

RESISTING RELIABILITY DEGRADATION

THROUGH PROACTIVE RECONFIGURATION

by

Deshan Cooray

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

In Partial fulfillment of

The Requirements for the Degree

of

Master of Science

Software Engineering

Committee:

_________________________________ Dr. Sam Malek, Thesis Director

_________________________________ Dr. Paul Ammann, Committee Member

_________________________________ Dr. Joao Pedro Sousa, Committee Member

_________________________________ Dr. Roshanak Roshandel, Committee

Member

_________________________________ Dr. Hassan Gomaa, Department Chair

_________________________________ Dr. Lloyd J. Griffiths, Dean, The Volgenau

School of Information Technology and

Engineering

Date:_____________________________ Summer Semester 2010

George Mason University, Fairfax, VA

Resisting Reliability Degradation through Proactive Reconfiguration

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

by

Deshan Cooray

Director: Sam Malek, Assistant Professor

Department of Computer Science

Summer Semester 2010

George Mason University

Fairfax, VA

ii

Copyright 2010 Deshan Cooray

All Rights Reserved

iii

DEDICATION

To my family

iv

ACKNOWLEDGEMENTS

First and foremost I owe my deepest gratitude to my advisor, Dr. Sam Malek, for his

support and guidance during the last year and a half. It has been a privilege to have

worked with such an inspirational individual and I am grateful for all he has taught me. I

would also like to thank the other members of my committee, Dr. Roshanak Roshandel,

Dr. Paul Ammann, and Dr. Joao Sousa for their guidance, feedback and devoting time

from their busy schedules.

My sincere thanks also go out to my colleagues and friends of the Software Engineering

research group. I appreciate the help you extended at all times, and my special thanks go

out to David Kilgore for his significant contributions to the development of RESIST.

I have been blessed with family and friends who have been supportive throughout my

years at George Mason University. To my dear parents, Myrna and Bertram, and brothers

Jude, Sajith and Geekz - I am forever grateful for all the sacrifices you have made for me.

Last but not least, I would like to thank my fiancée Ashantha for all her love, support, and

encouragement.

v

TABLE OF CONTENTS

Page

List of Tables .. vii

List of Figures .. viii

List of Abbreviations ... ix

Abstract ... x

1. Introduction ... 1

1.1. Research Hypotheses ... 3

1.1.1. Architecture-based Software Reliability Prediction 3

1.1.2. Proactive Architecture-based Adaptation ... 4

2. Motivating Example .. 5

3. Impact of Context on Architecture .. 8

4. Framework Overview ... 14

5. Reliability and Failure Model ... 17

6. Reliability Analysis and Prediction ... 19

6.1. Component Reliability Analysis .. 21

6.2. Context-aware Component Reliability Prediction 23

6.3. Configuration Reliability Analysis .. 27

6.4. Context-aware Configuration Reliability Prediction 32

7. Reliability of Alternative Architectures .. 35

7.1. Impact of Architectural Style ... 35

7.2. Impact of Deployment Architecture .. 36

8. Configuration Selection .. 38

9. Implementation and Tool Support .. 42

9.1. Architectural Modeling and Analysis .. 42

vi

9.2. Simulation and Runtime Monitoring ... 44

9.3. Reliability Analysis .. 45

9.4. Regression Analysis ... 46

9.5. Configuration Analysis .. 46

10. Evaluation ... 49

10.1. Impact of Reconfiguration ... 49

10.2. Validity of Reliability Prediction ... 51

10.3. Proactive Reconfiguration ... 53

10.4. Overhead of Reliability Analysis ... 57

10.5. Relating Context to Architectural Parameters 58

11. Related Work .. 61

11.1. Architecture-based Reliability Analysis .. 61

11.1.1. Design time Analysis .. 61

11.1.2. Runtime Analysis ... 64

11.2. Architecture-based Adaptation Frameworks 65

11.3. Context-aware Middleware Frameworks ... 67

12. Conclusions ... 70

12.1. Contributions.. 70

12.2. Future work .. 70

References ... 73

vii

LIST OF TABLES

Page

Table 1. Execution Time of Reliability Analysis .. 57

Table 2. Correlation between robot’s navigational complexity and bump probability 60

viii

LIST OF FIGURES

Page

Figure 1. Component-to-process allocation alternatives ... 6

Figure 2. Robot's architecture .. 10

Figure 3. Overview of RESIST framework ... 14

Figure 4. State model for the robot .. 30

Figure 5. Reliability-annotated architectural model (behavior) .. 43

Figure 6. Reliability-annotated architectural model (structure) .. 44

Figure 7. Matlab Curve fitting tool ... 47

Figure 8. Microsoft Excel solver ... 48

Figure 9. Impact of reconfiguration on system reliability .. 50

Figure 10. Accuracy of reliability predictions ... 52

Figure 11. Context-aware proactive reconfiguration ... 56

Figure 12. Correlation between robot’s navigational complexity and bump probability . 59

ix

LIST OF ABBREVIATIONS

RESIST – Resilient Situated Software System

xADL – Extensible Architecture Description Language

FSP – Finite State Processes

UML – Unified Modeling Language

SOP – Software Operational Profile

DTMC – Discrete Time Markov Chain

HMM – Hidden Markov Model

XTEAM - eXtensible Tool-chain for Evaluation of Architectural Models

LTS - Labeled Transition System

ABSTRACT

RESISTING RELIABILITY DEGRADATION THROUGH PROACTIVE

RECONFIGURATION

Deshan Cooray, M.S.

George Mason University, 2010

Thesis Director: Dr. Sam Malek

Situated software systems are an emerging class of systems that are

predominantly pervasive, embedded, and mobile. They are marked with a high degree of

unpredictability and dynamism in the execution context. At the same time, such systems

often need to satisfy strict reliability requirements. Most current software reliability

analysis approaches are not suitable for situated software systems. We propose an

approach geared to such systems, which continuously furnishes refined reliability

predictions at runtime by incorporating various sources of information. The reliability

predictions are leveraged to proactively place the software in the optimal configuration

with respect to changing conditions. Our approach considers two representative

architectural reconfiguration decisions that impact the system’s reliability: reallocation of

components to processes and changing the architectural style. We have realized the

approach as part of a framework intended for mission-critical settings, called REsilient

SItuated SofTware system (RESIST), and evaluated it using a mobile emergency

response system.

1

1. INTRODUCTION

Software systems are fast permeating a variety of domains, including emergency

response, industrial automation, navigation, health care, power grid, and civil

infrastructure. We call this emerging class of systems situated software systems, which

are predominantly mobile, embedded, and pervasive. They are characterized by their

highly dynamic configuration, unknown operational profile, and fluctuating conditions.

At the same time, given the mission critical nature of the domains in which they are

deployed (e.g., emergency response), majority of situated systems are expected to satisfy

stringent reliability requirements.

Engineers of a situated software system typically spend significant effort to

determine a good configuration for the system to ensure its adherence to functional and

non-functional requirements. For instance, they may perform a trade-off analysis between

the system’s efficiency and reliability when they decide the allocation of software

components to operating system (OS) processes. Clearly the overall reliability of such

systems depends on problems both internal (e.g., software bugs) and external (e.g.,

network disconnection, hardware failure) to the software. The key underlying insight in

our research is that some internal software problems may manifest themselves only under

certain dynamic characteristics external to the software (e.g., physical location), which is

traditionally referred to as context [1].

2

Due to variability in the execution context, the optimal configuration for a

situated system cannot be determined prior to its deployment, and no particular

configuration can be optimal for the system’s entire operational lifetime. Thus, runtime

reconfiguration of the system may be necessary to achieve the system’s maximum

potential. Given the mission critical nature of situated systems, we define the optimal

configuration as one that satisfies the reliability requirement, while taking into

consideration other quality attributes of concern (e.g., efficiency).

In this thesis, we describe and evaluate REsilient SItuated SofTware system

(RESIST), a framework intended to address reliability concerns in mission critical,

dynamic, and mobile setting. RESIST furnishes a compositional approach to reliability

estimation starting with analysis at the component level, which in turn makes it possible

to assess the impact of adaptation choices on the system’s reliability. The analysis is

performed continuously at runtime by incorporating various sources of information. In

addition to the architectural models and the monitoring data, RESIST incorporates

contextual information to predict the reliability of the system in its near future operation.

RESIST uses the reliability predictions to (1) proactively determine when the

system should be adapted, and (2) find the optimal configuration for the near future

operation of the system. Our evaluations show that our reliability predictions are accurate

with respect to the observed system reliability. We thus consider the predicted reliability

as an indicator for decision making. An important contribution of our work is proactive

adaptation based on our reliability analysis that reconfigures the system at runtime prior

3

to actual reliability degradation. This trait clearly sets our work apart from the majority of

existing self-adaptive frameworks that are reactive in their decision making [2][3].

We have developed a prototype implementation of RESIST on top of a tool-suite,

which consists of an existing context-aware architectural middleware integrated with a

visual architectural modeling and analysis environment. Finally, RESIST is evaluated

using a robotics emergency response system.

1.1. Research Hypotheses

This research investigates the following hypotheses.

1.1.1. Architecture-based Software Reliability Prediction

Insight: Some internal software problems may manifest themselves only under

certain dynamic characteristics external to the software (e.g., a system’s physical

environment) which is traditionally referred to as context. The execution context of many

software systems can be determined a priori (e.g., an ecommerce system experiences

higher workload certain times of the year).

Insight: Knowledge embodied in a system’s architectural models (e.g., behavioral

and structural models of the components and the system) could be used to reason about

its runtime characteristics, including its reliability.

Hypothesis #1: Given the future execution context of a software system and its

architectural models, it is possible to estimate the future reliability of the system and its

components.

4

1.1.2. Proactive Architecture-based Adaptation

Insight: A software system’s architectural configuration (e.g., architectural style,

deployment architecture) has a significant impact on the system’s quality attributes.

Insight: Due to variability in the execution context, the optimal configuration for

a software system cannot be determined prior to its deployment, and no particular

configuration can be optimal for the system’s entire operational lifetime.

Hypothesis #2: Context-driven reliability predictions could be employed to

improve the resilience of a software system to failures through proactive architecture-

based adaptation.

The remainder of this thesis is organized as follows. Chapter 2 presents a

motivating example, and Chapter 3 describes the impact of context on the architecture of

a system. Chapter 4 provides a high-level overview of the RESIST framework, while

Chapter 5 presents its failure model. Chapter 6 presents the component-level and

configuration-level reliability models. Chapter 7 describes the alternative architectural

configurations aimed at improving reliability. Chapter 8 details the configuration

selection process. Chapter 9 describes the implementation and tool support for RESIST,

while Chapter 10 presents a detailed evaluation of the work. Chapter 11 describes the

related work, and finally Chapter 12 present concluding remarks for the thesis and

avenues of future research.

5

2. MOTIVATING EXAMPLE

Emergency response is a domain that entails a high degree of mission criticality.

Software systems designed for this domain thus have stringent reliability requirements.

As a motivating example, consider a mobile distributed emergency response system

intended to aid the emergency personnel in fire crises, a prototype of which was

developed in our previous work [4]. This system consists of several entities, including a

central dispatcher that serves as the “Headquarters” for coordinating the crew activities,

smart fire engines that are designed to alert the dispatcher of the current location of the

vehicle and provide its occupant with information concerning the crisis scene, firefighters

equipped with PDAs capable of controlling the robots and sensors, and mobile robots that

execute the high-level commands.

While the entire system is highly dynamic and could benefit from our approach,

for the clarity of exposition we focus on the robotic subsystem. A robot consists of

several electronic sensors and mechanical actuators that allow it to autonomously

navigate, detect smoke, stream video, and extinguish fire. It is constrained by limited

battery life, memory, processing speed, and connectivity. Architectural design choices

affecting the system at runtime aim at accommodating these constraints.

An example architectural strategy for improving the system’s efficiency is to use

a thread-based architecture. Software components are deployed as separate threads within

6

a single OS process, thus allowing for the resources (e.g., stack memory) to be shared

among components, while avoiding the overhead (e.g., context switching) associated with

managing many separate processes. However, since a process may exit prematurely due

to an errant thread, a disadvantage of the thread-based model is a potential decrease in

system reliability.

Figure 1 (a) and (b) show two alternative allocations of the robot’s software

Figure 1. Component-to-process allocation alternatives: (a) All components allocated to the same

process, (b) Controller and Navigator allocated to separate processes, and (c) Controller allocated

to separate process, and the Navigator is replicated and placed in separate processes.

7

components to OS processes. Based on the above discussion, from a system’s perspective

it is reasonable to expect the architecture depicted in Figure 1(a) to be more efficient,

while the one depicted in Figure 1(b) to be more reliable. Determining the best

configuration depends on (1) the device’s fluctuating resources (e.g., memory and CPU

utilization, available battery), and (2) the reliability of the system’s constituent

components, which as detailed later may vary due to changes in context.

The above scenario demonstrates the impact of architectural decisions on

system’s quality attributes. Such decisions while critical to system’s dependability cannot

be made effectively at design-time. It is only reasonable to assume that some of these

decisions must be made at runtime, requiring specialized methodologies that

continuously evaluate the impact of these decisions on system’s dependability. We use

this system in the remainder of the thesis to describe and evaluate our approach.

8

3. IMPACT OF CONTEXT ON ARCHITECTURE

Any type of information that characterizes the runtime conditions of the system,

and alters its behavior can be considered its context [5]. A system’s context may consist

of several different aspects of its changing execution environment that could potentially

impact the behavior and properties of a system. Among them three main categories of

context can be identified [5][6];

• Computing Environment, such as the available resources, including CPU, network

bandwidth, battery power.

• User Environment, such as the user’s location, social situation, and an ongoing

activity.

• Physical Environment, such as near-by objects, the amount of light, and

temperature.

A context-aware system uses knowledge about its context to provide relevant

information and/or services to the user [5]. While in some systems contextual information

is directly used to provide services to the user, in some others contextual information is

used to optimize the manner in which services are provided to the user. For example, a

GPS enabled mobile phone which displays a map based on the user’s location considers

the location as an input to the service that is provided. In contrast, a mobile robot engaged

in firefighting may need to reconfigure itself depending on its contextual characteristics

9

so that its dependability is optimal with respect to other quality attributes such as resource

usage. As described in the next section, RESIST is aimed at the second class of systems.

Specifically, RESIST uses the system’s context to perform architectural reconfiguration

of the system so that it remains resilient in the face of degrading reliability.

Changes to the operational context of a system impact its runtime behavior which

in turn could potentially impact the system’s quality attributes such as reliability. In

architecture-based adaptation the system’s software architecture forms the basis for

adaptation reasoning. Consequently, we argue that it is important to be able to model the

effect of changes in the context on a system’s architecture as a first class entity. In our

work, we adopt a broad interpretation of system’s architecture, which simply captures the

knowledge about the system. This knowledge includes many different aspects of the

system, including the principle design decisions about the system, its structure and

behavioral models, as well as behavioral properties of the system captured in the form of

an operational profile model.

To exemplify the effect the context has on a system’s architecture, below we

present how the mobile nature of a robotic system introduces contextual changes that can

impact its operational profile, and in-turn its reliability. Figure 2(a) shows the

architectural models of the mobile robot. It receives a command from an external system

such as a PDA, and returns the result of executing the command. Upon receiving a

command, it uses its Sensors to gather data about its environment, such as near-by

obstacles and proximity to heat, and determines a plan and executes it using its Navigator

and Actuator components, respectively. Figure 2(b) shows the robot’s Controller

10

component’s behavioral model in the form of a UML state chart. It includes behavioral

states idle, estimating, planning and moving, during which the Controller invokes

interactions with the other components in the system (i.e., Sensors, Actuator, Navigator,

etc.). The failed state denotes a common failure state of the component. Transitions O1 to

estimation complete /

plan (O
2)

pl
an
ni
ng
 c
om
pl
et
e
/

m
ov
e
(O
3
)

m
ov
in
g
co
m
pl
et
e
/

pl
an
 (O

4
)

fa
ilu
re
 (F
1
)

Figure 2. Robot's architecture: (a) robot’s structural model, and (b) the behavioral model of the

robot’s Controller

11

O6 denote behavioral transitions resulting from input events such as interface calls on the

component. Transitions F1 to F3 denote a failure that may arise under some

circumstances. Such failures are caused by faults in the software that could lead to a

failure. Transition S denotes eventual recovery of the component as a result of automatic

or manual re-initialization of the component.

This behavioral model depicts both the robot’s internal behavior as well as

interactions with the external environment. For example, O1 corresponds to an input task

from the user, and O5 corresponds to bump events triggered from the physical

environment as a result of colliding with, or being within close proximity of an obstacle.

Changes in the contextual environment may impact the frequency of these input events,

which in turn alters the frequency of these two state transitions O1 and O5. The resulting

changes in the execution frequency of the states in turn change the frequency of failures

as well. For example, if the estimating state happens to be a state from which failures

happen frequently, situations in which robot navigates through a dense terrain can

increase bump events, which consequently increases the frequency of transition to the

estimating state, and thus the probability of component failure. Thus in this example, the

contextual changes resulting from the robot’s mobility, in turn impacts the component’s

reliability.

The impact of the system’s context is not limited to internal changes in the

component behavior, as they may also change the manner in which components interact,

and thus influence the system’s reliability. For example, the Controller interacts with the

Sensors in order to perform estimations prior to planning its navigation route. However,

12

if the number of bump events increases, the Controller interacts with the Sensors with a

higher frequency in order to perform re-estimations. Thus, the impact of the Sensor

components’ reliability on system’s reliability depends on how frequently the Controller

needs to interact with the Sensors, which is in turn determined by location dependent

contextual information such as the complexity of the terrain (i.e. the probability of

bumps).

Therefore the changes in context and its effect on the system’s architecture can be

modeled as follows:

• A set of contextual parameters�� � ���� � � ��	, which includes any information
about a system’s context that impacts the system

• A set of architectural parameters�
 � �
�� � �
�	, which includes architectural
properties that change as a result of the system’s context

• A set of interactions � � ���� � � �	 between contextual and architectural
parameters where in each interaction, one or more contextual parameters cause a

change in an architectural parameter

• A set of functions that captures the effect of the above interactions on

architectural parameters. ��� � �, these functions are of the form:

��� ���� �
����������������������������

where ���� denotes the power set of contextual parameters.

13

Considering the robotic system described above as an illustration, the probability

of the robot encountering an obstacle on its path is an example of a contextual parameter

which changes as a result of its mobility. This contextual parameter has an effect on two

architectural parameters: the transition probability from moving to estimating state in the

Controller, and the probability that the Controller interacts with the Sensor components.

In this illustration we have described two points of interaction between the contextual

parameter and architectural parameters. However in any sizable system one could expect

multiple points of interaction, which further highlight the importance of properly

modeling and incorporating context in engineering mobile systems.

In the next section, we present an overview of the RESIST framework and in the

subsequent sections we show how a system’s contextual parameters together with their

interactions with architectural parameters can be used in predicting a system’s reliability

and optimizing its architecture.

14

4. FRAMEWORK OVERVIEW

An overview of RESIST framework is depicted in Figure 3. The process is

organized as a feedback control loop that continuously monitors, analyzes, and adapts the

system at runtime. RESIST consists of three conceptual software components.

At design-time and before the system’s implementation is complete, an initial set

Figure 3. Overview of RESIST framework, which is organized as a feedback control loop that

continuously monitors, analyzes, and adapts the system at runtime.

15

of architecture-based reliability models are developed. These models are used at runtime

to assess a variety of configuration choices and to serve as predictors for the future

reliability of the system. Unlike the traditional architectural models, they embody

contextual properties necessary for reliability analysis of situated systems. As described

below, these models are expected to be updated and refined at runtime.

Architecture-based reliability models along with contextual and monitoring

information obtained from the system are used by the Component-Level Reliability

Analyzer to predict the reliability of system’s components in their near future operation.

These fine-grained reliability estimates are used by the Configuration Reliability

Analyzer to determine the reliability of alternative configurations for the system. The

Configuration Selector is in turn used to select a suitable configuration for the near future

operation of the system. The configuration selector may use other quality attributes, such

as performance, in the selection process. The process for obtaining and estimating these

properties is beyond the scope of this thesis, which is focused on reliability concerns.

Once a new configuration is selected, the Context-Aware Middleware adapts the

system at runtime to reflect the changes in configuration. The Context-Aware Middleware

provides support for execution, monitoring, and adaptation of a software system in terms

of its architectural constructs (e.g., components, connectors, and configuration). At

runtime, the middleware monitors the software system for information that is used to

refine the reliability predictions. This information is obtained from multiple sources, such

as monitoring internal (e.g., frequency of failures, exceptions, and service requests) and

external (e.g., network fluctuations, battery charge) software properties, changes in the

16

structure of the software (e.g., disconnection of components due to network drop outs,

off-loading of components due to drained battery), and contextual properties (e.g.,

physical location). Since the monitored data represents the most recent operational,

structural, and contextual profile of the system’s execution, it can be used to assess the

system reliability more accurately. Note that unlike previous approaches [7][8][9] we do

not rely solely on the monitoring data. Instead, we incorporate architectural knowledge,

monitoring data, and contextual changes at runtime in a complementary fashion to

produce more accurate results.

17

5. RELIABILITY AND FAILURE MODEL

RESIST estimates reliability as the probability that a system performs its required

functions under stated conditions for a specified period of time [10]. In situated software

systems, given the ongoing changes in system’s operational conditions, the reliability

may change over time. We consider a failure to be an inconsistent behavior of a system

with respect to its specification. Faults are caused by defects (e.g., software or hardware

error), and are abnormal conditions that may cause a reduction in, or loss of, the

capability of a functional unit to perform a required function. Thus, faults are causes of

failures [10].

Consistent with other architecture-based reliability approaches [12][13][14][15]

we assume that the occurrence of a failure is stochastic and that components failure

model is fail-stop. Failures are thus reliably detectable by middleware facilities.

Furthermore, failed components are assumed to eventually (automatically or manually)

recover and resume normal behavior.

We consider two types of failure in RESIST: component and process failures.

Component failure is caused by a fault within the component’s implementation. Its

effects are contained within the boundary of the component except when it causes a

process to fail. Process failure occurs when one of the components running as a thread

18

within a process exits prematurely, causing the OS process, including all of the

components deployed on it, to fail.

RESIST’s reliability model is targeted at distinguishing among alternative

architectural configurations, and thus does not consider failures (e.g., wrong results,

mismatched data type) that cannot be resolved through architectural means. We assume

either such defects are detected during the construction of the system or the failure is

contained within the component in which the fault occurred (e.g., through the use of

appropriate pre- and post-conditions). While RESIST could be extended to accommodate

these additional types of failures, we do not believe such failures could be treated

effectively through architectural reconfiguration.

19

6. RELIABILITY ANALYSIS AND PREDICTION

Structural and behavioral knowledge embedded in software architectural models

provide an appropriate level of abstraction from which reasoning about system’s quality

attributes is feasible [11][50]. Architectural models are typically compositional: structure

and behavior of complex systems are described in terms of their constituent components.

Despite this however, as identified by recent surveys [12][14][15], majority of existing

architecture-based reliability modeling approaches largely focus on analysis at the system

level alone. Moreover, those approaches that incorporate individual component

reliabilities into analysis, assume that component reliabilities are known apriori.

Consequently, existing approaches are not suitable for situated systems, where the

reliabilities of components and system fluctuate with the context in which they operate. A

purely system-wide analysis offers little help in optimizing the system’s architecture in

this setting. As described in Section 3, reliability analysis must be performed while

considering behavioral changes both within components, as well as interactions between

them.

Therefore, as shown in Figure 3, RESIST performs the reliability analysis at two

levels: at component level, and subsequently at configuration level. At both levels,

architecture-based reliability techniques are used in conjunction with monitoring

information obtained from the system and its context. While RESIST uses architectural

20

models of the system to facilitate this process, performing architecture-aware reliability

analysis enables architecture-based adaptation techniques to be utilized in order to

improve or maintain the system’s reliability. Moreover, since the context impacts both

the internal behavior of components and the interactions among them, RESIST

incorporates context information into the reliability analysis at both component and

configuration level.

In order to perform reliability analysis and prediction, RESIST considers the

Software Operational Profile (SOP) of components and the system, which enables it to

quantify behavioral properties of the system that affects its reliability at each level. SOP

represents the set of executions that take place in a software program along with the

probabilities with which they will occur in a given environment [10][48][49]. As

described in Section 3, the probabilities in the SOP may be affected by changes in the

system’s context. Therefore in this case, we model these probabilities in the SOP as

relevant architectural parameters.

For the purpose of modeling the SOP of components and the system, we use

existing techniques based on Discrete Time Markov Chains (DTMC). A DTMC is

defined as a stochastic process with a set of states � � ���� ��� � � �	 and a transition
matrix�
 � ����	, where ��� is the probability of transitioning from state �� to state���.
Once the operational profile of the system in the form of a DTMC has been estimated, the

context information is used to update the transition probabilities in the DTMC, so that it

reflects the future operational profile. This enables us to capture behavioral changes

expected in the system’s new environment which in turns enables reliability prediction.

21

Our reliability models used for component and configuration reliability prediction

rely on Hidden Markov Models (HMMs) [16] to estimate the transition probabilities of

the DTMC (i.e., the transition probabilities in matrix�� mentioned above). As confirmed
by our previous results [18], HMMs can be used to learn from runtime data and to obtain

transition probabilities. An HMM is defined by a set of states � � ���� ��� � � �	, a
transition matrix
 � ����	 representing the probabilities of transitions between states, a
set of observations � � ���� ��� � � ��	, and an observation probability matrix � �
��� 	, which represents the probability of observing event � in state ��. The sets � and �
of the HMM come from architectural models of the system while runtime data obtained

through monitoring becomes training data for the HMM.

We use the Baum-Welch algorithm [16] to train and solve the HMM. The training

data used as input to this algorithm consists of sequences of observations. Given an initial

HMM constructed as described above, the Baum-Welch algorithm converges on the

transition matrix A. We use this technique to derive the SOP for both components and the

system. In the next sections, we elaborate the techniques used to estimate the SOP and

how they are used in predicting reliability of components and configurations.

6.1. Component Reliability Analysis

In the case of component reliability, the states (i.e. set �) and observations (i.e. set
�) are identified using the component’s behavioral model, such as the state chart diagram
depicted in Figure 2(b). For example, for the robot’s Controller, we can obtain the

following:

22

� � !��� ��� �"� �#� �$%, and � � ���� � � ��&	
where states ��� � � �# represent the behavioral states: idle, estimating, planning and

moving, state �$ represents the common failed state, and observations �����& represent
the transitions between states as shown in Figure 2(b). At runtime, the component is

monitored to obtain execution traces in the form of observation sequences (i.e. sequences

of state transitions). These execution traces are then used to train the HMM, using the

Baum-Welch algorithm. The Markov model obtained from this algorithm represents the

SOP of the component based on the training data, which represents the component’s

behavior based on its current context.

To better illustrate the concepts, consider the following transition probability

matrix obtained by executing the Baum-Welch algorithm on observation data obtained

from the robot’s Controller:

'()*(��+* � ,--
-. / � / / // / /0123 / /0/45/0/61 / / /0167 /0//6/ / /011 / /0/�� / / / / 899

9:

This represents the Controller’s operational profile based on its present context. In

order to compute its reliability we obtain the steady state vector of the above transition

matrix, from which we determine the probability of not being in failure state��$. The
steady state vector for the matrix
'()*(��+* is:

23

;/0/2�1 /0/2�1 /06742 /06<�� /0//5<=�

Here, the last column represents the probability of being in a failure state. Thus

the Controller’s reliability based on its present context can be computed as:

>'()*(��+*� � � ? /0//5< � �/011�<
6.2. Context-aware Component Reliability Prediction

An important contribution of our research is the incorporation of contextual

knowledge in arriving at reliability predictions, which enables proactive reconfiguration

of the software. In order to arrive at a reliability prediction for a component, RESIST

utilizes information from its emerging context to determine the behavioral changes that

can occur in the near future operation of the component. This is performed by

considering the changes that can occur in the component’s SOP as a result of the

anticipated contextual change. To determine the future SOP of the component, the

transition probabilities in the SOP are updated by utilizing functions of the form of (1)

which captures the impact of context on architectural parameters (recall Section 3). In

this case, the architectural parameters are the transition probabilities between states in the

in the component’s SOP.

Thus, let’s consider a point of interaction � � � where architectural parameters
represented by transition probabilities in transition probability matrix
 are impacted by
the system’s contextual parameter@��, and where the impact on each architectural

24

parameter is given by function��. The component’s future SOP is derived based on the

transition probabilities of the present SOP, by applying the following three rules��� � �:
1. The transition probability �����from state �� to �� which is impacted as a result of

� is revised such that the updated value �A�� is given by function �:

�A�� ��� �B����C��������������������������3)

where ���� denotes the power set of contextual parameters. For example in
Figure 2(b), the transition probability from moving to estimating state is directly

impacted by the navigational complexity of the robot’s environment. Therefore in

this case, � correlates the navigational complexity (i.e. a contextual parameter)
to the transition probability from moving to estimating state.

2. Given that the transition probability �����from state �� to �� changes as a result of
contextual change, the transition probability ��$��from state ����to failure state
�$��remains unchanged. This is because the probability of failure while the
component is in state �� is independent of the contextual changes that cause
transitions to state���. For example in Figure 2(b), the transition probability from
estimating to failed state does not change as the transition probability from

moving to estimating state changes.

3. Given that ��� ��is a transition probability from state �� to �� changes as a result of
contextual change, the remaining transition probabilities in row D of the transition

25

probability matrix�
, are updated so that the cumulative probability of all
transition probabilities in the row remains at 1 since matrix
 is a stochastic
matrix. For example in Figure 2(b), as a result of an increase in the transition

probability from moving to estimating state, the probability from moving to

planning state will decrease. Thus, all transition probabilities��� �in row�D
excluding ���� and ��$ are adjusted so that:

�� E � ��� F G� ? ��E��?���H ��� I��$ J��������������������������2�

To illustrate, consider the following function �KL�M that quantifies the transition
probability��#��from moving to estimating state in the robot’s Controller with respect to

the navigational complexity of the robot’s physical context�N. In Section 10.5, we
demonstrate how the following function was obtained using regression in our

experiments on the robotic software.

�KL�M�N� � O/05�14N� P �/0///42� / Q N Q /02/07�66N� P �/0/41�4� /02 R N Q /04</0<62<N� P �/0�273� /04< R N Q � S

In this case, the robot periodically takes snapshots of the environment and using

existing techniques [19] determines the complexity of the terrain (the contextual

26

parameter�N), which is correlated to the probability of encountering an obstacle in its
path. The robot then compares the complexity of the current terrain with previous

snapshots. In cases where the terrain seems less/more complex than the past context, the

relevant parameters in the SOP are updated to reflect the contextual change. For example,

if the navigational complexity of the terrain is anticipated to increase, the transition

probability �#��in the matrix is updated by computing �KL�M�N��for the relevant value of
N. As will be described in the evaluation, such a function �KL�M�N� which accurately
correlates navigational complexity and bump probability can be derived through

regression techniques.

Given that the terrain complexity N is expected to increase to 0.45 we can update
the new transition probability �#� based on �KL�M�N��above, and adjust the remaining
elements in the row based on the rules presented above to obtain the following SOP for

the Controller which represents its future behavior:

'()*(��+*E �
,--
-. / � / / // / /0123 / /0/45/0/61 / / /0167 /0//6/ /021/4 /0<116 / /0/�� / / / / 899

9:

As before, by computing the steady state vector, we can derive the reliability of

the component which corresponds to this future SOP, which results in a decreased

reliability of /015340

27

6.3. Configuration Reliability Analysis

Once the reliability prediction of all components has been obtained, a

compositional model is used to predict the reliability of specific system configurations.

Configuration reliability is in turn leveraged to assess the adherence of a given

configuration to the system reliability goals. When a system does not meet the intended

reliability threshold, runtime adaptation becomes necessary to ensure that the system’s

reliability requirements remain satisfied.

While majority of runtime adaptation approaches take a reactive stance in

response to degradation of the system reliability, our approach can be used proactively in

anticipation of reliability degradation. This is done by system monitoring and continuous

reliability assessment that incorporates fluctuating operational context as described

earlier. In the rest of this section, we describe the configuration-level reliability analysis

approach.

Our Markov-based configuration-level reliability estimation approach is based on

the model presented by Wang et al. [20], where a system’s reliability is estimated

compositionally based on the reliability of individual components, the architectural style

governing their interactions, and the system’s operational profile. A DTMC is built by

mapping the components and their interactions to a state diagram [20]. A state @� maps to
one or more components in concurrent execution whose completion is required in order

to transfer control over to the next state. A state transition with a probability T��
represents the probability of undergoing a transition from state @��to state�@�. Accordingly,
system reliability R is computed as:

28

> � �?�� U�> VWVVXYZV ��������������������������6�

where [is a \ F \ matrix in which si is the entry state and sk is the exit state and whose

elements are computed as follows:

[�D�]� � � ^>�T�� ������_`a`b�@��cbadeb_�_`a`b�@��afg�D� h �\
/��i`ebcjk_b� S

where Ri is the reliability of state si, and > is the reliability of the exit state.�V� ? [V is
the determinant of matrix �� ? [�, while V�V is the determinant of the remaining matrix
excluding the last row and the first column of �� ? [�.

This reliability model utilizes information from the system’s SOP to derive the

reliability for a configuration. Specifically, it requires the transition probabilities between

the states (i.e.,�T��). At the same time, as described in section 3, transition probabilities of
the SOP are dependent on the context in which the system operates. Thus, RESIST

monitors the system at runtime to obtain observations that correspond to interactions

between components to derive transition probabilities between states required by the

model presented in equation (4). In order to derive these transition probabilities, a HMM

is trained using the Baum-Welch algorithm using the observations obtained at the system

level.

29

In order to construct the HMM for the system’s SOP, RESIST utilizes the

system’s structural model, such as the one depicted in Figure 2(a) for the robot. In this

scenario, a fireman interacts with the robot using a PDA. The firemen issues a high-level

command (e.g., go into the restaurant and extinguish a fire) which is received by the

robot’s Controller through the Communication Connector. The Controller executes the

appropriate sequence of intermediate actions, which will result in the successful

completion of (or inability to complete) the original command, which is sent back to the

PDA through the Communication Connector. To complete the task, the Controller makes

use of a variety of Sensors, which detect obstacles in its environment and heat, a

Navigator which performs planning for the command being executed, and a mechanical

Actuator which is used to perform the physical activities.

The state model in Figure 4(a) depicts the components in the system mapped to

states, and control flow interactions among the components are depicted as transitions

between states. As shown, each of the components Communication Connector (CC),

Controller (C), and Navigator (N), have been mapped directly to separate states S1, S2,

and S4 respectively as they execute in a sequential manner. Heat Sensors and Proximity

Sensors (HS1, HS2, PS1, and PS2) have been mapped to a single state S3 since they all

execute in parallel upon receiving control, and upon completion the control transfers back

to C. Similarly, the Actuator (A) and Touch Sensors (TS1 and TS2) are mapped to a single

state S5. In order to derive the SOP for the system, a HMM is constructed by using the

information in the state model. Thus, from Figure 4(a), we can identify the states (i.e. set

�) and observations (i.e. set �) for the HMM as follows:

30

� � ���� � � �l	 and � � ���� � � �m	
where observations ����m represent the state transitions between states that result from
transfer of control between components (i.e. interactions) as shown in Figure 4(a). The

runtime data used to train the HMM consists of these observation sequences, which

correspond to state transitions. The following is a transition probability matrix of the

HMM derived using the Baum-Welch algorithm:

nop)+� ��
,--
-. / � / / //0�114 / /03//� /06//3 /03//�/ � / / // � / / // � / / / 899

9:

The above transition probability matrix corresponds to the robot’s system level

SOP based on its present context. In order to compute system reliability, a transition

Figure 4. (a) State model for the robot (b) State model with the Navigator replicated.

31

matrix [is derived for the model in equation (4) with the matrix elements representing
probability of successfully transitioning from state Si to Sj computed as�>� F T��. Here, >�
is the reliability of each state computed using the reliabilities of the components mapped

to the state, and T�� is the transition probability from state Si to Sj obtained from the

system’s SOP.

For example, let us assume that based on the robot’s present context, the

component reliabilities have been computed to be Controller: C = 0.9915 and Navigator:

N = 0.9751 using the approach described in the previous section. For the purpose of

simplifying this illustration, we assume the remaining components and connectors in the

system, i.e., CC, HS1, HS2, PS1, PS2, TS1, TS2, and A are 100% reliable. In cases where a

state transition occurs in a sequential manner, Ri is the reliability of the component

executing in state Si, whereas when a transition occurs out of the parallel set, Ri is the

multiplication of the reliabilities of all components in state Si.

Using the transition probabilities in
nop)+� and the component-level reliabilities,
we obtain the following for transition matrix [:

[�
,--
--.
/ � / / / // / /0�152 /02144 /0�152 /0�152/ � / / / // /017<� / / / // � / / / // / / / / / 899

99:

32

Solving the model according to equation (4) yields the system’s reliability in its

present context as 0.9152.

6.4. Context-aware Configuration Reliability Prediction

In order to arrive at a reliability prediction for the system, RESIST utilizes

information from its future context to determine the behavioral changes that can occur in

the near future operation of the system. Similar to the component-level reliability

prediction, this analysis is performed by considering the changes that can occur in the

system’s SOP as a result of the anticipated contextual change. Thus, we update the

transition probabilities in �
nop)+� by utilizing functions of the form (1) to obtain the
SOP for its future context (recall Section 3).

For the purpose of predicting the system’s SOP, we follow an approach similar to

the prediction of component’s SOP, and model transition probabilities in the system’s

SOP as architectural parameters. Thus, at each point of interaction � � �, the impact of
system’s contextual parameter@�� on architectural parameters is given by function�� and
the system’s future SOP is derived based on the transition probabilities of the present

SOP by applying the following two rules��� � �:
1. The transition probability �����from state �� to �� which is impacted as a result of

� is revised such that the updated value �A�� is given by function �:

�A�� ��� �B����C��������������������������<)

33

where ���� denotes the power set of contextual parameters. For example, in
Figure 4(a) the transition probability from state �� to �"�is impacted by the
navigational complexity of the robot’s environment. Here � correlates the
navigational complexity (i.e. a contextual parameter) to the transition probability

from state �� to��".
2. Given that ��� ��is a transition probability from state �� to �� , which is impacted as
a result of contextual change, the remaining transition probabilities in row D of the
transition probability matrix�
 are updated so that the cumulative probability of
all transition probabilities in the row remains at 1, since matrix
 is a stochastic
matrix. For example in Figure 4(a), as a result of an increase in the transition

probability from state �� to���", the transition probabilities from state ���to���� �#��and �l�will decrease. Thus, all transition probabilities��� �in row�D
excluding ���� are adjusted so that:

�� E � ��� F G� ? ��A��?���H ��� I� J��������������������������4�

As an illustration, �KL�M given below quantifies the transition

probability���"�from state �� to state��" with respect to the navigational complexity of the
robot’s physical context given by�N.

34

�KL�M�N� � O /0�3<N� P �/03//2� / Q N Q /02/0/17�6N� P �/03�63� /02 R N Q /04</0/7�76N� P �/03361� /04< R N Q � S
Given that the terrain complexity N is expected to increase to 0.45 we can update

the transition probability ��" based on �KL�M�N��above, and adjust all other transition
probabilities in that row using equation (6) to obtain the following SOP for the system:

nop)+�E ��
,--
-. / � / / //0�5<< / /03<71 /0�5<< /027��/ � / / // � / / // � / / / 899

9:

Given that under the future context the reliability of the Controller is predicted to

decrease to /01534, and that the reliabilities of the rest of the components remain the
same, using
nop)+�E as the predicted system-level SOP the matrix [E can be recomputed
as follows to derive the system-level transition matrix required for equation (4) :

[E �
,--
--.
/ � / / / // / /0�152 /02144 /0�152 /0�152/ � / / / // /017<� / / / // � / / / // / / / / / 899

99:

Solving the model based on the revised matrix [E using equation (4) yields the system’s
reliability in its future context as 0.8736.

35

7. RELIABILITY OF ALTERNATIVE ARCHITECTURES

If the predicted system reliability for a given architectural configuration does not

meet the acceptable level of reliability, system reconfiguration may be required in order

to improve the reliability. In this section we describe the architectural reconfiguration

decisions utilized by RESIST that drive the process of reliability improvement.

7.1. Impact of Architectural Style

Architectural styles are a set of constraints on the structure and behavior of a

system to elicit particular desirable qualities [11][50]. Use of specific architectural styles

is a way to apply preconceived solutions to similar recurring software problems. Runtime

adaptation and reconfiguration of the system aimed at improving system’s quality may

often require changes to the system’s architectural style. The fault tolerant style, for

example, improves reliability by replicating critical components. A fault tolerant

connector in the form of middleware can be used to handle component failures and to

manage the hot standby copies. In the case of the robot, the original architecture in Figure

1(b) demonstrates the system when the components are allocated to three processes with

the Navigator and Controller components running on separate OS processes. Applying

the fault tolerant architectural style in this case can improve the reliability by replicating

the Navigator component, which represents a critical point of failure. Here, the

underlying assumption is that replicas fail independently. Figure 1(c) shows a replicated

36

Navigator component added to the original architecture while running on a new process.

The corresponding state model (Figure 4b) shows the two replicated instances of the

Navigator q� and q� both mapped to state �A#. The reliability of the new state �A# can be
computed as the probability that at least one Navigator component does not fail [20].

Hence the probability of state �A# executing without failure is 0.9994. Assuming the
reliability of all other components and each of the Navigator components to be the same

as before, matrix [A can be updated such that state �#�is replaced by the new state �A#,
and the matrix element representing the transition from �# (which is now�A#) to �
increases to 0.9994 from 0.9751. Solving the model above according to equation (4)

yields a system reliability of 0.9124. Thus given that in its present configuration, the

reliability was predicted to be 0.8736, replication of the Navigator results in an

improvement of approximately 4.4%.

7.2. Impact of Deployment Architecture

A system’s deployment architecture is essentially an allocation of its software

components to hardware hosts and OS processes. A system may be realized using more

than one deployment architecture. At the same time, the deployment architecture has a

significant impact on system’s reliability. In this thesis, we focus on the component-to-

process allocation, as another representative method employed by RESIST to prevent

reliability degradations.

When multiple components are allocated to the same process, a component failure

could cause a process failure leading all other components within the process to fail, and

37

thus impact their reliability. In this case, redeploying components to separate processes

could improve a system's reliability. In the case of the robot, consider two deployment

configurations of the architecture, one where the Controller and the Navigator are

deployed as two separate processes and another where the two components are deployed

as threads sharing the same process.

Let's assume that q and � represent reliability of the Navigator and the Controller

components respectively when they execute on separate processes. When the two

components are redeployed to share the same process, the effective reliability of each

component is simply q F �, where failure in either q or � will cause both components to
fail. For instance, assuming that q and � have been predicted to be 0.9826 and 0.9751
respectively, the effective reliability of the two components would be qE = �E = 0.9581.
Intuitively, the drop in the two components’ effective reliability results in a decrease in

the overall system reliability. Therefore, the deployment architecture in which the two

components are deployed as separate processes yields better configuration reliability.

38

8. CONFIGURATION SELECTION

The reliability estimation approach presented earlier can be used to determine the

most reliable configuration for a situated software system. However, in practice,

reliability estimates are used in conjunction with the estimates of other quality attributes

(e.g., efficiency, response time) to determine the optimal configuration for the system. As

you may recall, the optimal configuration in RESIST is defined as one that satisfies the

system’s reliability requirement, while improving other quality attributes of concern. In

other words, in RESIST, reliability takes precedence over other quality attributes. This is

a reasonable objective for the domains targeted by RESIST (i.e., mission critical), but it

may not be appropriate for others. Consequently, the configuration selection problem

becomes one of an optimization problem. Specifically, RESIST’s objective is to find an

architectural configuration �r such that:

�r � �stu�v�'�w xy����y���zL{��)o|K�+})�~+p ��������������������������7�

Subject to >��� � �� � � �� / R � Q �

where xy�is a utility function indicating the engineer’s preferences for the quality
attribute �, > is equation (4) that calculates the expected reliability of a given architecture

39

� as further detailed below. A utility function is used to perform trade-off analysis
between competing (conflicting) quality concerns. In the emergency response system, we

would need two utility functions: one specifies the user’s preference for improvements in

reliability, while another one specifies the same for efficiency. Elicitation of user’s

preferences is a topic that has been investigated extensively in the literature (e.g., [21]).

RESIST does not place a constraint on the format of utility functions. Arguably any user

can specify hard constraints, which can be trivially modeled as step-functions.

Alternatively, a utility function may take on more advanced forms (e.g., sigmoid curve),

and elicited using the techniques in [21].

The optimization is subject to ensuring the specified reliability requirement is not

violated. RESIST may also use this constraint to determine when a reconfiguration of the

system is necessary.

Thus, for a system with � number of software components (each with a predicted
reliability of�s� computed according to the method in Section 6) and h processes, an
architectural configuration for the aforementioned optimization problem can be formally

specified as follows:

• Decision variable �� � �U represent the number of replicas for component i
• Decision variable v�� � ;/��= to indicate if component�D is placed on the process]
The configuration is subject to the following constraints:

• Each component must be placed on a process:

�D � ��� 0 0 � �	� H v������ �� �

40

• An architectural constraint may be applied to limit the number of replicas allowed

for a component:

�D � ��� 0 0 � �	, �� Q �� � jebcb�� � �U
• Though a component is allowed to be both replicated and share a process with

another component, an architectural constraint is imposed such that they may not

both happen simultaneously. This is because replication is most effective (i.e.,

achieves maximum improvement in reliability) if both the component and its

replicas are isolated into separate processes. Thus, we introduce binary variable

��, which indicates if component D is sharing a process with another component:
�� � ��� �k��`eb�D���di��ifbf`�_eacb_�a��cidb__

/� �k��`eb�D���di��ifbf`�gib_�fi`�_eacb�a��cidb__S
where �D� \ � ��� 0 0 � �	��and;

��� � � ?�H v��� �� ? v ��) I�����

Thus, the effective reliability of component D is:
s����� � ��s������ P��� ? ����s����

where s������ is the effective reliability of component D when the component
shares a process with another component, and;

s������ ��H s�v������ � ;s v � P��� ? v ��) I� =,
and s���� is the effective reliability of component D when the component is
replicated with �� number of replicas, and;

41

s���� � �� ? �� ? s���UM�

The system reliability >��� is computed by mapping the effective reliability s����
of the components to states as described in equation (2).

There are O(h
t
) ways of allocating software components to OS processes. The

total number of different architectures resulting from the application of fault tolerant style

is O(max{wi}
t
). Thus, the size of the solution space for this optimization problem is

O((max{wi}×h)
t
). Clearly the solution space is large, even for small values of w, h, and t.

However, the solution space may be significantly pruned by imposing architectural

constraints, such as the limit on the number of replications allowed.

Many commonly available algorithms could be used to solve the above

optimization problem. For small problems RESIST finds the optimal solution using

Integer Programming Solvers. The details of the algorithm used by the solver is outside

the scope of this thesis.

42

9. IMPLEMENTATION AND TOOL SUPPORT

We have developed a prototype implementation of RESIST that integrates an

extended version of XTEAM [22] as the environment for maintaining the structural,

behavioral, and reliability models, and an open-source HMM toolbox for Matlab.

Additionally, we have utilized off-the-shelf tools to perform the runtime reliability

analysis and configuration selection.

9.1. Architectural Modeling and Analysis

XTEAM is an extensible architectural modeling and analysis environment that

supports modeling of a system’s software architecture using several well-known

Architectural Description Languages. XTEAM uses Finite State Processes (FSP) [37] and

xADL [45] for modeling the behavioral and structural properties of a system,

respectively.

XTEAM’s support for FSP was utilized to implement the state machine model of

each component. Additionally, we extended the FSP support to include the specific

requirement of RESIST. This includes the ability to define the conditions for failure

transitions, and the capability of annotating the behavioral model with the transition

probabilities between states in the system. Figure 5 depicts a snapshot of the reliability-

annotated FSP models for a subset of the robot’s software system.

43

We also extended the traditional xADL model support in XTEAM to model

reliability properties of the architectural constructs, such as component reliability, and

Figure 5. Reliability-annotated architectural model of a portion of Controller’s behavioral model.

As shown, the annotations in the behavioral model include the transition probabilities into the

behavioral and failure states.

44

configuration reliability. Figure 6 depicts a snapshot of the reliability-annotated xADL

models for a subset of the robot’s software system.

9.2. Simulation and Runtime Monitoring

For the purpose of collecting runtime monitoring data, we used XTEAM to

generate simulation code, which was then executed to collect monitoring data consisting

of observation data, such as state transitions and component interactions (recall section

6). Executable architectural models were developed for the robotic subsystem using

XTEAM, which were programmed to output observation data that correspond to (1)

behavioral and failure transitions in the state models and, (2) state transitions in the form

of component interactions. This data is written to data files from within the simulation

Figure 6. Reliability-annotated architectural model of a portion of robot’s structural model. As

shown, the architectural constructs such as components and connectors have been annotated with

the reliability properties of the system.

45

code, and serve as input data to the reliability analysis module that performs reliability

analysis of the components and the system, as described in Section 9.3.

For simulating failure behavior, we injected faults into the system, which execute

as per probabilistic distributions that are available in XTEAM. For example, the

following code segment demonstrates an example that forces the system to transition into

failed state from the estimating state with a probability of 0.05:

if (NewRandom::uniform(0,1) < 0.05

&& CurrentState -> value().compare("ESTIMATING") == 0)

 NextState -> value()=("FAILED")

9.3. Reliability Analysis

We have used XTEAM’s API for accessing and modifying the reliability-

annotated models, which are then used to develop RESIST’s reliability analysis and

proactive reconfiguration modules. RESIST’s analysis module reads the reliability-

annotated architectural models to generate the appropriate HMM, which together with the

monitored observation data from the running system is then solved using Matlab’s HMM

toolbox. An open source Matlab HMM toolbox was used for this purpose [35]. This

toolbox provides algorithmic support for Baum-Welch algorithm, steady state vector,

etc., which we have used to train and solve the HMM. The estimated reliability values are

then used to find an optimal configuration for the system as described in Section 9.5.

46

9.4. Regression Analysis

We have utilized Matlab’s support for regression analysis to obtain functions that

correlates the system’s context to internal transition behavior (recall Section 6). We have

used Matlab’s graphical curve-fitting tool to perform regression analysis on data

collected from the system [36]. Figure 7 shows an example of the curve fitting toolbox

that we have used to perform the regression analysis.

9.5. Configuration Analysis

In order to solve the optimization problem defined in Section 8, we utilized

integer programming solver available in Microsoft Excel. Using this tool, the

optimization problem is modeled in terms of decision variables and constraints, and

solved using the built-in solvers. Since the optimization problem in RESIST is a non-

linear integer problem, the solver uses a branch-and-bound algorithm to search for a

solution. Figure 8 shows the solver in action before and after the solver is executed.

47

Figure 7. Shown above is the Matlab Curve fitting tool that was used to perform regression

analysis in order to correlate navigational complexity of the robot's environment to transition

probabilities within the system.

48

Figure 8. Configuration Analyzer uses Microsoft Excel solver to solve the optimization problem.

As shown above, the decision variables, constraints and utility functions are defined in Excel, and

solved using the Excel solver.

49

10. EVALUATION

We have evaluated RESIST using its prototype implementation and the mobile

emergency response system described earlier. The evaluation consists of four criteria: (1)

the impact of architectural reconfiguration decisions on the reliability of components and

the system, (2) the validity of reliability prediction based on expected changes in the

context, (3) the effectiveness of proactive system reconfiguration, and (4) the

performance overhead of the runtime reliability analysis, and (5) the possibility of

accurately correlating a system’s context and its architectural parameters. We used

XTEAM to control the system’s operational profile (i.e., usage) and to gather runtime

data. Neither the robotic software nor RESIST was controlled, which allowed them to

behave as they would in practice.

10.1. Impact of Reconfiguration

We first evaluate our assertion regarding the impact of architectural

reconfiguration on the system’s reliability by comparing the components’ and

subsequently the system’s reliability under different configurations. In this set of

experiments, we have manually injected defects in the Navigator with varied probability

of failure. The failure probability for the Controller and one of the Heat Sensors

components is fixed at 0 and 0.15, respectively. We have controlled the experiment by

fixing both the usage profile and context.

50

Figure 9 shows the reliability estimates obtained for three different architectures

as the Navigator’s failure probability increases. Part (a) shows the system reliability for

the following three configurations: (1) Navigator and Controller are placed in the same

process; (2) they are placed in separate processes; and (3) Controller remains in a

separate process, the Navigator is replicated, and each replica placed in a separate

process. In all configurations, the rest of the components in the system are placed in

(a) (b)

(c) (d)

Figure 9. (a) System reliability for 3 architectures; (b), (c), and (d) show component reliabilities

for configurations 1, 2, and 3, respectively.

51

separate processes, and their failure probability is fixed at 0. Parts (b), (c), and (d) show

the components’ reliability for configurations 1, 2, and 3, respectively.

As shown in part (a), the different architectural configurations exhibit starkly

different reliabilities, corroborating the impact of architectural decisions on system’s

reliability. Configuration 1 results in the lowest system reliability as the Navigator’s

failure probability increases, because the two components are placed on the same process.

As shown in part (b), along with the increase in Navigator’s failure probability, the

reliabilities of the Navigator and the Controller remain equal as they fail together, despite

the fact that the Controller’s failure probability is 0. As expected, in Configuration 2,

isolating the components to separate processes resulted in an overall improvement in

system reliability. This is due to the fact that given the allocation of Controller and

Navigator on separate processes, the effective Controller’s reliability is now increased to

1, shown in part (c). In Configuration 3, the Navigator component is replicated. This

configuration is the most reliable of the three. As shown in part (d), in contrast with

reallocation to separate processes, replication does not impact the components’ reliability,

but results in a system wide improvement. Finally, the Heat Sensor is unaffected

throughout the experiments, as it is placed in a separate process.

10.2. Validity of Reliability Prediction

As described in Section 6, RESIST uses the system’s context to predict system’s

near-future reliability by estimating the impact of contextual changes on a components’

internal behavior. We have examined the validity of our results by comparing RESIST’s

predicted reliability values with those estimations obtained from the system’s actual

52

behavior. While we have evaluated the validity of our predictions for the entire system, in

this section, we present details of the Controller’s reliability analysis.

For this experiment, we controlled the influence of context by varying the

probability of the robot encountering an obstacle on its path, which we refer to as bump

probability. The bump probability correlates to the complexity of the terrain through

which the robot navigates in order to accomplish an assigned task. An increase in the

bump probability causes the Controller to transition from the moving state to the

estimating state with a higher probability (recall Section 3), thereby altering its

operational profile. The techniques presented in [19] together with multi-linear regression

were used in our experiments to derive function � (recall Section 6) that estimates the

Figure 10. Accuracy of reliability predictions: (a) system reliability (b) Controller’s reliability.

53

impact of change in terrain to change in bump probability with ��30�� error at 95%
confidence level.

In addition to analyzing the effect of context, we varied the failure probability of

the Controller, specifically the probability of failure from the estimating state. We

compared RESIST’s reliability predictions with the actual observed reliability of the

robot during operation. In this experiment, the Navigator and the Controller were placed

in separate processes, and except for the Controller, all other components’ failure

probability was fixed at 0.

Figure 10 shows the comparison of predicted reliability and observed reliability in

three execution scenarios where different bump probabilities were predicted, and varied

the failure probability of the Controller component from 0 to 0.05. As shown, the

Controller’s reliability decreases as the bump probability increases. This is because an

increase in transitions to the estimating state leads to more failures. Further, the deviation

between observed and predicted reliability both at the level of system and Controller are

extremely small. Note that since the function � used in the experiment had a 95% likely
error bound of 2.1%, small deviation in results is to be expected. However, the deviation

is small enough that very accurate adaptation decisions could be made.

10.3. Proactive Reconfiguration

We evaluate RESIST’s ability to satisfy the system’s reliability requirement

through proactive reconfiguration. We compared an instance of the robot using RESIST

against one without RESIST. Results show that the latter successfully maintained the

54

initial configuration throughout its operation. The failure probabilities of all components

in both instances were fixed. We varied the bump probability (effectively changing the

context) and observed the proactive reconfiguration process. The robot was required to

maintain a system reliability of at least 97% throughout its execution, which formed the

constraint in our optimization problem. Initially, Navigator was placed in a separate

process, and the other components were placed together in one process. This

configuration was based on a design-time analysis of the system that satisfied the

reliability requirement and minimized the resource utilization.

For the purpose of predicting memory and CPU utilization of a given

configuration, we used analytical models where the total memory and CPU utilization are

computed in terms of the number of components, processes, and the average memory and

CPU cycles required by the configuration. Given a configuration �, the following
analytical models were used for computing memory utilization [���, and processing
utilization T���:

[��� � � F u�u& P H u�u�}���u�u{~{�� F �//
T��� � � F �s�N& P H �s�N�}����s�N{~{�� F �//

where;

� � `eb�f���bc�i���cidb__b_�kf�dif�k��ca`kif��
N � f���bc�i��di��ifbf`_�kf�dif�k��ca`kif��
u�u& � a bca�b��b�ic¡�cb¢�kcbg��¡�a��cidb__�

55

u�u� � a bca�b��b�ic¡�cb¢�kcbg��¡�di��ifbf`�D
u�u{~{�� � `i`a£��b�ic¡�a ak£a�£b
�s�N& � a bca�b�¤¥¦�d¡d£b_�cb¢�kcbg��¡�a��cidb__
�s�N� � a bca�b�¤¥¦�d¡d£b_�cb¢�kcbg��¡�di��ifbf`�D
�s�N{~{�� � `i`a£�¤¥¦�d¡d£b_�a ak£a�£b

We use sigmoid curve functions to express utility functions for the three quality

attributes of concern:

x§+��{K���)o�>���� � �� P �Y&0���&&§�'�Yl&�
xZ+�¨)���©{)�(�[���� � �� P �&0��Z�'�Yl&�
xª*(}¨)���©{)�(�T���� � �� P �&0��ª�'�Yl&�

where >���, [��� and T��� are reliability, memory utilization percentage, and
CPU utilization percentage of configuration �.

 The global utility function x«��� is computed as:
x«��� � x§+��{K���)o�>���� P xZ+�¨)���©{)�(�[�����P�xª*(}¨)���©{)�(�T����

Figure 11(a) illustrates the comparison between the two instances of the robot as

they maneuver the same area within a building with varying levels of complexity (i.e.,

obstacles). RESIST predicts the near future reliability of the system as it approaches an

area with a complexity that is different from its current location. For instance, as the

robot passes point B and before it reaches point C, RESIST anticipates a drop in

56

reliability (since the bump probability increases to 0.14) and proactively adapts the

system to maintain its reliability above 97%. As a result, the Navigator is replicated and

the Controller is redeployed to a separate process. This reconfiguration prevents the

reliability from falling below the requirement. In contrast, the reliability of the robot

without RESIST deteriorates significantly, falling below the 97% requirement.

Figure 11(b) shows the effect of reconfiguration on the system’s resource

utilization. For instance, at point C both CPU and memory utilization increase

significantly due to the addition of the Navigator replica and separate processes.

Similarly, RESIST continues to proactively manage the system’s configuration. In

points F and I, in anticipation of a drop in reliability, RESIST proactively places the

system in a more reliable configuration, albeit less efficient. On the other hand, in points

D, G, and J, in anticipation of an improvement in reliability, RESIST proactively places

Figure 11. Context-aware proactive reconfiguration. (a) System reliability (b) Resource

utilization efficiency.

57

the system in a more efficient configuration, while meeting the 97% reliability

requirement.

10.4. Overhead of Reliability Analysis

Since RESIST is intended to manage situated software systems at runtime, it is

important to assess the performance overhead of RESIST’s analysis. Table 1 shows the

benchmarking results of RESIST’s reliability analysis on an Intel Core 2, 2.4 GHz, 2 GB

RAM platform, which is representative of the average hardware capability present in

modern mobile robots (e.g., [24]). The results show the time it took for performing the

reliability analysis for varying number of commands (i.e., tasks sent to the robot). Each

command on average resulted in 20 different monitoring observations (e.g., component

interface invocations) to be collected and used for training the HMM. The benchmark in

the largest scenario, consisting of 2,000 commands and 41,879 observations took 10.45

seconds. However, in practice, our experience with the emergency response robot shows

the analysis is often performed on much smaller number of observations, requiring only a

fraction of a second for completion.

Num. of Commands 10 50 100 250 500 1000 2000

Num. of Observation 174 1062 1741 5874 9553 20028 41879

Execution Time in Sec. 0.13 0.35 0.69 1.73 2.48 5.10 10.45

Table 1. Execution Time of Reliability Analysis.

58

10.5. Relating Context to Architectural Parameters

We have investigated the feasibility of accurately relating a system’s contextual

parameters to its architectural parameters by deriving equations of the form (1) described

in Section 3. As you may recall, such capability is required for prediction of component

and system reliability. In this experiment we used the robotic system and changed its

navigational complexity (i.e., a contextual parameter), and observed the changes in the

bump probability (i.e., an architectural parameter) in the Controller’s operational profile.

A correlation of the two parameters was derived by using linear regression.

Figure 12 shows the data points derived for the bump probability, as the

navigational complexity of the robot’s environment changed. As shown, the robot

changes its behavior by employing three navigational strategies (a), (b), and (c),

depending on the navigational complexity of its environment. Navigational strategies

may correspond to the different types of routing approximation algorithms used by the

Controller component as it guides the robot’s movement around obstacles. Thus, the

relationship between bump probability and navigational complexity is represented in the

form of three linear equations, as shown in Table 2. As shown both the goodness of fit

error and the percentage error in each of the coefficients are negligible. This set of

experiments demonstrated the feasibility of accurately correlating contextual factors to

the architectural parameters. We believe a similar approach could be employed in many

other domains.

59

(a)

(b)

(c)

Figure 12. Correlating the navigational complexity to the bump probability of the robot's

Controller using linear regression. (a), (b), and (c) show equations derived for three navigation

strategies used by the robot.

60

¬ Navigational Complexity �¬� Bump probability Goodness of fit

Sum of Squares Error

��������������������¬� Error % of coefficients in

(for a 95% confidence

level) / Q N Q /02 /05�14N� P �/0///42 /0///6227 �302���20��
/02 R N Q /04< /07�66N� P �/0/41�4 /0///7�3< �301���204�
/04< R N Q � /0<62<N� P �/0�273 /0///13/1 �307���202�

Table 2. Correlation between the robot’s navigational complexity and bump probability.

61

11. RELATED WORK

In general, architecture-based software reliability analysis and prediction, has

been studied extensively by the software engineering research community. However, the

methods proposed are not suitable for runtime analysis and for proactive adaptation. In

this chapter, we provide an overview of the previous works that have addressed the

challenges of analyzing and predicting software reliability, and improving reliability of

system through architecture-based adaptation. We also describe other software adaptation

frameworks that are related to RESIST, where architecture-based adaptation is utilized in

order to improve a system’s quality of service. Finally, we described previous work on

context-aware middleware intended for situated software systems.

11.1. Architecture-based Reliability Analysis

Over the past three decades many software reliability approaches have been

proposed. The approaches most relevant to our work are those that consider the system’s

software architecture. They can broadly be categorized as design-time and runtime

analysis.

11.1.1. Design time Analysis

• An approach to reliability analysis described in [13] presents an architecture-level

risk analysis framework. The primary purpose of the approach is to help identify the

62

high-risk components and connectors of a system, based on data that can be collected

early in the development process.

• An approach presented in [26] is aimed at reliability analysis of component-based

systems. This includes a reliability prediction algorithm which allows system

architects to analyze reliability of the system before it is built, taking into account

component reliability estimates and their anticipated usage. The approach is intended

to guide the process of identifying critical components and analyze the effect of

replacing them with the more/less reliable ones.

• System reliability models described in [7][8][20] are targeted towards component-

based architectures where system reliability is computed in terms of the reliabilities of

its components, (or services provided by components), and the probability of

execution. Additionally, [20] presents ways in which a system’s architectural style

can impact the manner in which a system’s reliability is computed, and presents

reliability estimation techniques for styles such as pipe-and-filter, batch-sequential

and fault-tolerant style.

• An approach presented in [25] is aimed at a scenario-driven approach to computing

reliability of software systems early in the lifecycle. Scenarios are partial descriptions

of how components interact to provide system level functionality. This reliability

model is specifically aimed at concurrent component-based software systems and

describes a method to predict software system reliability as a function of component

reliability estimates. Scenarios are used to analyze the possible paths in a concurrent

software system through the use of probabilistic LTS and FSP. The approach

63

annotates a LTS graph of the system with probabilities of component failure, and

scenario transition probabilities derived from an operational profile of the system.

Finally, a Markov-based reliability model described in [38] is used to compute a

reliability prediction from the system behavior model.

• [9] Introduces a moving average reliability growth model to describe the evolution of

component-based software. In this model, the reliability of a system is a function of

the reliabilities of its constituent components. The moving average provides a trend

indicator to depict reliability growth movement within the evolution of a series of

component enhancements. The input parameters are the components’ configurations

and individual reliability growths. The output is a vector of moving averaged system

reliability growths indicating increasing component enhancement. The application of

this model can facilitate cost/performance evaluation and support decision making for

future software maintenance.

The underlying assumptions in the above approaches make them unsuitable for

use in the domain of situated, dynamic, and mobile systems. Majority of these approaches

focus on system-level analysis and assume the reliabilities of the software components

are fixed and known. Moreover, many of these approaches assume (sometimes

implicitly) that the operational profile of the system is known and does not change at

runtime. Finally, none considers the impact of contextual change on the software

system’s reliability. Three recent surveys [12][14][15] corroborate these observations.

Our past research has addressed some of the uncertainties associated with design-

time reliability analysis by incorporating various sources of information [18][27]. We

64

also identified the challenges of reliability analysis in the mobile domain [28]. Our

objective was to provide rough reliability predictions early in the software life-cycle

when an implementation of the system is not available. In contrast to our previous work,

in RESIST, we are concerned with runtime reliability of the system and rely on the

availability of its implementation. Moreover, we incorporate latest operational and

contextual information to predict the system’s reliability and proactively place it in the

optimal configuration.

11.1.2. Runtime Analysis

Few approaches combine software architecture and reliability analysis using

runtime data [29][30].

• An approach presented in [30] addresses the problem of reliability prediction through

reliability forecasting. Aimed at distributed computing environments, a statistical

model is used for determining the suitable algorithms related to performance

requirements for each specific application. While this technique is suitable for

traditional desktop systems, it is unsuitable for systems situated in highly dynamic

and mobile settings where statistical forecasting offers little help.

• KAMI framework [29] provides continuous dependability analysis using a model-

driven approach. Specifically, KAMI uses runtime data to update the parameters of

reliability and performance models. The focus of RESIST has been different from

KAMI. KAMI reactively adjusts the system’s models, while RESIST proactively

predicts near future reliability of the system. Moreover, unlike KAMI, RESIST

furnishes reliability predictions at the component level. We believe KAMI and

65

RESIST to be complementary, as the continuous refinement of parameters in KAMI

could be utilized in updating RESIST’s reliability models.

11.2. Architecture-based Adaptation Frameworks

Run-time adaptation of software systems has been studied extensively by the

software engineering research community [2][46]. Of these, the work related to RESIST

are the architecture-based adaptation frameworks.

• IBM’s Autonomic Computing initiative [39] proposed the MAPE reference model

which consists of hierarchically structured feedback control loops. Each loop which is

encapsulated within an Autonomic Manager consists of the four phases: Monitor,

Analyze, Plan, and Execute. The lowest levels of the Autonomic Managers are

responsible for directly managing resources, while the higher levels orchestrate the

lower Autonomic Managers in order to meet the system’s intended goals.

• A framework presented in [40] by Oreizy et al. describe an architecture-based

approach to run-time adaptation and evolution management, in which an explicit

architectural model is deployed with the system and is used as a basis for change.

Further they highlight the role of software connectors in supporting change

management.

• The Rainbow framework [41] present, a style-based approach for developing reusable

self-adaptive systems. Rainbow monitors a running system for violation of the

invariants imposed by the architectural model, and applies the appropriate adaptation

strategy to resolve such violations.

66

• The Three-Layer architectural model for self-managed systems presented by Kramer

and Magee [3] consists of the layers of Component Control, Change Management and

Goal Management. The bottom-most layer which is the Component Control layer

provides facilities to report the current status of components to higher layers as well

as to add, remove components. The Change Management layer reacts to changes

reported from the lower layer and executes plans. Goal Management layer, which is

the top-most layer produces change management plans in response to requests from

the layer below, and in response to the introduction of new system goals.

In contrast to the frameworks described above, RESIST is narrowly aimed at

improving the reliability of dynamic situated systems. While none of the existing

frameworks directly achieves our objectives, they form the foundation of our research. In

fact, our framework is compatible with the widely accepted three layer reference model

of self-adaptation [3] as well as the MAPE model [39]. Moreover, in contrast to RESIST,

none of the above frameworks are aimed at supporting proactive adaptation of the

software system.

In addition the following utility-driven dynamic reconfiguration models are

related to RESIST.

• Poladian et al. propose an approach to dynamically configure software based on

availability of resources [43]. Given a user’s task, the framework selects an

appropriate set of services to carry out the task and allocates available computing

resources to them. Additionally, the applications or resources assignments are

reconfigured as the situation changes.

67

• A framework for Anticipatory Dynamic Adaptation [44] presented by Poladian et al.

is aimed at self adapting a system by allocating resources to applications in

anticipation of future resource availability. It leverages predictions of future resource

availability to improve utility for the user over the duration of the task, rather than

reconfiguring reactively. Additionally, the framework considers chooses sequences of

configurations over the duration of the task, and maximizes the expected value of

utility accrued over the duration of the task.

RESIST primarily differ from the above models it is aimed at arriving at

reliability predictions amidst changing context, and placing the system in a more reliable

configuration subject to other quality attributes (e.g., resources consumption). In contrast,

the above work assumes that the relationship between quality dimensions and resource

availability is known apriori through the use of application profiles.

11.3. Context-aware Middleware Frameworks

Finally, related is previous research on context-aware middleware intended for

mobile and ubiquitous software systems.

• Aura [32] is an architectural style and supporting middleware for ubiquitous

computing applications with a special focus on user mobility, context awareness, and

context switching. In Aura, a user’s task becomes a first class entity, which is

represented explicitly in a manner independent from a specific environment. These

tasks are represented as a coalition of required services, and the architecture is

68

equipped with the capability to self-monitor and renegotiate task support as the

available resources vary at runtime.

• XMIDDLE [33] is a middleware that supports application engineers to deal with data

inconsistency problems caused by mobility, such as low bandwidth, context changes

or loss of connectivity. During disconnection, users will typically update local

replicas of shared data independently from each other. The resulting inconsistent

replicas need to be reconciled upon re-connection. XMIDDLE supports building

mobile applications that use replication and reconciliation over ad-hoc networks.

XMIDDLE uses reflection capabilities to allow application engineers to influence

replication and reconciliation techniques.

• MobiPADS [1] is a reflective middleware that supports active deployment of

augmented services for mobile computing. It is designed to support context-aware

processing by providing an executing platform to enable active service deployment

and reconfiguration of the service composition in response to environments of

varying contexts. The adaptation takes place at both the middleware and application

layers to provide configuration of resources to optimize the operations of mobile

applications.

• Lime [34] is a Java-based middleware that provides a coordination layer that can be

exploited for designing applications which exhibit either logical or physical mobility,

or both.

• CARISMA [47], is a mobile computing middleware which exploits the principle of

reflection to enhance the construction of adaptive and context-aware mobile

69

applications. The middleware maintains a valid representation of the execution

context, by directly interacting with the underlying network operating system. To

enhance the development of context-aware applications, CARISMA provides

application engineers with an abstraction of the middleware as a customizable service

provider. In particular, the behavior of the middleware with respect to a specific

application is described as a set of associations between the services that the

middleware customizes, the policies that can be applied to deliver the services, and

the context configurations that must hold in order for a policy to be applied.

Unlike RESIST, none of the above frameworks and middleware provides

reliability-driven support for optimization of situated software systems through proactive

adaptation.

70

12. CONCLUSIONS

Software systems are increasingly situated in mission critical settings, which

present stringent reliability requirements. These systems are predominantly mobile,

embedded, and pervasive, which are innately dynamic and unpredictable. In turn, no

particular configuration of the system is optimal for the system’s entire operational life-

time. We presented RESIST, a framework intended to satisfy the reliability requirements,

while taking into consideration other quality attributes (e.g., efficiency) through proactive

reconfiguration of the software.

12.1. Contributions

The three key contributions of RESIST are: (1) incorporation of multiple sources

of information, in particular contextual information, to provide refined reliability

predictions at runtime; (2) automatically find the optimal architectural configuration that

achieves the appropriate-level of tradeoff between reliability and other quality attributes;

and (3) proactively adapt the system by positioning it in the optimal configuration before

the system’s reliability degrades.

12.2. Future work

In our future work, we intend to evaluate the scalability of RESIST in large-scale

software systems comprising of hundreds of components and hardware hosts. We also

71

intend to increase the types of reconfiguration decisions and dependability tradeoffs that

RESIST supports. Finally, we plan to investigate the use of other stochastic approaches

(e.g., Dynamic Bayesian Networks, and Hierarchical HMM) and potentially integration

with KAMI [29] to support incremental refinement of DTMC parameters, as opposed to

periodic assessment of the reliability at runtime.

72

REFERENCES

73

REFERENCES

[1]. A. Chan, et al. MobiPADS: Reflective Middleware for Context-Aware Mobile

Computing. IEEE TSE, 29(12), Dec. 2003.

[2]. B. Cheng, et al. Software Engineering for Self-Adaptive Systems: A Research

Roadmap. Software Engineering for Self-Adaptive Systems, LNCS hot topics,

2009.

[3]. J. Kramer and J. Magee. Self-Managed Systems: an Architectural Challenge.

ICSE, Minneapolis, MN, May 2007.

[4]. N. Esfahani, S. Malek, et al. A Modeling language for Activity-Oriented

Composition of Service-Oriented Software Systems. Int. Conf. on Model Driven

Engineering Languages and Systems, Denver, Colorado, Oct 2009.

[5]. G. Abowd, et al. Towards a Better Understanding of Context and Context-

Awareness. Proceedings of the 1st international symposium on and held and

Ubiquitous Computing, p.304-307, September 1999, Karlsruhe, Germany.

[6]. B. Schilit, et al. Context-Aware Computing Applications. 1
st
 International

Workshop on Mobile Computing Systems and Applications, December 1994.

[7]. S. Krishnamurthy, A. Mathur. On the Estimation of Reliability of a Software

System Using Reliabilities of its Components. Int’l Symp. on Software Reliability

Engineering, 1997.

74

[8]. R. Reussner, et al. Reliability Prediction for Component-Based Software

Architectures, Journal of Systems and Software, 66(3), 2003.

[9]. W. Wang, et al. Moving Average Modeling Approach for Computing Component-

Based Software Reliability Growth Trends. INFOCOMP Journal. of Computer

Science, 5(3), 2006.

[10]. H. Pham, Software Reliability, Springer, 2002.

[11]. D. Perry, A. Wolf. Foundations for the Study of Software Architecture. Software

Eng. Notes, 17(4), October 1992.

[12]. S. Gokhale, Architecture-Based Software Reliability Analysis: Overview and

Limitations. IEEE Transactions on Dependable and Secure Computing, 4(1), Jan

2007.

[13]. K. Goseva-Popstojanova, et al. Architectural Level Risk Analysis using UML.

IEEE TSE, Vol.29, No.10, Oct 2003.

[14]. K. Goseva-Popstojanova, et al., Architecture-Based Approaches to Software

Reliability Prediction. International Journal of Computer and Mathematics with

Applications, 46(7), Oct 2003.

[15]. A. Immonen, E. Niemela. Survey of reliability and availability prediction methods

from the viewpoint of software architecture. Journal of Software and Systems

Modeling, Jan 2007.

[16]. L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proceedings of the IEEE, 77(2), Feb. 1989.

75

[17]. W.J. Stewart. Introduction to the numerical solution of Markov Chains. Princeton

University Press, 1994.

[18]. L. Cheung, R. Roshandel, et al. Early Prediction of Software Component

Reliability. ICSE, Leipzig, Germany, May 2008.

[19]. H. Seraji, A. Howard. Behavior-Based Robot Navigation on Challenging Terrain:

A Fuzzy Logic Approach. IEEE Trans. on Robotics and Automation, vol. 18, no 3,

June 2002.

[20]. W. Wang, D. Pan, M. Chen. An Architecture-Based Software Reliability Model.

Journal of Systems and Software, 2005.

[21]. J. P. Sousa, et al. User Guidance of Resource-Adaptive Systems. Int’l Conf. on

Software and Data Technologies, Porto, Portugal, July 2008.

[22]. G. Edwards, S. Malek, et al. Scenario-Driven Dynamic Analysis of Distributed

Architectures. Int’l Conf. on Fundamental Approaches to Software Engineering,

Portugal, March 2007.

[23]. S. Malek, et al. A Style-Aware Architectural Middleware for Resource

Constrained, Distributed Systems. IEEE Transactions on Software Engineering,

31(3), March 2005.

[24]. Mobile Robots Inc. http://www.mobilerobots.com/

[25]. G. Rodrigues, et al. Using Scenarios to Predict the Reliability of Concurrent

Component-Based Software Systems. In’l Conf. on Fundamental Approaches to

Software Engineering, Edinburgh, UK, April 2005.

76

[26]. H. Singh, et al. A Bayesian Approach to Reliability Prediction and Assessment of

Component Based Systems. Int. Symposium on Software Reliability Engineering,

2001.

[27]. R. Roshandel, et al. A Bayesian Model for Predicting Reliability of Software

Systems at the Architectural Level. Int. Conf. on Qual. of Soft. Arch., Boston, MA,

July 2007.

[28]. S. Malek, et al. Improving the Reliability of Mobile Software Systems through

Continuous Analysis and Proactive Reconfiguration. ICSE, Vancouver, Canada,

May 2009.

[29]. I. Epifani, et al. Model Evolution by Run-Time Parameter Adaptation. ICSE,

Vancouver, Canada, May 2008.

[30]. F. Popentiu, and P.Sens. A Software Architecture for Monitoring the Reliability in

Distributed Systems. European Safety and Reliability Conf., Munich, Germany,

Sept 1999.

[31]. D. Garlan, et al. Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure. IEEE Computer, 37(10), 2004.

[32]. J. Sousa, D. Garlan. Aura: an Architectural Framework for User Mobility in

Ubiquitous Computing Environments. Int’l. Conf. on Software Architecture,

Montreal, Canada, August 2002.

[33]. C. Mascolo, et al. XMIDDLE: A Data-Sharing Mid-dleware for Mobile

Computing. International Journal of Personal and Wireless Communications,

Kluwer, vol 21, 2002.

[34]. A. L. Murphy, et al. Lime: A Middleware for Physical and Logical Mobility. Int’l

Conf. on Distributed Computing Systems, Phoenix, Arizona, May 2001.

77

[35]. MATLAB HMM toolbox

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

[36]. MATLAB Curve-Fitting toolbox

http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/cftool.html

[37]. J. Magee, J. Kramer. Concurrency State Models and Java Programming. John

Wiley & Sons, 2006.

[38]. R. C. Cheung. A User-Oriented Software Reliability Model. In IEEE Transactions

on Software Engineering, volume 6(2), pages 118–125. IEEE, Mar. 1980.

[39]. J. O. Kephart, and D. M. Chess. The Vision of Autonomic Computing. IEEE

Computer, vol. 36, 2003, pp. 41-50.

[40]. P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-Based Run-time

Software Evolution. International Conference on Software Engineering, Kyoto,

Japan, May 1998.

[41]. D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste. Rainbow:

Architecture-Based Self-Adaptation with Reusable Infrastructure. IEEE Computer,

vol 37, no 10, pp. 46-54, 2004.

[42]. P. Oreizy, N. Medvidovic, R. N. Taylor. Runtime software adaptation: framework,

approaches, and styles. In Companion of the 30th international Conference on

Software Engineering (Leipzig, Germany, May 10 - 18, 2008). ICSE Companion

'08. ACM, New York, NY, 899-910.

[43]. V. Poladian, J. P. Sousa, D. Garlan, M. Shaw. Dynamic Configuration of

Resource-Aware Services. International Conference on Software Engineering,

Edinburgh, Scotland, May 2004.

78

[44]. V. Poladian et al. Leveraging Resource Prediction for Anticipatory Dynamic

Configuration. In Proc. of the First IEEE Conference on Self-Adaptive and Self-

Organizing Systems (SASO), Boston, MA, July 2007.

[45]. E. Dashofy, A. van der Hoek. and R. N. Taylor: An Infrastructure for the Rapid

Development of XML-based Architecture Description Languages. Proceedings of

the 24th International Conference on Software Engineering, pp. 266 - 276, 2002.

[46]. J. Andersson, R. de Lemos, S. Malek, and D. Weyns. "Modeling Dimensions of

Self-Adaptive Software Systems." In Software Engineering for Self-Adaptive

Systems, Lecture Notes on Computer Science Hot Topics, Springer, 2009.

[47]. L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware Reflective

mIddleware System for Mobile Applications. IEEE Transactions on Software

Engineering, 29(10):929--945, Oct. 2003.

[48]. J. Musa, Software Reliability: Measurement, Prediction, Application. McGraw Hill

Software Engineering Series, 1990.

[49]. K. Cai, Software Defect and Operational Profile Modeling. The Kluwer

international series in software engineering, 1998.

[50]. R. N. Taylor, N. Medvidovic, E. M. Dashofy. Software Architecture: Foundations,

Theory, and Practice. John Wiley, 2010.

79

CURRICULUM VITAE

Deshan Cooray earned his bachelor’s degree in Computer Science and Engineering from

the University of Moratuwa, Sri Lanka (2004). Afterwards he was employed at Virtusa

Corporation, Sri Lanka (2004-2007) as a Technical Lead where he was engaged in the

design and development of enterprise business applications. While a graduate student at

George Mason University, he worked at Unisys Corporation where he was involved in

designing a SOA based architectural framework for a US Government agency.

