior to its deployment, and no particular 

configuration can be optimal for the system’s entire operational lifetime.  

Hypothesis #2: Context-driven reliability predictions could be employed to 

improve the resilience of a software system to failures through proactive architecture-

based adaptation. 

The remainder of this thesis is organized as follows. Chapter 2 presents a 

motivating example, and Chapter 3 describes the impact of context on the architecture of 

a system. Chapter 4 provides a high-level overview of the RESIST framework, while 

Chapter 5 presents its failure model. Chapter 6 presents the component-level and 

configuration-level reliability models. Chapter 7 describes the alternative architectural 

configurations aimed at improving reliability. Chapter 8 details the configuration 

selection process. Chapter 9 describes the implementation and tool support for RESIST, 

while Chapter 10 presents a detailed evaluation of the work. Chapter 11 describes the 

related work, and finally Chapter 12 present concluding remarks for the thesis and 

avenues of future research. 
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2. MOTIVATING EXAMPLE 

 

Emergency response is a domain that entails a high degree of mission criticality. 

Software systems designed for this domain thus have stringent reliability requirements. 

As a motivating example, consider a mobile distributed emergency response system 

intended to aid the emergency personnel in fire crises, a prototype of which was 

developed in our previous work [4]. This system consists of several entities, including a 

central dispatcher that serves as the “Headquarters” for coordinating the crew activities, 

smart fire engines that are designed to alert the dispatcher of the current location of the 

vehicle and provide its occupant with information concerning the crisis scene, firefighters 

equipped with PDAs capable of controlling the robots and sensors, and mobile robots that 

execute the high-level commands. 

While the entire system is highly dynamic and could benefit from our approach, 

for the clarity of exposition we focus on the robotic subsystem. A robot consists of 

several electronic sensors and mechanical actuators that allow it to autonomously 

navigate, detect smoke, stream video, and extinguish fire. It is constrained by limited 

battery life, memory, processing speed, and connectivity. Architectural design choices 

affecting the system at runtime aim at accommodating these constraints. 

An example architectural strategy for improving the system’s efficiency is to use 

a thread-based architecture. Software components are deployed as separate threads within 
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a single OS process, thus allowing for the resources (e.g., stack memory) to be shared 

among components, while avoiding the overhead (e.g., context switching) associated with 

managing many separate processes. However, since a process may exit prematurely due 

to an errant thread, a disadvantage of the thread-based model is a potential decrease in 

system reliability. 

Figure 1 (a) and (b) show two alternative allocations of the robot’s software 

 

Figure 1. Component-to-process allocation alternatives: (a) All components allocated to the same 

process, (b) Controller and Navigator allocated to separate processes, and (c) Controller allocated 

to separate process, and the Navigator is replicated and placed in separate processes. 
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components to OS processes. Based on the above discussion, from a system’s perspective 

it is reasonable to expect the architecture depicted in Figure 1(a) to be more efficient, 

while the one depicted in Figure 1(b) to be more reliable. Determining the best 

configuration depends on (1) the device’s fluctuating resources (e.g., memory and CPU 

utilization, available battery), and (2) the reliability of the system’s constituent 

components, which as detailed later may vary due to changes in context. 

The above scenario demonstrates the impact of architectural decisions on 

system’s quality attributes. Such decisions while critical to system’s dependability cannot 

be made effectively at design-time. It is only reasonable to assume that some of these 

decisions must be made at runtime, requiring specialized methodologies that 

continuously evaluate the impact of these decisions on system’s dependability. We use 

this system in the remainder of the thesis to describe and evaluate our approach. 
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3. IMPACT OF CONTEXT ON ARCHITECTURE 

 

Any type of information that characterizes the runtime conditions of the system, 

and alters its behavior can be considered its context [5]. A system’s context may consist 

of several different aspects of its changing execution environment that could potentially 

impact the behavior and properties of a system. Among them three main categories of 

context can be identified [5][6]; 

• Computing Environment, such as the available resources, including CPU, network 

bandwidth, battery power. 

• User Environment, such as the user’s location, social situation, and an ongoing 

activity. 

• Physical Environment, such as near-by objects, the amount of light, and 

temperature. 

A context-aware system uses knowledge about its context to provide relevant 

information and/or services to the user [5]. While in some systems contextual information 

is directly used to provide services to the user, in some others contextual information is 

used to optimize the manner in which services are provided to the user. For example, a 

GPS enabled mobile phone which displays a map based on the user’s location considers 

the location as an input to the service that is provided. In contrast, a mobile robot engaged 

in firefighting may need to reconfigure itself depending on its contextual characteristics 
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so that its dependability is optimal with respect to other quality attributes such as resource 

usage. As described in the next section, RESIST is aimed at the second class of systems. 

Specifically, RESIST uses the system’s context to perform architectural reconfiguration 

of the system so that it remains resilient in the face of degrading reliability. 

Changes to the operational context of a system impact its runtime behavior which 

in turn could potentially impact the system’s quality attributes such as reliability. In 

architecture-based adaptation the system’s software architecture forms the basis for 

adaptation reasoning. Consequently, we argue that it is important to be able to model the 

effect of changes in the context on a system’s architecture as a first class entity. In our 

work, we adopt a broad interpretation of system’s architecture, which simply captures the 

knowledge about the system. This knowledge includes many different aspects of the 

system, including the principle design decisions about the system, its structure and 

behavioral models, as well as behavioral properties of the system captured in the form of 

an operational profile model. 

To exemplify the effect the context has on a system’s architecture, below we 

present how the mobile nature of a robotic system introduces contextual changes that can 

impact its operational profile, and in-turn its reliability. Figure 2(a) shows the 

architectural models of the mobile robot. It receives a command from an external system 

such as a PDA, and returns the result of executing the command. Upon receiving a 

command, it uses its Sensors to gather data about its environment, such as near-by 

obstacles and proximity to heat, and determines a plan and executes it using its Navigator 

and Actuator components, respectively. Figure 2(b) shows the robot’s Controller 
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component’s behavioral model in the form of a UML state chart. It includes behavioral 

states idle, estimating, planning and moving, during which the Controller invokes 

interactions with the other components in the system (i.e., Sensors, Actuator, Navigator, 

etc.). The failed state denotes a common failure state of the component. Transitions O1 to 
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Figure 2.  Robot's architecture: (a) robot’s structural model, and (b) the behavioral model of the 

robot’s Controller 
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O6 denote behavioral transitions resulting from input events such as interface calls on the 

component. Transitions F1 to F3 denote a failure that may arise under some 

circumstances. Such failures are caused by faults in the software that could lead to a 

failure. Transition S denotes eventual recovery of the component as a result of automatic 

or manual re-initialization of the component. 

This behavioral model depicts both the robot’s internal behavior as well as 

interactions with the external environment. For example, O1 corresponds to an input task 

from the user, and O5 corresponds to bump events triggered from the physical 

environment as a result of colliding with, or being within close proximity of an obstacle. 

Changes in the contextual environment may impact the frequency of these input events, 

which in turn alters the frequency of these two state transitions O1 and O5. The resulting 

changes in the execution frequency of the states in turn change the frequency of failures 

as well. For example, if the estimating state happens to be a state from which failures 

happen frequently, situations in which robot navigates through a dense terrain can 

increase bump events, which consequently increases the frequency of transition to the 

estimating state, and thus the probability of component failure. Thus in this example, the 

contextual changes resulting from the robot’s mobility, in turn impacts the component’s 

reliability. 

The impact of the system’s context is not limited to internal changes in the 

component behavior, as they may also change the manner in which components interact, 

and thus influence the system’s reliability. For example, the Controller interacts with the 

Sensors in order to perform estimations prior to planning its navigation route. However, 
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if the number of bump events increases, the Controller interacts with the Sensors with a 

higher frequency in order to perform re-estimations. Thus, the impact of the Sensor 

components’ reliability on system’s reliability depends on how frequently the Controller 

needs to interact with the Sensors, which is in turn determined by location dependent 

contextual information such as the complexity of the terrain (i.e. the probability of 

bumps). 

Therefore the changes in context and its effect on the system’s architecture can be 

modeled as follows: 

• A set of contextual parameters�� � ���� � � ��	, which includes any information 
about a system’s context that impacts the system 

• A set of architectural parameters�
 � �
�� � � 
�	, which includes architectural 
properties that change as a result of the system’s context 

• A set of interactions � � ���� � � �	 between contextual and architectural 
parameters where in each interaction, one or more contextual parameters cause a 

change in an architectural parameter 

• A set of functions that captures the effect of the above interactions on 

architectural parameters. ��� � �, these functions are of the form: 
 

��� ���� � 
����������������������������  
 

where ���� denotes the power set of contextual parameters.  
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Considering the robotic system described above as an illustration, the probability 

of the robot encountering an obstacle on its path is an example of a contextual parameter 

which changes as a result of its mobility. This contextual parameter has an effect on two 

architectural parameters: the transition probability from moving to estimating state in the 

Controller, and the probability that the Controller interacts with the Sensor components. 

In this illustration we have described two points of interaction between the contextual 

parameter and architectural parameters. However in any sizable system one could expect 

multiple points of interaction, which further highlight the importance of properly 

modeling and incorporating context in engineering mobile systems.  

In the next section, we present an overview of the RESIST framework and in the 

subsequent sections we show how a system’s contextual parameters together with their 

interactions with architectural parameters can be used in predicting a system’s reliability 

and optimizing its architecture.  
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4. FRAMEWORK OVERVIEW 

 

An overview of RESIST framework is depicted in Figure 3. The process is 

organized as a feedback control loop that continuously monitors, analyzes, and adapts the 

system at runtime. RESIST consists of three conceptual software components.  

At design-time and before the system’s implementation is complete, an initial set 

 

 

 
 

Figure 3.  Overview of RESIST framework, which is organized as a feedback control loop that 

continuously monitors, analyzes, and adapts the system at runtime. 
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of architecture-based reliability models are developed. These models are used at runtime 

to assess a variety of configuration choices and to serve as predictors for the future 

reliability of the system. Unlike the traditional architectural models, they embody 

contextual properties necessary for reliability analysis of situated systems. As described 

below, these models are expected to be updated and refined at runtime. 

Architecture-based reliability models along with contextual and monitoring 

information obtained from the system are used by the Component-Level Reliability 

Analyzer to predict the reliability of system’s components in their near future operation. 

These fine-grained reliability estimates are used by the Configuration Reliability 

Analyzer to determine the reliability of alternative configurations for the system. The 

Configuration Selector is in turn used to select a suitable configuration for the near future 

operation of the system.  The configuration selector may use other quality attributes, such 

as performance, in the selection process. The process for obtaining and estimating these 

properties is beyond the scope of this thesis, which is focused on reliability concerns.  

Once a new configuration is selected, the Context-Aware Middleware adapts the 

system at runtime to reflect the changes in configuration. The Context-Aware Middleware 

provides support for execution, monitoring, and adaptation of a software system in terms 

of its architectural constructs (e.g., components, connectors, and configuration). At 

runtime, the middleware monitors the software system for information that is used to 

refine the reliability predictions. This information is obtained from multiple sources, such 

as monitoring internal (e.g., frequency of failures, exceptions, and service requests) and 

external (e.g., network fluctuations, battery charge) software properties, changes in the 
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structure of the software (e.g., disconnection of components due to network drop outs, 

off-loading of components due to drained battery), and contextual properties (e.g., 

physical location). Since the monitored data represents the most recent operational, 

structural, and contextual profile of the system’s execution, it can be used to assess the 

system reliability more accurately. Note that unlike previous approaches [7][8][9] we do 

not rely solely on the monitoring data. Instead, we incorporate architectural knowledge, 

monitoring data, and contextual changes at runtime in a complementary fashion to 

produce more accurate results.  
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5. RELIABILITY AND FAILURE MODEL 

 

RESIST estimates reliability as the probability that a system performs its required 

functions under stated conditions for a specified period of time [10]. In situated software 

systems, given the ongoing changes in system’s operational conditions, the reliability 

may change over time. We consider a failure to be an inconsistent behavior of a system 

with respect to its specification. Faults are caused by defects (e.g., software or hardware 

error), and are abnormal conditions that may cause a reduction in, or loss of, the 

capability of a functional unit to perform a required function. Thus, faults are causes of 

failures [10]. 

Consistent with other architecture-based reliability approaches [12][13][14][15] 

we assume that the occurrence of a failure is stochastic and that components failure 

model is fail-stop. Failures are thus reliably detectable by middleware facilities. 

Furthermore, failed components are assumed to eventually (automatically or manually) 

recover and resume normal behavior. 

We consider two types of failure in RESIST: component and process failures. 

Component failure is caused by a fault within the component’s implementation. Its 

effects are contained within the boundary of the component except when it causes a 

process to fail. Process failure occurs when one of the components running as a thread 
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within a process exits prematurely, causing the OS process, including all of the 

components deployed on it, to fail.  

RESIST’s reliability model is targeted at distinguishing among alternative 

architectural configurations, and thus does not consider failures (e.g., wrong results, 

mismatched data type) that cannot be resolved through architectural means. We assume 

either such defects are detected during the construction of the system or the failure is 

contained within the component in which the fault occurred (e.g., through the use of 

appropriate pre- and post-conditions). While RESIST could be extended to accommodate 

these additional types of failures, we do not believe such failures could be treated 

effectively through architectural reconfiguration.  
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6. RELIABILITY ANALYSIS AND PREDICTION 

 

Structural and behavioral knowledge embedded in software architectural models 

provide an appropriate level of abstraction from which reasoning about system’s quality 

attributes is feasible [11][50]. Architectural models are typically compositional: structure 

and behavior of complex systems are described in terms of their constituent components. 

Despite this however, as identified by recent surveys [12][14][15], majority of existing 

architecture-based reliability modeling approaches largely focus on analysis at the system 

level alone. Moreover, those approaches that incorporate individual component 

reliabilities into analysis, assume that component reliabilities are known apriori. 

Consequently, existing approaches are not suitable for situated systems, where the 

reliabilities of components and system fluctuate with the context in which they operate. A 

purely system-wide analysis offers little help in optimizing the system’s architecture in 

this setting. As described in Section 3, reliability analysis must be performed while 

considering behavioral changes both within components, as well as interactions between 

them. 

Therefore, as shown in Figure 3, RESIST performs the reliability analysis at two 

levels: at component level, and subsequently at configuration level. At both levels, 

architecture-based reliability techniques are used in conjunction with monitoring 

information obtained from the system and its context. While RESIST uses architectural 
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models of the system to facilitate this process, performing architecture-aware reliability 

analysis enables architecture-based adaptation techniques to be utilized in order to 

improve or maintain the system’s reliability. Moreover, since the context impacts both 

the internal behavior of components and the interactions among them, RESIST 

incorporates context information into the reliability analysis at both component and 

configuration level. 

In order to perform reliability analysis and prediction, RESIST considers the 

Software Operational Profile (SOP) of components and the system, which enables it to 

quantify behavioral properties of the system that affects its reliability at each level. SOP 

represents the set of executions that take place in a software program along with the 

probabilities with which they will occur in a given environment [10][48][49]. As 

described in Section 3, the probabilities in the SOP may be affected by changes in the 

system’s context. Therefore in this case, we model these probabilities in the SOP as 

relevant architectural parameters. 

For the purpose of modeling the SOP of components and the system, we use 

existing techniques based on Discrete Time Markov Chains (DTMC). A DTMC is 

defined as a stochastic process with a set of states � � ���� ��� � � �	 and a transition 
matrix�
 � ����	, where ��� is the probability of transitioning from state �� to state���. 
Once the operational profile of the system in the form of a DTMC has been estimated, the 

context information is used to update the transition probabilities in the DTMC, so that it 

reflects the future operational profile. This enables us to capture behavioral changes 

expected in the system’s new environment which in turns enables reliability prediction. 
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Our reliability models used for component and configuration reliability prediction 

rely on Hidden Markov Models (HMMs) [16] to estimate the transition probabilities of 

the DTMC (i.e., the transition probabilities in matrix�� mentioned above). As confirmed 
by our previous results [18], HMMs can be used to learn from runtime data and to obtain 

transition probabilities. An HMM is defined by a set of states � � ���� ��� � � �	, a 
transition matrix 
 � ����	 representing the probabilities of transitions between states, a 
set of observations � � ���� ��� � � ��	, and an observation probability matrix � �
��� 	, which represents the probability of observing event �  in state ��. The sets � and � 
of the HMM come from architectural models of the system while runtime data obtained 

through monitoring becomes training data for the HMM. 

We use the Baum-Welch algorithm [16] to train and solve the HMM. The training 

data used as input to this algorithm consists of sequences of observations. Given an initial 

HMM constructed as described above, the Baum-Welch algorithm converges on the 

transition matrix A. We use this technique to derive the SOP for both components and the 

system. In the next sections, we elaborate the techniques used to estimate the SOP and 

how they are used in predicting reliability of components and configurations. 

6.1. Component Reliability Analysis 

In the case of component reliability, the states (i.e. set �) and observations (i.e. set 
�) are identified using the component’s behavioral model, such as the state chart diagram 
depicted in Figure 2(b). For example, for the robot’s Controller, we can obtain the 

following: 
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� � !��� ��� �"� �#� �$%, and � � ���� � � ��&	 
where states ��� � � �# represent the behavioral states: idle, estimating, planning and 

moving, state �$ represents the common failed state, and observations �����& represent 
the transitions between states as shown in Figure 2(b). At runtime, the component is 

monitored to obtain execution traces in the form of observation sequences (i.e. sequences 

of state transitions). These execution traces are then used to train the HMM, using the 

Baum-Welch algorithm. The Markov model obtained from this algorithm represents the 

SOP of the component based on the training data, which represents the component’s 

behavior based on its current context.  

To better illustrate the concepts, consider the following transition probability 

matrix obtained by executing the Baum-Welch algorithm on observation data obtained 

from the robot’s Controller:  

 


'()*(��+* � ,--
-. / � / / // / /0123 / /0/45/0/61 / / /0167 /0//6/ / /011 / /0/�� / / / / 899

9:
 

 

This represents the Controller’s operational profile based on its present context. In 

order to compute its reliability we obtain the steady state vector of the above transition 

matrix, from which we determine the probability of not being in failure state��$. The 
steady state vector for the matrix 
'()*(��+* is: 
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;/0/2�1 /0/2�1 /06742 /06<�� /0//5<=�
 

Here, the last column represents the probability of being in a failure state. Thus 

the Controller’s reliability based on its present context can be computed as: 

>'()*(��+*� � � ? /0//5< � �/011�< 
6.2. Context-aware Component Reliability Prediction 

An important contribution of our research is the incorporation of contextual 

knowledge in arriving at reliability predictions, which enables proactive reconfiguration 

of the software. In order to arrive at a reliability prediction for a component, RESIST 

utilizes information from its emerging context to determine the behavioral changes that 

can occur in the near future operation of the component. This is performed by 

considering the changes that can occur in the component’s SOP as a result of the 

anticipated contextual change. To determine the future SOP of the component, the 

transition probabilities in the SOP are updated by utilizing functions of the form of (1) 

which captures the impact of context on architectural parameters (recall Section 3). In 

this case, the architectural parameters are the transition probabilities between states in the 

in the component’s SOP.  

Thus, let’s consider a point of interaction � � � where architectural parameters 
represented by transition probabilities in transition probability matrix 
 are impacted by 
the system’s contextual parameter@��, and where the impact on each architectural 
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parameter is given by function��. The component’s future SOP is derived based on the 

transition probabilities of the present SOP, by applying the following three rules��� � �: 
1. The transition probability �����from state �� to �� which is impacted as a result of 

� is revised such that the updated value �A�� is given by function �: 
 

�A�� ��� �B����C��������������������������3) 
 

where ���� denotes the power set of contextual parameters. For example in 
Figure 2(b), the transition probability from moving to estimating state is directly 

impacted by the navigational complexity of the robot’s environment. Therefore in 

this case, � correlates the navigational complexity (i.e. a contextual parameter) 
to the transition probability from moving to estimating state. 

2. Given that the transition probability �����from state �� to �� changes as a result of 
contextual change, the transition probability ��$��from state ����to failure state 
�$��remains unchanged. This is because the probability of failure while the 
component is in state �� is independent of the contextual changes that cause 
transitions to state���. For example in Figure 2(b), the transition probability from 
estimating to failed state does not change as the transition probability from 

moving to estimating state changes. 

3. Given that ��� ��is a transition probability from state �� to �� changes as a result of 
contextual change, the remaining transition probabilities in row D of the transition 
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probability matrix�
, are updated so that the cumulative probability of all 
transition probabilities in the row remains at 1 since matrix 
 is a stochastic 
matrix. For example in Figure 2(b), as a result of an increase in the transition 

probability from moving to estimating state, the probability from moving to 

planning state will decrease. Thus, all transition probabilities��� �in row�D 
excluding ���� and ��$ are adjusted so that: 
 

�� E � ��� F G� ? ��E��?���H ���  I��$ J��������������������������2� 
 

To illustrate, consider the following function �KL�M that quantifies the transition 
probability��#��from moving to estimating state in the robot’s Controller with respect to 

the navigational complexity of the robot’s physical context�N. In Section 10.5, we 
demonstrate how the following function was obtained using regression in our 

experiments on the robotic software.  

 

�KL�M�N� � O/05�14N� P �/0///42� / Q N Q /02/07�66N� P �/0/41�4� /02 R N Q /04</0<62<N� P �/0�273� /04< R N Q � S 
 

In this case, the robot periodically takes snapshots of the environment and using 

existing techniques [19] determines the complexity of the terrain (the contextual 



26 

 

parameter�N), which is correlated to the probability of encountering an obstacle in its 
path. The robot then compares the complexity of the current terrain with previous 

snapshots. In cases where the terrain seems less/more complex than the past context, the 

relevant parameters in the SOP are updated to reflect the contextual change. For example, 

if the navigational complexity of the terrain is anticipated to increase, the transition 

probability �#��in the matrix is updated by computing �KL�M�N��for the relevant value of 
N. As will be described in the evaluation, such a function �KL�M�N� which accurately 
correlates navigational complexity and bump probability can be derived through 

regression techniques. 

Given that the terrain complexity N is expected to increase to 0.45 we can update 
the new transition probability �#� based on �KL�M�N��above, and adjust the remaining 
elements in the row based on the rules presented above to obtain the following SOP for 

the Controller which represents its future behavior: 

 


'()*(��+*E �
,--
-. / � / / // / /0123 / /0/45/0/61 / / /0167 /0//6/ /021/4 /0<116 / /0/�� / / / / 899

9:
 

 

As before, by computing the steady state vector, we can derive the reliability of 

the component which corresponds to this future SOP, which results in a decreased 

reliability of /015340 
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6.3. Configuration Reliability Analysis 

Once the reliability prediction of all components has been obtained, a 

compositional model is used to predict the reliability of specific system configurations. 

Configuration reliability is in turn leveraged to assess the adherence of a given 

configuration to the system reliability goals. When a system does not meet the intended 

reliability threshold, runtime adaptation becomes necessary to ensure that the system’s 

reliability requirements remain satisfied.  

While majority of runtime adaptation approaches take a reactive stance in 

response to degradation of the system reliability, our approach can be used proactively in 

anticipation of reliability degradation. This is done by system monitoring and continuous 

reliability assessment that incorporates fluctuating operational context as described 

earlier. In the rest of this section, we describe the configuration-level reliability analysis 

approach. 

Our Markov-based configuration-level reliability estimation approach is based on 

the model presented by Wang et al. [20], where a system’s reliability is estimated 

compositionally based on the reliability of individual components, the architectural style 

governing their interactions, and the system’s operational profile. A DTMC is built by 

mapping the components and their interactions to a state diagram [20]. A state @� maps to 
one or more components in concurrent execution whose completion is required in order 

to transfer control over to the next state. A state transition with a probability T�� 
represents the probability of undergoing a transition from state @��to state�@�. Accordingly, 
system reliability R is computed as: 
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> � �?�� U�> VWVVXYZV ��������������������������6�  
 

where [ is a \ F \ matrix in which si is the entry state and sk is the exit state and whose 

elements are computed as follows: 

 

[�D� ]� � � ^>�T�� ������_`a`b�@��cbadeb_�_`a`b�@��afg�D� h �\
/��������������������������������������������������������i`ebcjk_b� S 

 

where Ri is the reliability of state si, and > is the reliability of the exit state.�V� ? [V is 
the determinant of matrix �� ? [�, while V�V is the determinant of the remaining matrix 
excluding the last row and the first column of �� ? [�. 

This reliability model utilizes information from the system’s SOP to derive the 

reliability for a configuration. Specifically, it requires the transition probabilities between 

the states (i.e.,�T��). At the same time, as described in section 3, transition probabilities of 
the SOP are dependent on the context in which the system operates. Thus, RESIST 

monitors the system at runtime to obtain observations that correspond to interactions 

between components to derive transition probabilities between states required by the 

model presented in equation (4). In order to derive these transition probabilities, a HMM 

is trained using the Baum-Welch algorithm using the observations obtained at the system 

level.  
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In order to construct the HMM for the system’s SOP, RESIST utilizes the 

system’s structural model, such as the one depicted in Figure 2(a) for the robot. In this 

scenario, a fireman interacts with the robot using a PDA. The firemen issues a high-level 

command (e.g., go into the restaurant and extinguish a fire) which is received by the 

robot’s Controller through the Communication Connector. The Controller executes the 

appropriate sequence of intermediate actions, which will result in the successful 

completion of (or inability to complete) the original command, which is sent back to the 

PDA through the Communication Connector. To complete the task, the Controller makes 

use of a variety of Sensors, which detect obstacles in its environment and heat, a 

Navigator which performs planning for the command being executed, and a mechanical 

Actuator which is used to perform the physical activities.  

The state model in Figure 4(a) depicts the components in the system mapped to 

states, and control flow interactions among the components are depicted as transitions 

between states. As shown, each of the components Communication Connector (CC), 

Controller (C), and Navigator (N), have been mapped directly to separate states S1, S2, 

and S4 respectively as they execute in a sequential manner. Heat Sensors and Proximity 

Sensors (HS1, HS2, PS1, and PS2) have been mapped to a single state S3 since they all 

execute in parallel upon receiving control, and upon completion the control transfers back 

to C. Similarly, the Actuator (A) and Touch Sensors (TS1 and TS2) are mapped to a single 

state S5. In order to derive the SOP for the system, a HMM is constructed by using the 

information in the state model. Thus, from Figure 4(a), we can identify the states (i.e. set 

�) and observations (i.e. set �) for the HMM as follows: 
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� � ���� � � �l	 and � � ���� � � �m	 
where observations ����m represent the state transitions between states that result from 
transfer of control between components (i.e. interactions) as shown in Figure 4(a). The 

runtime data used to train the HMM consists of these observation sequences, which 

correspond to state transitions. The following is a transition probability matrix of the 

HMM derived using the Baum-Welch algorithm: 

 


nop)+� ��
,--
-. / � / / //0�114 / /03//� /06//3 /03//�/ � / / // � / / // � / / / 899

9:
 

 

The above transition probability matrix corresponds to the robot’s system level 

SOP based on its present context. In order to compute system reliability, a transition 

 

Figure 4.  (a) State model for the robot (b) State model with the Navigator replicated. 
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matrix [ is derived for the model in equation (4) with the matrix elements representing 
probability of successfully transitioning from state Si to Sj computed as�>� F T��. Here, >� 
is the reliability of each state computed using the reliabilities of the components mapped 

to the state, and T�� is the transition probability from state Si to Sj obtained from the 

system’s SOP. 

For example, let us assume that based on the robot’s present context, the 

component reliabilities have been computed to be Controller: C = 0.9915 and Navigator: 

N = 0.9751 using the approach described in the previous section. For the purpose of 

simplifying this illustration, we assume the remaining components and connectors in the 

system, i.e., CC, HS1, HS2, PS1, PS2, TS1, TS2, and A are 100% reliable. In cases where a 

state transition occurs in a sequential manner, Ri is the reliability of the component 

executing in state Si, whereas when a transition occurs out of the parallel set, Ri is the 

multiplication of the reliabilities of all components in state Si. 

Using the transition probabilities in 
nop)+� and the component-level reliabilities, 
we obtain the following for transition matrix [: 

 

[ �
,--
--.
/ � / / / // / /0�152 /02144 /0�152 /0�152/ � / / / // /017<� / / / // � / / / // / / / / / 899

99: 
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Solving the model according to equation (4) yields the system’s reliability in its 

present context as 0.9152. 

6.4. Context-aware Configuration Reliability Prediction 

In order to arrive at a reliability prediction for the system, RESIST utilizes 

information from its future context to determine the behavioral changes that can occur in 

the near future operation of the system. Similar to the component-level reliability 

prediction, this analysis is performed by considering the changes that can occur in the 

system’s SOP as a result of the anticipated contextual change. Thus, we update the 

transition probabilities in �
nop)+� by utilizing functions of the form (1) to obtain the 
SOP for its future context (recall Section 3).  

For the purpose of predicting the system’s SOP, we follow an approach similar to 

the prediction of component’s SOP, and model transition probabilities in the system’s 

SOP as architectural parameters. Thus, at each point of interaction � � �, the impact of 
system’s contextual parameter@�� on architectural parameters is given by function�� and 
the system’s future SOP is derived based on the transition probabilities of the present 

SOP by applying the following two rules��� � �: 
1. The transition probability �����from state �� to �� which is impacted as a result of 

� is revised such that the updated value �A�� is given by function �: 
 

�A�� ��� �B����C��������������������������<) 
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where ���� denotes the power set of contextual parameters. For example, in 
Figure 4(a) the transition probability from state �� to �"�is impacted by the 
navigational complexity of the robot’s environment. Here � correlates the 
navigational complexity (i.e. a contextual parameter) to the transition probability 

from state �� to��". 
2. Given that ��� ��is a transition probability from state �� to �� , which is impacted as 
a result of contextual change, the remaining transition probabilities in row D of the 
transition probability matrix�
 are updated so that the cumulative probability of 
all transition probabilities in the row remains at 1, since matrix 
 is a stochastic 
matrix. For example in Figure 4(a), as a result of an increase in the transition 

probability from state �� to���", the transition probabilities from state ���to���� �#��and �l�will decrease. Thus, all transition probabilities��� �in row�D 
excluding ���� are adjusted so that: 
 

�� E � ��� F G� ? ��A��?���H ���  I� J��������������������������4� 
 

As an illustration, �KL�M given below quantifies the transition 

probability���"�from state �� to state��" with respect to the navigational complexity of the 
robot’s physical context given by�N. 
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�KL�M�N� � O /0�3<N� P �/03//2� / Q N Q /02/0/17�6N� P �/03�63� /02 R N Q /04</0/7�76N� P �/03361� /04< R N Q � S 
Given that the terrain complexity N is expected to increase to 0.45 we can update 

the transition probability ��" based on �KL�M�N��above, and adjust all other transition 
probabilities in that row using equation (6) to obtain the following SOP for the system: 

 


nop)+�E ��
,--
-. / � / / //0�5<< / /03<71 /0�5<< /027��/ � / / // � / / // � / / / 899

9:
 

 

Given that under the future context the reliability of the Controller is predicted to 

decrease to /01534, and that the reliabilities of the rest of the components remain the 
same, using 
nop)+�E  as the predicted system-level SOP the matrix [E can be recomputed 
as follows to derive the system-level transition matrix required for equation (4) :  

 

[E �
,--
--.
/ � / / / // / /0�152 /02144 /0�152 /0�152/ � / / / // /017<� / / / // � / / / // / / / / / 899

99: 
 

Solving the model based on the revised matrix [E using equation (4) yields the system’s 
reliability in its future context as 0.8736.  
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7. RELIABILITY OF ALTERNATIVE ARCHITECTURES 

 

If the predicted system reliability for a given architectural configuration does not 

meet the acceptable level of reliability, system reconfiguration may be required in order 

to improve the reliability. In this section we describe the architectural reconfiguration 

decisions utilized by RESIST that drive the process of reliability improvement. 

7.1. Impact of Architectural Style 

Architectural styles are a set of constraints on the structure and behavior of a 

system to elicit particular desirable qualities [11][50]. Use of specific architectural styles 

is a way to apply preconceived solutions to similar recurring software problems. Runtime 

adaptation and reconfiguration of the system aimed at improving system’s quality may 

often require changes to the system’s architectural style. The fault tolerant style, for 

example, improves reliability by replicating critical components. A fault tolerant 

connector in the form of middleware can be used to handle component failures and to 

manage the hot standby copies. In the case of the robot, the original architecture in Figure 

1(b) demonstrates the system when the components are allocated to three processes with 

the Navigator and Controller components running on separate OS processes. Applying 

the fault tolerant architectural style in this case can improve the reliability by replicating 

the Navigator component, which represents a critical point of failure. Here, the 

underlying assumption is that replicas fail independently. Figure 1(c) shows a replicated 
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Navigator component added to the original architecture while running on a new process. 

The corresponding state model (Figure 4b) shows the two replicated instances of the 

Navigator q� and q� both mapped to state �A#. The reliability of the new state �A# can be 
computed as the probability that at least one Navigator component does not fail [20]. 

Hence the probability of state �A# executing without failure is 0.9994. Assuming the 
reliability of all other components and each of the Navigator components to be the same 

as before, matrix [A can be updated such that state �#�is replaced by the new state �A#, 
and the matrix element representing the transition from �# (which is now�A#) to � 
increases to 0.9994 from 0.9751. Solving the model above according to equation (4) 

yields a system reliability of 0.9124. Thus given that in its present configuration, the 

reliability was predicted to be 0.8736, replication of the Navigator results in an 

improvement of approximately 4.4%. 

7.2. Impact of Deployment Architecture 

A system’s deployment architecture is essentially an allocation of its software 

components to hardware hosts and OS processes. A system may be realized using more 

than one deployment architecture. At the same time, the deployment architecture has a 

significant impact on system’s reliability. In this thesis, we focus on the component-to-

process allocation, as another representative method employed by RESIST to prevent 

reliability degradations.  

When multiple components are allocated to the same process, a component failure 

could cause a process failure leading all other components within the process to fail, and 
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thus impact their reliability. In this case, redeploying components to separate processes 

could improve a system's reliability. In the case of the robot, consider two deployment 

configurations of the architecture, one where the Controller and the Navigator are 

deployed as two separate processes and another where the two components are deployed 

as threads sharing the same process. 

Let's assume that q and � represent reliability of the Navigator and the Controller 

components respectively when they execute on separate processes. When the two 

components are redeployed to share the same process, the effective reliability of each 

component is simply q F �, where failure in either q or � will cause both components to 
fail. For instance, assuming that q and � have been predicted to be 0.9826 and 0.9751 
respectively, the effective reliability of the two components would be qE = �E = 0.9581. 
Intuitively, the drop in the two components’ effective reliability results in a decrease in 

the overall system reliability. Therefore, the deployment architecture in which the two 

components are deployed as separate processes yields better configuration reliability.  



38 

 

 

 

 

 

8. CONFIGURATION SELECTION 

 

The reliability estimation approach presented earlier can be used to determine the 

most reliable configuration for a situated software system. However, in practice, 

reliability estimates are used in conjunction with the estimates of other quality attributes 

(e.g., efficiency, response time) to determine the optimal configuration for the system. As 

you may recall, the optimal configuration in RESIST is defined as one that satisfies the 

system’s reliability requirement, while improving other quality attributes of concern. In 

other words, in RESIST, reliability takes precedence over other quality attributes. This is 

a reasonable objective for the domains targeted by RESIST (i.e., mission critical), but it 

may not be appropriate for others. Consequently, the configuration selection problem 

becomes one of an optimization problem. Specifically, RESIST’s objective is to find an 

architectural configuration �r such that: 
 

�r � �stu�v�'�w xy����y���zL{��)o|K�+})�~+p ��������������������������7�  
 

Subject to   >��� � �� � � �� / R � Q � 

 

where xy�is a utility function indicating the engineer’s preferences for the quality 
attribute �, > is equation (4) that calculates the expected reliability of a given architecture 
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� as further detailed below. A utility function is used to perform trade-off analysis 
between competing (conflicting) quality concerns. In the emergency response system, we 

would need two utility functions: one specifies the user’s preference for improvements in 

reliability, while another one specifies the same for efficiency. Elicitation of user’s 

preferences is a topic that has been investigated extensively in the literature (e.g., [21]). 

RESIST does not place a constraint on the format of utility functions. Arguably any user 

can specify hard constraints, which can be trivially modeled as step-functions. 

Alternatively, a utility function may take on more advanced forms (e.g., sigmoid curve), 

and elicited using the techniques in [21]. 

The optimization is subject to ensuring the specified reliability requirement is not 

violated. RESIST may also use this constraint to determine when a reconfiguration of the 

system is necessary. 

Thus, for a system with � number of software components (each with a predicted 
reliability of�s� computed according to the method in Section 6) and h processes, an 
architectural configuration for the aforementioned optimization problem can be formally 

specified as follows: 

• Decision variable �� � �U represent the number of replicas for component i  
• Decision variable v�� � ;/��= to indicate if component�D is placed on the process ] 
The configuration is subject to the following constraints: 

• Each component must be placed on a process: 

�D � ��� 0 0 � �	� H v������ �� �  
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• An architectural constraint may be applied to limit the number of replicas allowed 

for a component: 

�D � ��� 0 0 � �	, �� Q �� � jebcb�� � �U 
• Though a component is allowed to be both replicated and share a process with 

another component, an architectural constraint is imposed such that they may not 

both happen simultaneously. This is because replication is most effective (i.e., 

achieves maximum improvement in reliability) if both the component and its 

replicas are isolated into separate processes. Thus, we introduce binary variable 

��, which indicates if component D is sharing a process with another component: 
�� � ��� �k��`eb�D���di��ifbf`�_eacb_�a��cidb__

/� �k��`eb�D���di��ifbf`�gib_�fi`�_eacb�a��cidb__S 
where �D� \ � ��� 0 0 � �	��and; 

��� � � ?�H v��� �� ? v ��) I�����   

Thus, the effective reliability of component D is: 
s����� � ��s������ P��� ? ����s���� 

where s������ is the effective reliability of component D when the component 
shares a process with another component, and; 

s������ ��H s�v������ � ;s v � P��� ? v ��) I� =,  
and s���� is the effective reliability of component D when the component is 
replicated with �� number of replicas, and;  
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s���� � �� ? �� ? s���UM� 
 

The system reliability >��� is computed by mapping the effective reliability s���� 
of the components to states as described in equation (2).  

There are O(h
t
) ways of allocating software components to OS processes. The 

total number of different architectures resulting from the application of fault tolerant style 

is O(max{wi}
t
). Thus, the size of the solution space for this optimization problem is 

O((max{wi}×h)
t
). Clearly the solution space is large, even for small values of w, h, and t. 

However, the solution space may be significantly pruned by imposing architectural 

constraints, such as the limit on the number of replications allowed. 

Many commonly available algorithms could be used to solve the above 

optimization problem. For small problems RESIST finds the optimal solution using 

Integer Programming Solvers. The details of the algorithm used by the solver is outside 

the scope of this thesis.  
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9. IMPLEMENTATION AND TOOL SUPPORT 

 

We have developed a prototype implementation of RESIST that integrates an 

extended version of XTEAM [22] as the environment for maintaining the structural, 

behavioral, and reliability models, and an open-source HMM toolbox for Matlab. 

Additionally, we have utilized off-the-shelf tools to perform the runtime reliability 

analysis and configuration selection. 

9.1. Architectural Modeling and Analysis 

XTEAM  is an extensible architectural modeling and analysis environment that 

supports modeling of a system’s software architecture using several well-known 

Architectural Description Languages. XTEAM uses Finite State Processes (FSP) [37] and 

xADL [45] for modeling the behavioral and structural properties of a system, 

respectively.  

XTEAM’s support for FSP was utilized to implement the state machine model of 

each component. Additionally, we extended the FSP support to include the specific 

requirement of RESIST. This includes the ability to define the conditions for failure 

transitions, and the capability of annotating the behavioral model with the transition 

probabilities between states in the system. Figure 5 depicts a snapshot of the reliability-

annotated FSP models for a subset of the robot’s software system. 
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We also extended the traditional xADL model support in XTEAM to model 

reliability properties of the architectural constructs, such as component reliability, and 

 

 
 

Figure 5. Reliability-annotated architectural model of a portion of  Controller’s behavioral model. 

As shown, the annotations in the behavioral model include the transition probabilities into the 

behavioral and failure states. 
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configuration reliability. Figure 6 depicts a snapshot of the reliability-annotated xADL 

models for a subset of the robot’s software system. 

9.2. Simulation and Runtime Monitoring 

For the purpose of collecting runtime monitoring data, we used XTEAM to 

generate simulation code, which was then executed to collect monitoring data consisting 

of observation data, such as state transitions and component interactions (recall section 

6). Executable architectural models were developed for the robotic subsystem using 

XTEAM, which were programmed to output observation data that correspond to (1) 

behavioral and failure transitions in the state models and, (2) state transitions in the form 

of component interactions. This data is written to data files from within the simulation 

 

 
 

Figure 6. Reliability-annotated architectural model of a portion of robot’s structural model. As 

shown, the architectural constructs such as components and connectors have been annotated with 

the reliability properties of the system. 
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code, and serve as input data to the reliability analysis module that performs reliability 

analysis of the components and the system, as described in Section 9.3. 

For simulating failure behavior, we injected faults into the system, which execute 

as per probabilistic distributions that are available in XTEAM. For example, the 

following code segment demonstrates an example that forces the system to transition into 

failed state from the estimating state with a probability of 0.05: 

 

if (NewRandom::uniform(0,1) < 0.05  

&& CurrentState -> value().compare("ESTIMATING") == 0) 

 NextState -> value()=("FAILED") 

 

9.3. Reliability Analysis 

We have used XTEAM’s API for accessing and modifying the reliability-

annotated models, which are then used to develop RESIST’s reliability analysis and 

proactive reconfiguration modules. RESIST’s analysis module reads the reliability-

annotated architectural models to generate the appropriate HMM, which together with the 

monitored observation data from the running system is then solved using Matlab’s HMM 

toolbox. An open source Matlab HMM toolbox was used for this purpose [35]. This 

toolbox provides algorithmic support for Baum-Welch algorithm, steady state vector, 

etc., which we have used to train and solve the HMM. The estimated reliability values are 

then used to find an optimal configuration for the system as described in Section 9.5. 
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9.4. Regression Analysis 

We have utilized Matlab’s support for regression analysis to obtain functions that 

correlates the system’s context to internal transition behavior (recall Section 6). We have 

used Matlab’s graphical curve-fitting tool to perform regression analysis on data 

collected from the system [36]. Figure 7 shows an example of the curve fitting toolbox 

that we have used to perform the regression analysis. 

9.5. Configuration Analysis 

In order to solve the optimization problem defined in Section 8, we utilized 

integer programming solver available in Microsoft Excel. Using this tool, the 

optimization problem is modeled in terms of decision variables and constraints, and 

solved using the built-in solvers. Since the optimization problem in RESIST is a non-

linear integer problem, the solver uses a branch-and-bound algorithm to search for a 

solution. Figure 8 shows the solver in action before and after the solver is executed. 
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Figure 7. Shown above is the Matlab Curve fitting tool that was used to perform regression 

analysis in order to correlate navigational complexity of the robot's environment to transition 

probabilities within the system. 
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Figure 8. Configuration Analyzer uses Microsoft Excel solver to solve the optimization problem. 

As shown above, the decision variables, constraints and utility functions are defined in Excel, and 

solved using the Excel solver. 
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10. EVALUATION 

 

We have evaluated RESIST using its prototype implementation and the mobile 

emergency response system described earlier. The evaluation consists of four criteria: (1) 

the impact of architectural reconfiguration decisions on the reliability of components and 

the system, (2) the validity of reliability prediction based on expected changes in the 

context, (3) the effectiveness of proactive system reconfiguration, and (4) the 

performance overhead of the runtime reliability analysis, and (5) the possibility of 

accurately correlating a system’s context and its architectural parameters. We used 

XTEAM to control the system’s operational profile (i.e., usage) and to gather runtime 

data. Neither the robotic software nor RESIST was controlled, which allowed them to 

behave as they would in practice. 

10.1. Impact of Reconfiguration 

We first evaluate our assertion regarding the impact of architectural 

reconfiguration on the system’s reliability by comparing the components’ and 

subsequently the system’s reliability under different configurations. In this set of 

experiments, we have manually injected defects in the Navigator with varied probability 

of failure. The failure probability for the Controller and one of the Heat Sensors 

components is fixed at 0 and 0.15, respectively. We have controlled the experiment by 

fixing both the usage profile and context. 
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Figure 9 shows the reliability estimates obtained for three different architectures 

as the Navigator’s failure probability increases. Part (a) shows the system reliability for 

the following three configurations: (1) Navigator and Controller are placed in the same 

process; (2) they are placed in separate processes; and (3) Controller remains in a 

separate process, the Navigator is replicated, and each replica placed in a separate 

process. In all configurations, the rest of the components in the system are placed in 

(a) (b)

(c) (d)
 

Figure 9.  (a) System reliability for 3 architectures; (b), (c), and (d) show component reliabilities 

for configurations 1, 2, and 3, respectively. 
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separate processes, and their failure probability is fixed at 0. Parts (b), (c), and (d) show 

the components’ reliability for configurations 1, 2, and 3, respectively. 

As shown in part (a), the different architectural configurations exhibit starkly 

different reliabilities, corroborating the impact of architectural decisions on system’s 

reliability. Configuration 1 results in the lowest system reliability as the Navigator’s 

failure probability increases, because the two components are placed on the same process. 

As shown in part (b), along with the increase in Navigator’s failure probability, the 

reliabilities of the Navigator and the Controller remain equal as they fail together, despite 

the fact that the Controller’s failure probability is 0. As expected, in Configuration 2, 

isolating the components to separate processes resulted in an overall improvement in 

system reliability. This is due to the fact that given the allocation of Controller and 

Navigator on separate processes, the effective Controller’s reliability is now increased to 

1, shown in part (c). In Configuration 3, the Navigator component is replicated. This 

configuration is the most reliable of the three. As shown in part (d), in contrast with 

reallocation to separate processes, replication does not impact the components’ reliability, 

but results in a system wide improvement. Finally, the Heat Sensor is unaffected 

throughout the experiments, as it is placed in a separate process. 

10.2. Validity of Reliability Prediction 

As described in Section 6, RESIST uses the system’s context to predict system’s 

near-future reliability by estimating the impact of contextual changes on a components’ 

internal behavior. We have examined the validity of our results by comparing RESIST’s 

predicted reliability values with those estimations obtained from the system’s actual 
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behavior. While we have evaluated the validity of our predictions for the entire system, in 

this section, we present details of the Controller’s reliability analysis.  

For this experiment, we controlled the influence of context by varying the 

probability of the robot encountering an obstacle on its path, which we refer to as bump 

probability. The bump probability correlates to the complexity of the terrain through 

which the robot navigates in order to accomplish an assigned task. An increase in the 

bump probability causes the Controller to transition from the moving state to the 

estimating state with a higher probability (recall Section 3), thereby altering its 

operational profile. The techniques presented in [19] together with multi-linear regression 

were used in our experiments to derive function � (recall Section 6) that estimates the 

 

Figure 10.  Accuracy of reliability predictions: (a) system reliability (b) Controller’s reliability. 

 



53 

 

impact of change in terrain to change in bump probability with ��30�� error at 95% 
confidence level. 

In addition to analyzing the effect of context, we varied the failure probability of 

the Controller, specifically the probability of failure from the estimating state. We 

compared RESIST’s reliability predictions with the actual observed reliability of the 

robot during operation. In this experiment, the Navigator and the Controller were placed 

in separate processes, and except for the Controller, all other components’ failure 

probability was fixed at 0. 

Figure 10 shows the comparison of predicted reliability and observed reliability in 

three execution scenarios where different bump probabilities were predicted, and varied 

the failure probability of the Controller component from 0 to 0.05. As shown, the 

Controller’s reliability decreases as the bump probability increases. This is because an 

increase in transitions to the estimating state leads to more failures. Further, the deviation 

between observed and predicted reliability both at the level of system and Controller are 

extremely small. Note that since the function �  used in the experiment had a 95% likely 
error bound of 2.1%, small deviation in results is to be expected.  However, the deviation 

is small enough that very accurate adaptation decisions could be made. 

10.3. Proactive Reconfiguration 

We evaluate RESIST’s ability to satisfy the system’s reliability requirement 

through proactive reconfiguration. We compared an instance of the robot using RESIST 

against one without RESIST. Results show that the latter successfully maintained the 
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initial configuration throughout its operation. The failure probabilities of all components 

in both instances were fixed. We varied the bump probability (effectively changing the 

context) and observed the proactive reconfiguration process. The robot was required to 

maintain a system reliability of at least 97% throughout its execution, which formed the 

constraint in our optimization problem. Initially, Navigator was placed in a separate 

process, and the other components were placed together in one process. This 

configuration was based on a design-time analysis of the system that satisfied the 

reliability requirement and minimized the resource utilization.  

For the purpose of predicting memory and CPU utilization of a given 

configuration, we used analytical models where the total memory and CPU utilization are 

computed in terms of the number of components, processes, and the average memory and 

CPU cycles required by the configuration. Given a configuration �, the following 
analytical models were used for computing memory utilization [���, and processing 
utilization T���:  

[��� � � F u�u& P H u�u�}���u�u{~{�� F �// 
T��� � � F �s�N& P H �s�N�}����s�N{~{�� F �// 

where; 

� � `eb�f���bc�i���cidb__b_�kf�dif�k��ca`kif�� 
N � f���bc�i��di��ifbf`_�kf�dif�k��ca`kif�� 
u�u& � a bca�b��b�ic¡�cb¢�kcbg��¡�a��cidb__� 
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u�u� � a bca�b��b�ic¡�cb¢�kcbg��¡�di��ifbf`�D 
u�u{~{�� � `i`a£��b�ic¡�a ak£a�£b 
�s�N& � a bca�b�¤¥¦�d¡d£b_�cb¢�kcbg��¡�a��cidb__ 
�s�N� � a bca�b�¤¥¦�d¡d£b_�cb¢�kcbg��¡�di��ifbf`�D 
�s�N{~{�� � `i`a£�¤¥¦�d¡d£b_�a ak£a�£b 

We use sigmoid curve functions to express utility functions for the three quality 

attributes of concern: 

x§+��{K���)o�>���� � �� P �Y&0���&&§�'�Yl&� 
xZ+�¨)���©{)�(�[���� � �� P �&0��Z�'�Yl&� 
xª*(}¨)���©{)�(�T���� � �� P �&0��ª�'�Yl&� 

where >���, [��� and T��� are reliability, memory utilization percentage, and 
CPU utilization percentage of configuration �. 

 The global utility function x«��� is computed as: 
x«��� � x§+��{K���)o�>���� P xZ+�¨)���©{)�(�[�����P�xª*(}¨)���©{)�(�T���� 
 

Figure 11(a) illustrates the comparison between the two instances of the robot as 

they maneuver the same area within a building with varying levels of complexity (i.e., 

obstacles). RESIST predicts the near future reliability of the system as it approaches an 

area with a complexity that is different from its current location. For instance, as the 

robot passes point B and before it reaches point C, RESIST anticipates a drop in 
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reliability (since the bump probability increases to 0.14) and proactively adapts the 

system to maintain its reliability above 97%. As a result, the Navigator is replicated and 

the Controller is redeployed to a separate process. This reconfiguration prevents the 

reliability from falling below the requirement. In contrast, the reliability of the robot 

without RESIST deteriorates significantly, falling below the 97% requirement.  

Figure 11(b) shows the effect of reconfiguration on the system’s resource 

utilization. For instance, at point C both CPU and memory utilization increase 

significantly due to the addition of the Navigator replica and separate processes. 

Similarly, RESIST continues to proactively manage the system’s configuration. In 

points F and I, in anticipation of a drop in reliability, RESIST proactively places the 

system in a more reliable configuration, albeit less efficient. On the other hand, in points 

D, G, and J, in anticipation of an improvement in reliability, RESIST proactively places 

 

Figure 11.  Context-aware proactive reconfiguration. (a) System reliability (b) Resource 

utilization efficiency. 
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the system in a more efficient configuration, while meeting the 97% reliability 

requirement. 

10.4. Overhead of Reliability Analysis 

Since RESIST is intended to manage situated software systems at runtime, it is 

important to assess the performance overhead of RESIST’s analysis. Table 1 shows the 

benchmarking results of RESIST’s reliability analysis on an Intel Core 2, 2.4 GHz, 2 GB 

RAM platform, which is representative of the average hardware capability present in 

modern mobile robots (e.g., [24]). The results show the time it took for performing the 

reliability analysis for varying number of commands (i.e., tasks sent to the robot). Each 

command on average resulted in 20 different monitoring observations (e.g., component 

interface invocations) to be collected and used for training the HMM. The benchmark in 

the largest scenario, consisting of 2,000 commands and 41,879 observations took 10.45 

seconds. However, in practice, our experience with the emergency response robot shows 

the analysis is often performed on much smaller number of observations, requiring only a 

fraction of a second for completion. 

Num. of Commands 10 50 100 250 500 1000 2000 

Num. of Observation 174 1062 1741 5874 9553 20028 41879 

Execution Time in Sec. 0.13 0.35 0.69 1.73 2.48 5.10 10.45 

 

Table 1. Execution Time of Reliability Analysis. 
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10.5. Relating Context to Architectural Parameters 

We have investigated the feasibility of accurately relating a system’s contextual 

parameters to its architectural parameters by deriving equations of the form (1) described 

in Section 3. As you may recall, such capability is required for prediction of component 

and system reliability. In this experiment we used the robotic system and changed its 

navigational complexity (i.e., a contextual parameter), and observed the changes in the 

bump probability (i.e., an architectural parameter) in the Controller’s operational profile. 

A correlation of the two parameters was derived by using linear regression. 

Figure 12 shows the data points derived for the bump probability, as the 

navigational complexity of the robot’s environment changed. As shown, the robot 

changes its behavior by employing three navigational strategies (a), (b), and (c), 

depending on the navigational complexity of its environment. Navigational strategies 

may correspond to the different types of routing approximation algorithms used by the 

Controller component as it guides the robot’s movement around obstacles. Thus, the 

relationship between bump probability and navigational complexity is represented in the 

form of three linear equations, as shown in Table 2. As shown both the goodness of fit 

error and the percentage error in each of the coefficients are negligible. This set of 

experiments demonstrated the feasibility of accurately correlating contextual factors to 

the architectural parameters. We believe a similar approach could be employed in many 

other domains.  

 

 



59 

 

 

 

 

(a)

(b)

(c)

 

Figure 12. Correlating the navigational complexity to the bump probability of the robot's 

Controller using linear regression. (a), (b), and (c) show equations derived for three navigation 

strategies used by the robot. 
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¬ Navigational Complexity �¬� Bump probability Goodness of fit 

Sum of Squares Error 

��������������������¬� Error % of coefficients in 

(for a 95% confidence 

level) / Q N Q /02 /05�14N� P �/0///42 /0///6227 �302���20�� 
/02 R N Q /04< /07�66N� P �/0/41�4 /0///7�3< �301���204� 
/04< R N Q � /0<62<N� P �/0�273 /0///13/1 �307���202� 

 

Table 2. Correlation between the robot’s navigational complexity and bump probability. 
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11. RELATED WORK 

 

In general, architecture-based software reliability analysis and prediction, has 

been studied extensively by the software engineering research community. However, the 

methods proposed are not suitable for runtime analysis and for proactive adaptation. In 

this chapter, we provide an overview of the previous works that have addressed the 

challenges of analyzing and predicting software reliability, and improving reliability of 

system through architecture-based adaptation. We also describe other software adaptation 

frameworks that are related to RESIST, where architecture-based adaptation is utilized in 

order to improve a system’s quality of service. Finally, we described previous work on 

context-aware middleware intended for situated software systems.  

11.1. Architecture-based Reliability Analysis 

Over the past three decades many software reliability approaches have been 

proposed. The approaches most relevant to our work are those that consider the system’s 

software architecture. They can broadly be categorized as design-time and runtime 

analysis. 

11.1.1. Design time Analysis 

• An approach to reliability analysis described in [13] presents an architecture-level 

risk analysis framework. The primary purpose of the approach is to help identify the 
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high-risk components and connectors of a system, based on data that can be collected 

early in the development process. 

• An approach presented in [26] is aimed at reliability analysis of component-based 

systems. This includes a reliability prediction algorithm which allows system 

architects to analyze reliability of the system before it is built, taking into account 

component reliability estimates and their anticipated usage. The approach is intended 

to guide the process of identifying critical components and analyze the effect of 

replacing them with the more/less reliable ones. 

• System reliability models described in [7][8][20] are targeted towards component-

based architectures where system reliability is computed in terms of the reliabilities of 

its components, (or services provided by components), and the probability of 

execution. Additionally, [20] presents ways in which a system’s architectural style 

can impact the manner in which a system’s reliability is computed, and presents 

reliability estimation techniques for styles such as pipe-and-filter, batch-sequential 

and fault-tolerant style. 

• An approach presented in [25] is aimed at a scenario-driven approach to computing 

reliability of software systems early in the lifecycle. Scenarios are partial descriptions 

of how components interact to provide system level functionality. This reliability 

model is specifically aimed at concurrent component-based software systems and 

describes a method to predict software system reliability as a function of component 

reliability estimates. Scenarios are used to analyze the possible paths in a concurrent 

software system through the use of probabilistic LTS and FSP. The approach 
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annotates a LTS graph of the system with probabilities of component failure, and 

scenario transition probabilities derived from an operational profile of the system. 

Finally, a Markov-based reliability model described in [38] is used to compute a 

reliability prediction from the system behavior model. 

• [9] Introduces a moving average reliability growth model to describe the evolution of 

component-based software. In this model, the reliability of a system is a function of 

the reliabilities of its constituent components. The moving average provides a trend 

indicator to depict reliability growth movement within the evolution of a series of 

component enhancements. The input parameters are the components’ configurations 

and individual reliability growths. The output is a vector of moving averaged system 

reliability growths indicating increasing component enhancement. The application of 

this model can facilitate cost/performance evaluation and support decision making for 

future software maintenance.  

The underlying assumptions in the above approaches make them unsuitable for 

use in the domain of situated, dynamic, and mobile systems. Majority of these approaches 

focus on system-level analysis and assume the reliabilities of the software components 

are fixed and known. Moreover, many of these approaches assume (sometimes 

implicitly) that the operational profile of the system is known and does not change at 

runtime. Finally, none considers the impact of contextual change on the software 

system’s reliability. Three recent surveys [12][14][15] corroborate these observations.  

Our past research has addressed some of the uncertainties associated with design-

time reliability analysis by incorporating various sources of information [18][27]. We 
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also identified the challenges of reliability analysis in the mobile domain [28]. Our 

objective was to provide rough reliability predictions early in the software life-cycle 

when an implementation of the system is not available. In contrast to our previous work, 

in RESIST, we are concerned with runtime reliability of the system and rely on the 

availability of its implementation. Moreover, we incorporate latest operational and 

contextual information to predict the system’s reliability and proactively place it in the 

optimal configuration. 

11.1.2. Runtime Analysis 

Few approaches combine software architecture and reliability analysis using 

runtime data [29][30].  

• An approach presented in [30] addresses the problem of reliability prediction through 

reliability forecasting. Aimed at distributed computing environments, a statistical 

model is used for determining the suitable algorithms related to performance 

requirements for each specific application. While this technique is suitable for 

traditional desktop systems, it is unsuitable for systems situated in highly dynamic 

and mobile settings where statistical forecasting offers little help. 

• KAMI framework [29] provides continuous dependability analysis using a model-

driven approach. Specifically, KAMI uses runtime data to update the parameters of 

reliability and performance models. The focus of RESIST has been different from 

KAMI. KAMI reactively adjusts the system’s models, while RESIST proactively 

predicts near future reliability of the system. Moreover, unlike KAMI, RESIST 

furnishes reliability predictions at the component level. We believe KAMI and 
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RESIST to be complementary, as the continuous refinement of parameters in KAMI 

could be utilized in updating RESIST’s reliability models.  

11.2. Architecture-based Adaptation Frameworks 

Run-time adaptation of software systems has been studied extensively by the 

software engineering research community [2][46]. Of these, the work related to RESIST 

are the architecture-based adaptation frameworks.  

• IBM’s Autonomic Computing initiative [39] proposed the MAPE reference model 

which consists of hierarchically structured feedback control loops. Each loop which is 

encapsulated within an Autonomic Manager consists of the four phases: Monitor, 

Analyze, Plan, and Execute. The lowest levels of the Autonomic Managers are 

responsible for directly managing resources, while the higher levels orchestrate the 

lower Autonomic Managers in order to meet the system’s intended goals. 

• A framework presented in [40] by Oreizy et al. describe an architecture-based 

approach to run-time adaptation and evolution management, in which an explicit 

architectural model is deployed with the system and is used as a basis for change. 

Further they highlight the role of software connectors in supporting change 

management. 

• The Rainbow framework [41] present, a style-based approach for developing reusable 

self-adaptive systems. Rainbow monitors a running system for violation of the 

invariants imposed by the architectural model, and applies the appropriate adaptation 

strategy to resolve such violations. 
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• The Three-Layer architectural model for self-managed systems presented by Kramer 

and Magee [3] consists of the layers of Component Control, Change Management and 

Goal Management. The bottom-most layer which is the Component Control layer 

provides facilities to report the current status of components to higher layers as well 

as to add, remove components. The Change Management layer reacts to changes 

reported from the lower layer and executes plans. Goal Management layer, which is 

the top-most layer produces change management plans in response to requests from 

the layer below, and in response to the introduction of new system goals. 

In contrast to the frameworks described above, RESIST is narrowly aimed at 

improving the reliability of dynamic situated systems. While none of the existing 

frameworks directly achieves our objectives, they form the foundation of our research. In 

fact, our framework is compatible with the widely accepted three layer reference model 

of self-adaptation [3] as well as the MAPE model [39]. Moreover, in contrast to RESIST, 

none of the above frameworks are aimed at supporting proactive adaptation of the 

software system. 

In addition the following utility-driven dynamic reconfiguration models are 

related to RESIST. 

• Poladian et al. propose an approach to dynamically configure software based on 

availability of resources [43]. Given a user’s task, the framework selects an 

appropriate set of services to carry out the task and allocates available computing 

resources to them. Additionally, the applications or resources assignments are 

reconfigured as the situation changes. 
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• A framework for Anticipatory Dynamic Adaptation [44] presented by Poladian et al. 

is aimed at self adapting a system by allocating resources to applications in 

anticipation of future resource availability. It leverages predictions of future resource 

availability to improve utility for the user over the duration of the task, rather than 

reconfiguring reactively. Additionally, the framework considers chooses sequences of 

configurations over the duration of the task, and maximizes the expected value of 

utility accrued over the duration of the task. 

RESIST primarily differ from the above models it is aimed at arriving at 

reliability predictions amidst changing context, and placing the system in a more reliable 

configuration subject to other quality attributes (e.g., resources consumption). In contrast, 

the above work assumes that the relationship between quality dimensions and resource 

availability is known apriori through the use of application profiles.  

11.3. Context-aware Middleware Frameworks 

Finally, related is previous research on context-aware middleware intended for 

mobile and ubiquitous software systems.  

• Aura [32] is an architectural style and supporting middleware for ubiquitous 

computing applications with a special focus on user mobility, context awareness, and 

context switching. In Aura, a user’s task becomes a first class entity, which is 

represented explicitly in a manner independent from a specific environment. These 

tasks are represented as a coalition of required services, and the architecture is 
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equipped with the capability to self-monitor and renegotiate task support as the 

available resources vary at runtime.   

• XMIDDLE [33] is a middleware that supports application engineers to deal with data 

inconsistency problems caused by mobility, such as low bandwidth, context changes 

or loss of connectivity. During disconnection, users will typically update local 

replicas of shared data independently from each other. The resulting inconsistent 

replicas need to be reconciled upon re-connection. XMIDDLE supports building 

mobile applications that use replication and reconciliation over ad-hoc networks. 

XMIDDLE uses reflection capabilities to allow application engineers to influence 

replication and reconciliation techniques.  

• MobiPADS [1] is a reflective middleware that supports active deployment of 

augmented services for mobile computing. It is designed to support context-aware 

processing by providing an executing platform to enable active service deployment 

and reconfiguration of the service composition in response to environments of 

varying contexts. The adaptation takes place at both the middleware and application 

layers to provide configuration of resources to optimize the operations of mobile 

applications. 

• Lime [34] is a Java-based middleware that provides a coordination layer that can be 

exploited for designing applications which exhibit either logical or physical mobility, 

or both.  

• CARISMA [47], is a mobile computing middleware which exploits the principle of 

reflection to enhance the construction of adaptive and context-aware mobile 
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applications. The middleware maintains a valid representation of the execution 

context, by directly interacting with the underlying network operating system. To 

enhance the development of context-aware applications, CARISMA provides 

application engineers with an abstraction of the middleware as a customizable service 

provider. In particular, the behavior of the middleware with respect to a specific 

application is described as a set of associations between the services that the 

middleware customizes, the policies that can be applied to deliver the services, and 

the context configurations that must hold in order for a policy to be applied. 

Unlike RESIST, none of the above frameworks and middleware provides 

reliability-driven support for optimization of situated software systems through proactive 

adaptation. 
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12. CONCLUSIONS 

 

Software systems are increasingly situated in mission critical settings, which 

present stringent reliability requirements. These systems are predominantly mobile, 

embedded, and pervasive, which are innately dynamic and unpredictable. In turn, no 

particular configuration of the system is optimal for the system’s entire operational life-

time. We presented RESIST, a framework intended to satisfy the reliability requirements, 

while taking into consideration other quality attributes (e.g., efficiency) through proactive 

reconfiguration of the software.  

12.1. Contributions 

The three key contributions of RESIST are: (1) incorporation of multiple sources 

of information, in particular contextual information, to provide refined reliability 

predictions at runtime; (2) automatically find the optimal architectural configuration that 

achieves the appropriate-level of tradeoff between reliability and other quality attributes; 

and (3) proactively adapt the system by positioning it in the optimal configuration before 

the system’s reliability degrades.  

12.2. Future work 

In our future work, we intend to evaluate the scalability of RESIST in large-scale 

software systems comprising of hundreds of components and hardware hosts. We also 
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intend to increase the types of reconfiguration decisions and dependability tradeoffs that 

RESIST supports. Finally, we plan to investigate the use of other stochastic approaches 

(e.g., Dynamic Bayesian Networks, and Hierarchical HMM) and potentially integration 

with KAMI [29] to support incremental refinement of DTMC parameters, as opposed to 

periodic assessment of the reliability at runtime. 
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