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ABSTRACT OF THE DISSERTATION

Efficient Permission-Aware Analysis of Android Apps

By

Alireza Sadeghi

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2017

Associate Professor Sam Malek, Chair

Permissions are the cornerstone for Android security model, as they enable secure access to

sensitive resources of the phone. Consequently, improper use of Android permission model

can lead to permission-induced issues that disrupt the functional and non-functional behavior

of the apps. However, due to the lack of automated tools for detecting such issues, many of

those defects are shipped with the final product, which not only dissatisfies end users but

also poses security risks to their phones.

This dissertation proposes and describes a set of automated tools, namely Covert, Separ,

Terminator, and PATDroid, to detect and prevent permission-induced issues in Android

apps, specifically (I) permission-induced security attacks, and (II) permission-induced com-

patibility defects.

Through combining static analysis with formal methods, Covert and Separ provide com-

positional analysis and enforcement techniques, respectively, for detection and prevention of

permission-induced security attacks, particularly those that occur due to the interaction of

multiple apps. However, by ignoring the temporal aspects of an attack, Covert and Separ,

as well as the other techniques aimed at protecting the users against permission-induced

attacks, are prone to have low-coverage in detection and high-disruption in prevention of

such attacks. Terminator addresses this shortcoming by incorporating the notion of time

xiii



in both detection and prevention of the attacks. Terminator leverages temporal logic model

checking to detect permission-induced threats, and then relies on Android’s dynamic permis-

sion mechanism to thwart the identified threats by revoking unsafe permissions. However,

such countermeasure, i.e., permission revocation, could itself result in other defects, such as

crash, if the target app suffers from dynamic-permission-compatibility issue. To identify such

permission-induced compatibility defects, developers need to exhaustively re-execute tests

for all possible permission combinations, thereby increasing the time and resources required

to test apps. PATDroid, the last proposed approach in this dissertation, is intended to help

app developers with this challenge. PATDroid can significantly reduce the testing effort by

performing a hybrid program analysis that determines which tests should be executed on

what permission combinations.

All conducted experiments corroborate the effectiveness and efficiency of Covert, Separ,

Terminator, and PATDroid and their ability to identify and eliminate the defects rooted

in permission misuse of Android apps.
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Chapter 1

Introduction

Android, with well over a million apps and billion users, has become the dominant mobile

platforms. Android app markets, such as Google Play, have created a fundamental shift in

the way software is delivered to consumers, with thousands of apps added and updated on

a daily basis. However, the rapid growth of Android app markets and the pervasiveness

of apps provisioned on such repositories have paralleled with an increase in the number

and sophistication of the security threats targeted at this platform. In fact, Android is the

primary target of mobile malware, where many cases of apps infected with malwares and

spywares are regularly reported in the news, security statements and reports [481, 482, 483,

346].

Numerous culprits are in play here, but several studies [188, 143] have shown that permission-

induced attacks, i.e., security breaches enabled by permission misuse, are among the most

critical and frequent issues threatening the security of Android devices. Such issues violate

the permission model of Android, which is the main security mechanism provided by the

framework to protect applications. This security mechanism, which is a popular form of

access-control model, prevents an app lacking the proper permissions from accessing both
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sensitive system resources (e.g., sensors) as well as other protected applications.

To help app developers properly implement the permission model, Google provides recom-

mendations and best practices [27], and relies on app developers to properly apply them in

their products. However, prior research [143, 160, 202] has shown that many app develop-

ers fail to follow such principles in practice. Misuse of Android permissions could disrupt

the functional (e.g., crashing) and non-functional (e.g., security breach) behavior of apps.

Unfortunately, due to the lack of automated tools for detecting such issues, many of those

defects are shipped with the final product, which not only dissatisfies end users but also

poses security risks to their phones.

In this context, the goal of this dissertation is to provide a set of automated tools for detecting

and preventing permission-induced issues in Android applications, namely (I) permission-

induced security attacks, and (II) permission-induced compatibility defects. In the remainder

of this Chapter, these two problems along with the proposed solutions are briefly discussed.

1.1 Dissertation Overview

While access to phone resources can be controlled by the Android permission system, en-

forcing permissions is not sufficient to prevent security violations, as permissions may be

mismanaged, intentionally or unintentionally. Android’s enforcement of permissions is at

the level of individual apps, allowing multiple malicious apps to collude and combine their

permissions or to trick vulnerable apps to perform actions on their behalf that are beyond

their individual privileges. Despite significant progress in Android security research, prior

approaches are substantially intended to detect and mitigate vulnerabilities in a single app,

but fail to identify vulnerabilities that arise due to the interaction of multiple apps.

To address the aforementioned problem, this dissertation proposes an approach called Covert.
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Figure 1.1: Dissertation Roadmap.

Covert applies combination of static analysis with formal methods: Through static anal-

ysis of each app, essential information is extracted in an analyzable formal specification

language. The set of extracted models are then checked by a formal analyzer as a whole

for vulnerabilities that occur due to the interaction of apps comprising a system. Covert

is intended to identify security threats. Hence, as a complementary approach, another tool

called Separ, is proposed to thwart the identified security threats. Separ uses a constraint

solver to synthesize possible security exploits, from which fine-grained security policies are

derived and automatically enforced to protect a given device.

However, due to ignoring the temporal aspects of an attack during the analysis and enforce-

ment, Covert and Separ, as well as the other techniques aimed at protecting the users

against permission-induced attacks, are prone to have low-coverage in detection and high-

disruption in prevention of permission-induced attacks. Moreover, the proposed approaches

are mostly realized through modification of either the Android framework or the implemen-

tation logic of apps, resulting in all sorts of undesirable side effects, such as app crashes and

unexpected behaviors.

The third approach presented in this dissertation, called Terminator, is devised to address

the aforementioned shortcomings of Covert, Separ and similar approaches by incorporating

the notion of time during the analysis and enforcement. Leveraging temporal logic model

checking, Terminator’s analyzer identifies permission-induced threats with respect to dy-

namic permission states of the apps. At runtime, Terminator’s enforcer selectively leases
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(i.e., temporarily grants) permissions to apps when the system is in a safe state, and revokes

the permissions when the system moves to an unsafe state realizing the identified threats.

The countermeasure applied by Terminator, i.e., permission revocation, however, could

itself result in other sorts of defects, such as crash, if the target app suffers from dynamic-

permission-compatibility issue. To identify such permission-induced compatibility defects,

developers should test the app under a wide range of permission combinations, since app’s

behavior may change depending on the granted permissions. At the state-of-the-art, in the

absence of any automated tool support, a developer needs to either manually determine

the interaction of tests and app permissions, or exhaustively re-execute tests for all possible

permission combinations, thereby increasing the time and resources required to test apps.

PATDroid, the last proposed approach in this dissertation, is intended to help app developers

with this challenge. PATDroid can significantly reduce the testing effort by performing a

hybrid program analysis that determines which tests should be executed on what permission

combinations.

The aforementioned problems, which are the subject of this dissertation, are among the

research gaps, identified by a comprehensive study conducted through a systematic literature

review. To provide an overview of the research, Figure 1.1 shows the roadmap of this

dissertation, including the challenges, proposed solutions, and accomplishments of each step.

1.2 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 provides a background on

Android, followed by a comprehensive study and literature survey. Chapter 3 describes the

problem and specifies the scope of this thesis. Chapter 4 and 5 present Covert and Separ,

respectively, which include an analysis and enforcement framework for detection and pre-
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Table 1.1: Potential stakeholders for each part of the dissertation

Chapter Content Stakeholders

2 Taxonomy and Survey research community (Software Eng., Security, Mobile)

4 Covert app developers, security analysts, researchers

5 Separ app developers, app users, security analysts, researchers

6 Terminator app developers, app users, security analysts, researchers

7 PATDroid app developers, app testers, researchers

vention of permission-induced, inter-app security vulnerabilities. Chapter 6 describes Ter-

minator, a temporal permission analysis and enforcement framework for Android. Chap-

ter 7 explains PATDroid, an efficient approach for permission-aware testing that identifies

permission-induced compatibility defects. Finally, Chapter 8 concludes this dissertation with

the discussion of the contributions and the future work.

To help different readers of this dissertation find their parts of interest more easily, Table 1.1

suggests the potential stakeholders for each part of the dissertation.

The research presented in this dissertation has been published in the following journals and

venues:

• A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. A taxonomy and qualitative comparison of

program analysis techniques for security assessment of android software. IEEE Transactions

on Software Engineering (TSE), 43(6):492–530, 2017

• A. Sadeghi, H. Bagheri, and S. Malek. Analysis of android inter-app security vulnerabilities

using COVERT. In 37th IEEE/ACM International Conference on Software Engineering,

ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2, pages 725–728, 2015

• A. Sadeghi, R. Jabbarvand, and S. Malek. Patdroid: permission-aware GUI testing of an-

droid. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 220–232, 2017

• A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek. A temporal permission

analysis and enforcement framework for android. 2017
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• H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek. COVERT: compositional analysis of android

inter-app permission leakage. IEEE Trans. Software Eng. (TSE), 41(9), 2015

• H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek. Practical, formal synthesis and auto-

matic enforcement of security policies for android. In 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN 2016, Toulouse, France, June 28 -

July 1, 2016, pages 514–525, 2016

In addition, the following publications are not included in the dissertation but they are

along the same line of this research. For instance, the first paper [420] suggests an efficient

and safe adaptation technique that could be leveraged by the prevention tools introduced in

this dissertation, such as Separ to replace the vulnerable component of an app without any

disruption, while the target app is running. Also, the approaches proposed by the second

and third papers [418, 421], are able to accelerate the Static Analysis components used in

Covert, Separ, and Terminator.

• A. Sadeghi, N. Esfahani, and S. Malek. Ensuring the consistency of adaptation through inter-

and intra-component dependency analysis. ACM Trans. Softw. Eng. Methodol. (TOSEM),

26(1):2:1–2:27, 2017

• A. Sadeghi, N. Esfahani, and S. Malek. Mining the categorized software repositories to

improve the analysis of security vulnerabilities. In Fundamental Approaches to Software

Engineering - 17th International Conference, FASE 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,

2014, Proceedings, pages 155–169, 2014

• A. Sadeghi, N. Esfahani, and S. Malek. Mining mobile app markets for prioritization of

security assessment effort. In Proceedings of the 2nd ACM SIGSOFT International Work-

shop on App Market Analytics, WAMA@ESEC/SIGSOFT FSE 2017, Paderborn, Germany,

September 5, 2017, pages 1–7, 2017
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Chapter 2

Background and Related Work

Over the past few year, since the inception of Android in 2008, its security has been a thriving

subject of research. These research efforts have investigated the Android security threats

from various perspectives and are scattered across several research communities, which has

resulted in a body of literature that is spread over a wide variety of domains and publication

venues. The majority of surveyed literature has been published in the software engineering

and security domains. However, the Android’s security literature also overlaps with those

of mobile computing and programming language analysis. Yet, there is a lack of a broad

study that connects the knowledge and provides a comprehensive overview of the current

state-of-the-art about what has already been investigated and what are still the open issues.

This chapter presents a comprehensive review of the existing approaches for Android security

analysis. The review is carried out to achieve the following objectives:

• To provide a basis taxonomy for consistently and comprehensively classifying Android

security assessment mechanisms and research approaches;

• To provide a systematic literature review of the state-of-the-art research in this area
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using the proposed taxonomy;

• To identify trends, patterns, and gaps through observations and comparative analysis

across Android security assessment systems; and

• To provide a set of recommendations for deriving a research agenda for this dissertation

and also the future developments.

We have carefully followed the systematic literature review process, and analyzed the re-

sults of 336 research papers published in diverse journals and conferences. Specifically, we

constructed a comprehensive taxonomy by performing a “survey of surveys” on related tax-

onomies and conducting an iterative content analysis over a set of papers collected using

reputable literature search engines. We then applied the taxonomy to classify and charac-

terize the state-of-the-art research in the field of Android security. We finally conducted a

cross analysis of different concepts in the taxonomy to derive current trends and gaps in the

existing literature, and underline key challenges and opportunities that will shape the focus

of future research efforts. To the best of our knowledge, this study is the most comprehensive

and elaborate investigation of the literature in this area of research.

The rest of the chapter is organized as follows: Section 2.1 overviews the Android framework

to help the reader follow the discussions that ensue. Section 2.2 lists the existing surveys

that are directly or indirectly related to the Android security analysis. Section 2.3 presents

the research method and the underlying protocol for the systematic literature review. Sec-

tion 2.4 presents a comprehensive taxonomy for the Android security analysis derived from

the existing research literature. Section 2.5 presents a classification of the state-of-the-art

research into the proposed taxonomy as well as a cross analysis of different concepts in the

taxonomy. Section 2.6 provides a trend analysis of surveyed research, discusses the observed

gaps in the studied literature, and identifies future research directions based on the survey

results.
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2.1 Android Overview

This section provides a brief overview of the Android platform and its incorporated security

mechanisms and protection measures to help the reader follow the discussions that ensue.

Android Platform. Android is a platform for mobile devices that includes a Linux OS,

system libraries, middleware, and a suite of pre-installed applications. Android applications

(apps) are mainly written in the Java programming language by using a rich collection of

APIs provided by the Android Software Development Kit (SDK). An app’s compiled code

alongside data and resources are packed into an archive file, known as an Android application

package (APK). Once an APK is installed on an Android device, it runs by using the Android

runtime (ART) environment.1

Application Components. Android defines four types of components: Activity com-

ponents that provide a user interface, Service components that execute processes in the

background without user interaction, Content Provider components that provide the capa-

bility of data sharing across applications, and Broadcast Receiver components that respond

asynchronously to system-wide announcement messages.

Application Configuration. The manifest is a mandatory configuration file (Android-

Manifest.xml) that accompanies each Android app. It specifies, among other things, the

principal components that constitute the application, including their types and capabilities,

as well as required and enforced permissions. The manifest file values are bound to the

Android app at compile-time, and cannot be modified at run-time.

Inter-Component Communication. As part of its protection mechanism, Android insu-

lates applications from each other and system resources from applications via a sandboxing

mechanism. Such application insulation that Android depends on to protect applications

1ART is the successor of the Dalvik VM, which was Android’s runtime environment until version 4.4
KitKat.
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requires interactions to occur through a message passing mechanism, called inter-component

communication (ICC). ICC in Android is mainly conducted by means of Intent messages.

Component capabilities are specified as a set of Intent-Filters that represent the kinds of

requests a given component can respond to. An Intent message is an event for an action

to be performed along with the data that supports that action. Component invocations

come in different flavors, e.g., explicit or implicit, intra- or inter-app, etc. Android’s ICC

allows for late run-time binding between components in the same or different applications,

where the calls are not explicit in the code, rather made possible through event messaging,

a key property of event-driven systems. It has been shown that the Android ICC interac-

tion mechanism introduces several security issues [143]. For example, Intent event messages

exchanged among components, among other things, can be intercepted or even tampered,

since no encryption or authentication is typically applied upon them [160]. Moreover, no

mechanism exists for preventing an ICC callee from misrepresenting the intentions of its

caller to a third party [167].

Permissions. Enforcing permissions is the other mechanism, besides sandboxing, provided

by the Android framework to protect applications. In fact, permissions are the cornerstone

for the Android security model. The permissions stated in the app manifest enable secure

access to sensitive resources as well as cross-application interactions. When a user installs

an app, the Android system prompts the user for consent to requested permissions prior to

installation. Should the user refuse to grant the requested permissions to an app, the app

installation is canceled. Until recently, no dynamic mechanism was provided by Android

for managing permissions after app installation. In the latest release of Android2, however,

Google introduced dynamic permission management that allows users to revoke or grant app

permissions at runtime.

Besides required permissions, the app manifest may also include enforced permissions that

2Android 6 or Marshmallow
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other apps must have in order to interact with this app. In addition to built-in permissions

provided by the Android system to protect various system resources, any Android app can

also define its own permissions for the purpose of self-protection.

The current permission model of Android suffers from shortcomings widely discussed in the

literature [462, 189, 176]. Some examples of such defects include coarse-grained permissions

that violate the principle of least privilege [117, 466, 268], enforcing access control policies at

the level of individual apps that causes delegation attacks [160, 202, 114, 128], and the lack

of permission awareness that leads to uninformed decisions by end users [287, 201, 593, 507].

2.2 Related Surveys

Identifying, categorizing and examining mobile malware have been an interesting field of

research since the emergence of mobile platforms. Several years before the advent of modern

mobile platforms, such as iOS and Android, Dagon et al. [156] provided a taxonomy of mobile

malware. Although the threat models were described for old mobile devices, such as PDAs,

our article draws certain attributes from this study for the Android security taxonomy that

will be introduced in Section 2.4. More recently, Felt et al. [200] analyzed the behavior of a

set of malware spread over iOS, Android, and Symbian platforms. They also evaluated the

effectiveness of techniques applied by the official app markets, such as Apple’s App Store

and Google’s Android Market (now called Google Play), for preventing and identifying such

malware. Along the same lines, Suarez-Tangil et al. [475] presented a comprehensive survey

on the evolution of malware for smart devices and provided an analysis of 20 research efforts

that detect and analyze mobile malware. Amamra et al. [57] surveyed malware detection

techniques for smartphones and classified them as signature-based or anomaly-based. Haris

et al. [246] surveyed the mobile computing research addressing the privacy issues, including

13 privacy leak detection tools and 16 user studies in mobile privacy. Enck [180] reviewed

11



some of the efforts in smartphone research, including OS protection mechanisms and security

analysis techniques. He also discussed the limitations as well as directions for future research.

While the focus of these surveys is mainly on malware for diverse mobile platforms, the area

of Android security analysis has not been investigated in detail.

They do not analyze the techniques for Android vulnerability detection. Moreover, they cat-

egorize malware detection techniques based only on limited comparison criteria, and several

rather important aspects—such as approach positioning, characteristics, and assessment—

are ignored. These comparison areas are fully discussed in our proposed taxonomy (see

Section 2.4).

Besides these general, platform-independent malware surveys, we have found quite a number

of relevant surveys that describe subareas of Android security, mainly concerned with specific

types of security issues in the Android platform. For instance, Chin et al. [143] studied

security challenges in Android inter-application communication, and presented several classes

of potential attacks on applications. Another example is the survey of Shabtai et al. [450,

451], which provides a comprehensive assessment of the security mechanisms provided by

the Android framework, but does not thoroughly study other research efforts for detection

and mitigation of security issues in the Android platform. The survey of Zhou et al. [586]

analyzes and characterizes a set of 1,260 Android malware. This collection of malware,

called Malware Genome, are then used by many other researchers to evaluate their proposed

malware detection techniques.

Each of these surveys overview specific domains (e.g., inter-app vulnerabilities [143] or fami-

lies of Android malware [191, 586]), or certain types of approaches (e.g. techniques relying on

dynamic analysis [364], static analysis [438], or machine learning [196] as well as mechanisms

targeting the enhancement of the Android security platform [476, 393]). However, none of

them provide a comprehensive overview of the existing research in the area of Android secu-
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Figure 2.1: Research process flow and tasks.

rity, including but not limited to empirical and case studies, as well as proposed approaches

and techniques to identify, analyze, characterize, and mitigate the various security issues in

either the Android framework or apps built on top it. Moreover, since a systematic litera-

ture review (SLR) is not leveraged, there are always some important approaches missing in

the existing surveys. Having compared over 330 related research publications through the

proposed taxonomy, this survey, to the best of our knowledge, is the most comprehensive

study in this line of research.

2.3 Research Method

Our survey follows the general guidelines for systematic literature review (SLR) process

proposed by Kitchenham [293]. We have also taken into account the lessons from Brereton

et al. [112] on applying SLR to the software engineering domain. The process includes three

main phases: planning, conducting, and reporting the review. Based on the guidelines, we

13



have formulated the following research questions, which serve as the basis for the systematic

literature review.

• RQ1: How can existing research on Android app security analysis be classified?

• RQ2: What is the current state of Android security analysis research with respect to

this classification?

• RQ3: What patterns, gaps, and challenges could be inferred from the current research

efforts that will inform future research?

The remainder of this section describes the details of our review process, including the

methodology and tasks that we used to answer the research questions (Section 2.3.1), the

detailed SLR protocol including keywords, sources, and selection criteria (Section 2.3.2),

statistics on selected papers based on the protocol (Section 2.3.3), and finally a short dis-

cussion on the threats to validity of our research approach (Section 2.3.4).

2.3.1 Research Tasks

To answer the three research questions introduced above, we organized our tasks into a

process flow tailored to our specific objectives, yet still adhering to the three-phase SLR

process including: planning the review, conducting the review, and reporting the review.

The overall process flow is outlined in Figure 2.1 and briefly described here.

First, in the planning phase, we defined the review protocol that includes selection of the

search engines, the initial selection of the keywords pertaining to Android security analysis,

and the selection criteria for the candidate papers. The protocol is described in detail in

Section 2.3.2.
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The initial keyword-based selection of the papers is an iterative process that involves ex-

porting the candidate papers to a “research catalog” and applying the pre-defined inclu-

sion/exclusion criteria on them. In the process, the keyword search expressions and the

inclusion/exclusion criteria themselves may also need to be fine-tuned, which would in turn

trigger new searches. Once the review protocol and the resulting paper collection were

stabilized, our research team also conducted peer-reviews to validate the selections.

For RQ1, in order to define a comprehensive taxonomy suitable for classifying Android

security analysis research, we first started with a quick “survey of surveys” on related tax-

onomies. After an initial taxonomy was formulated, we then used the initial paper review

process (focusing on abstract, introduction, contribution, and conclusion sections) to identify

new concepts and approaches to augment and refine our taxonomy. The resulting taxonomy

is presented in Section 2.4.

For the second research question (RQ2), we used the validated paper collection and the

consolidated taxonomy to conduct a more detailed review of the papers. Each paper was

classified using every dimension in the taxonomy, and the results were captured in a research

catalog. The catalog, consisting of a set of spreadsheets, allowed us to perform qualitative

and quantitative analysis not only in a single dimension, but also across different dimensions

in the taxonomy. The analysis and findings are documented in Section 2.5.3

To answer the third research question (RQ3), we analyzed the results from RQ2 and at-

tempted to identify the gaps and trends, again using the taxonomy as a critical aid. The

possible research directions are henceforth identified and presented in Section 2.6.

3The research artifacts, including the survey catalog, are available to the public and can be accessed at
http://www.ics.uci.edu/˜seal/projects/droid-sec-taxonomy
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Table 2.1: Refined search keywords.

Research Domain (D) Keywords (K)
Program Analysis Static (Analysis)*, Dynamic (Analysis)*,

Control Flow, Data Flow, Taint,
Monitoring, Feature Selection

Security Assessment Security, Vulnerability/Vulnerable,
Malware/Malicious, Virus, Privacy

Android Platform Android, Mobile, Smartphone, App

2.3.2 Literature Review Protocol

This section provides the details of the review protocol, including our search strategy and

inclusion/exclusion criteria.

2.3.2.1 Search Method

We used reputable literature search engines and databases in our review protocol with the

goal of finding high-quality refereed research papers, including journal articles, conference pa-

pers, tool demo papers, as well as short papers from respectable venues. The selected search

engines consist of IEEE Explore, ACM Digital Library, Springer Link, and ScienceDirect.

Given the scope of our literature review, we focused on selected keywords to perform the

search on the papers’ titles, abstracts, and meta-data, such as keywords and tags. Our search

query is formed as a conjunction of three research domains, described in Section 2.3.2.2 as

inclusion criteria, namely, D1: Program Analysis, D2:Security Assessment, and D3: Android

Platform. These research domains appear in the literature under different forms and using

synonymous words. To retrieve all related papers, each research domain in our search string

is represented as a disjunction of corresponding keywords summarized in Table 2.1. These

keywords were continuously refined and extended during the search process. For instance,

regarding the security assessment domain, we considered keywords such as, “security”, “vul-

nerability”, “malware”, “privacy”, etc. In summary, our search query is defined as the
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Figure 2.2: Scope of this survey.

following formula:

query =
∧

d∈{D1,D2,D3}

(
∨

keyword∈Kd

keyword)

Where Dis are the three research domains, and Kd is the set of corresponding keywords

specified for domain d in Table 2.1.

Finally, to eliminate irrelevant publications and also make our search process repeatable, we

added a time filter to limit the scope of the search for the papers published from 20084 to

20165.

2.3.2.2 Selection Criteria

Not all the retrieved papers based on the search query fit within the scope of this survey.

Therefore, we used the following inclusion and exclusion criteria to further filter the candidate

papers.

Inclusion Criteria. As illustrated in Figure 2.2, the scope of surveyed research in this

study falls at the intersection of three domains:

4The release year of the first version of Android framework.
5The papers published after January 2016 are not included in this survey.
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1. Program Analysis domain that includes the techniques used for extracting the models

of individual Android apps and/or the Android platform.

2. Security Assessment domain that covers the analysis methods applied on the extracted

models to identify the potential security issues among them.

3. Android Platform domain that takes into account the special features and challenges

involved in the Android platform, its architecture, and security model.

Papers that fall at the intersection of these three domains are included in our review.

Exclusion Criteria. Moreover, we excluded papers that:

1. exclusively developed for platforms other than Android, such as iOS, Windows Mobile,

BlackBerry, and Sybmbian (e.g., [175, 52, 110, 441, 324, 141, 323, 517, 113]). However,

approaches that cover multiple platforms, including Android, fall within the scope of

this survey.

2. focused only on techniques for mitigation of security threats, but not on any secu-

rity analysis technique. Such techniques attempt to enhance security mechanisms

either at the application-level or the level of the Android platform by means of dif-

ferent approaches, such as isolation and sandboxing [116, 146, 521, 74, 588, 301,

477, 195, 315, 538], enhancing permission management [199, 288, 244, 409, 286, 217],

anonymity [458, 296], fine-grained or dynamic policy enforcement [466, 504, 410, 209],

anti-repackaging [581, 582, 404, 387, 266], security-enhanced communication [72, 580],

database and storage [356, 171, 442], cryptography [90, 163], etc. Approaches that

consider both detection and protection (e.g., [379, 341, 114, 478]), are included in the

survey.

3. performed the analysis only on apps meta-data, such as description [376, 557], cat-

egory [419], signature [87], ranking and reviews [531, 532], resources [273], apk file’s
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meta-data [55], or a combination of these attributes [365, 487, 321]. The analyses run-

ning on an app’s code, but at opcode level [193, 431, 225, 123, 278] are also excluded.

4. focused only on expanding and enhancing Java program analysis techniques, either

static [105, 129, 370, 543, 306, 104] or dynamic [66, 242], for the Android framework.

In this survey, however, we included general program-analysis research that, at least,

provide a case study or experiment related to security analysis (e.g, [67, 307, 429]).

5. focused solely on low-level monitoring and profiling techniques for identifying security-

related anomalies or malware. Such research includes intrusion detection, which per-

forms analysis using hardware signals (e.g., CPU utilization [561, 564], power consump-

tion [249, 170], memory usage [58, 289], network traffic [295, 472, 454, 469, 503, 153,

444, 108, 358, 62], or a combination of multiple sensors [452, 537, 235, 342, 103]). These

approaches use mechanisms at a lower level than the Android framework, making them

out of scope for this survey.

6. elaborated on a particular attack on the Android framework [563, 330, 237, 128, 527]

or apps [139, 354, 385, 298, 339, 125, 388, 258, 333], without describing detection

techniques to identify the vulnerabilities that lead to the described security breach.

In addition, the analysis tools that are not accompanied by any peer-reviewed paper were

excluded, as most of the taxonomy dimensions are not applicable to such tools. Dexter [9]

and DroidBox [12] are two examples that respectively leverage static and dynamic analysis

techniques, but lack any peer-reviewed paper, thus were excluded from this survey.

2.3.3 Selected papers

Table 2.2 provides statistics on each phase of paper collection, illustrated in Figure 2.1, for

each database.
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Table 2.2: Number of collected papers at each phase of paper selection.

Database
Selection phase IEEE ACM Springer ScienceDirect All

Keyword-based search 1,374 938 8,605 2,830 —
Initial filtering 852 721 520 240 —
Merging 2023
Applying criteria 336

Figure 2.3: Word cloud of the titles of the selected papers.

The first row shows the size of the initial set of papers, selected by keyword-based search

over the full paper for each database. Since the search engine of the four databases treat

our search query differently, we performed another verification over the initially collected

papers, in a consistent manner, based on the same keywords (Row 2). After initial filtering,

we merged the search results of all databases into a single repository for further review and

filtering (Row 3).

In the fourth row, the number of filtered papers after applying selection criteria is shown. In

this stage we applied inclusion and exclusion criteria, enumerated in Section 2.3.2.2, on the
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(a) by publication year.
(b) by publication venue.

Figure 2.4: Distribution of surveyed papers.

title, abstract and conclusion of the papers selected in the first phase to remove out-of-scope

publications. This process led to the selection of 336 papers for this survey—whose titles

are illustrated in the form of a word cloud in Figure 2.3.

Figure 2.4a shows the number of selected papers by publication year. As illustrated in this

figure, the number of publications have increased gradually between 2009 and 2011, more

than doubled between 2011 and 2012, and hit its peak in 2014.

As shown in Figure 2.2, this study covers multidisciplinary research conducted in various

domains, such as software engineering (including programming languages), security, and

mobility. Consequently, as depicted in Figure 2.4b, selected papers are also published in

different venues related to such domains.

2.3.4 Threats to Validity

By carefully following the SLR process in conducting this study, we have tried to minimize

the threats to the validity of the results and conclusions made in this article. Nevertheless,

there are three possible threats that deserve additional discussion.
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One important threat is the completeness of this study, that is, whether all of the appropriate

papers in the literature were identified and included. This threat could be due to two reasons:

(1) some relevant papers were not picked up by the search engines or did not match our

keyword search, (2) some relevant papers that were mistakenly omitted, and vice-versa, some

irrelevant papers that were mistakenly included. To address these threats, we used multiple

search engines, including both scientific and general-purpose search engines. We also adopted

an iterative approach for our keyword-list construction. Since different research communities

(particularly, software engineering and security) refer to the same concepts using different

words, the iterative process allowed us to ensure that a proper list of keywords were used in

our search process.

Another threat is the validity of the proposed taxonomy, that is, whether the taxonomy is

sufficiently rich to enable proper classification and analysis of the literature in this area. To

mitigate this threat, we adopted an iterative content analysis method, whereby the taxon-

omy was continuously evolved to account for every new concept encountered in the papers.

This gives us confidence that the taxonomy provides a good coverage for the variations and

concepts that are encountered in this area of research.

Another threat is the objectiveness of the study, which may lead to biased or flawed results.

To mitigate this risk, we have tackled the individual reviewer’s bias by crosschecking the

papers, such that no paper received a single reviewer. We have also tried to base the

conclusions on the collective numbers obtained from the classification of papers, rather than

individual reviewer’s interpretation or general observations, thus minimizing the individual

reviewer’s bias.
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2.4 Taxonomy

To define an Android security analysis taxonomy for RQ1, we started with selecting suitable

dimensions and properties found in existing surveys. The aforementioned studies described

in Section 2.2, though relevant and useful, are not sufficiently specific and systematic enough

for classifying the Android security analysis approaches in that they either focus on mobile

malware in general, or focus on certain sub-areas, such as Android inter-application vulner-

abilities or families of Android malware software, but not on the Android security analysis

as a whole.

We thus have defined our own taxonomy to help classify existing work in this area. Nonethe-

less, the proposed taxonomy is inspired by existing work described in Section 2.2. The highest

level of the taxonomy hierarchy classifies the surveyed research based on the following three

questions:

1. What are the problems in the Android security being addressed?

2. How and with which techniques the problems are solved?

3. How is the validity of the proposed solutions evaluated?

For each question, we derive the sub-dimensions of the taxonomy related to the question,

and enumerate the possible values that characterize the studied approaches. The resulting

taxonomy hierarchy consists of 21 dimensions and sub-dimensions, which are depicted in

Figures 2.5–2.7, and explained in the following.
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Figure 2.5: Proposed Taxonomy of Android Security Analysis, Problem Category.

2.4.1 Approach Positioning (Problem)

The first part of the taxonomy, approach positioning, helps characterize the “WHAT” as-

pects, that is, the objectives and intent of Android security analysis research. It includes

five dimensions, as depicted in Figure 2.5.

2.4.1.1 Analysis Objectives (T1.1)

This dimension classifies the approaches with respect to the goal of their analysis. Thwarting

malware apps that compromise the security of Android devices is a thriving research area.

In addition to detecting malware apps, identifying potential security threats posed by benign

Android apps, that legitimately process user’s private data (e.g., location information, IMEI,

browsing history, installed apps, etc.), has also received a lot of attention in the area of

Android security.

Since malware authors exploit the existing vulnerabilities of other apps or the underlying
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Android framework to breach system security, malware detection techniques and vulnerabil-

ity identification methods are complementary to each other. In addition to these two kinds

of approaches, there exists a third category of techniques intended to detect and mitigate

the risk o grayware. Grayware, such as advertisement apps and libraries, are not fully ma-

licious but they could violate users’ privacy by collecting sensitive information for dubious

purposes [200, 464, 475].

2.4.1.2 Type of Security Threats (T1.2)

This dimension classifies the security threats being addressed in the surveyed research along

the Microsoft’s threat model, called STRIDE [480].

Among existing attack models, we selected STRIDE, as it provides a design-centric model

that helps us investigate the security properties of Android system, irrespective of known

security attacks, thus allowing us to identify gaps in the literature (e.g., security attacks

that have not been observed in Android yet, security attacks that have not received much

attention in the literature). Moreover, it recognizes a separate category for each type of

security property that is widely referred to in the literature.

Spoofing violates the authentication security property, where an adversary pretends to be

a legitimate entity by properly altering some features that allows it to be recognized as a

legitimate entity by the user. An example of this threat in the Android platform is Intent

Spoofing, where a forged Intent is sent to an exported component, exposing the component

to components from other applications (e.g., a malicious application)[143].

App Cloning, Repackaging or Piggybacking are classified under Spoofing, where malware

authors attach malicious code to legitimate apps and advertise them as original apps in app

markets to infect users. This technique is quite popular among mobile malware developers;

it is used by 86% of the Android malware, according to a recent study [586].
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Tampering affects the integrity property and involves a malicious modification of data.

Content Pollution is an instance of this threat, where an app’s internal database is manip-

ulated by other apps [587].

Repudiation is in contrast to non-repudiation property, which refers to the situation in

which entities deny their role or action in a transaction. An example of this security threat

occurs when an application tries to hide its malicious behavior by manipulating log data to

mislead a security assessment.

Information Disclosure compromises the confidentiality by releasing the protected or

confidential data to an untrusted environment. In mobile devices, sensitive or private in-

formation such as device ID (IMEI), device location (GPS data), contact list, etc., might,

intentionally or unintentionally, be leaked to an untrusted environment, via different channels

as SMS, Internet, Bluetooth, etc.

Denial of service (DoS) affects availability by denying service to valid users. A common

vulnerability in Android apps occurs when a payload of an Intent is used without check-

ing against the null value, resulting in a null dereference exception to be thrown, possibly

crashing the Android process in which it occurs. This kind of vulnerability has shown to

be readily discoverable by an adversary through reverse engineering of the apps [182], which

in turn enables launching a denial of service attack. Unauthorized Intent receipt [143], du-

plicating content provider authorities and permission names [279], battery exhaustion [343],

and ransomware [60, 544], are some other examples of DoS attacks targeted at Android apps.

Elevation of Privilege subverts the authorization and happens when an unprivileged user

gains privileged access. An example of the privilege escalation, which is shown to be quite

common in the apps on the Android markets [233], happens when an application with less

permissions (a non-privileged caller) is not restricted from accessing components of a more

privileged application (a privileged callee) [160].
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Over-privileged apps are particularly vulnerable to privilege escalation attack, due to the

possibility of an attacker successfully injecting malicious code, exploiting the unnecessary

permissions [94, 198]. Therefore, we categorize this type of security threat under elevation

of privilege.

2.4.1.3 Granularity of Security Threats (T1.3)

This dimension classifies the approaches based on the granularity of identifiable security

threats. In the basic form, a security issue, either vulnerability or malicious behavior, oc-

curs by the execution of a single (vulnerable and/or malicious) component. However, more

complicated scenarios are possible, where a security issue may arise from the interaction of

multiple components. Accordingly, the existing techniques are classified into two categories:

intra-component approaches that only consider security issues in a single component, and

inter-component approaches that are able to identify security issues in multiple components.

We further classify the inter-component class into subclasses based on two sub-dimensions

described below.

Level of Security Threat (T1.3.1) It is possible that interacting vulnerable or malicious

components belong to different applications. For example, in an instance of the app collusion

attack, multiple applications can collude to compromise a security property, such as the user’s

privacy [160, 115]. Accordingly, security assessment techniques that consider the combination

of apps in their analysis (i.e.,inter-app) are able to reveal more complicated issues compared

to non-compositional approaches (i.e.,intra-app).

Type of Vulnerable Communication (T1.3.2) Android platform provides a variety

of Inter-Process Communication (IPC ) mechanisms for app components to communicate

among each other, while achieving low levels of coupling. However, due to intrinsic differ-

ences with pure Java programming, such communication mechanisms could be easily mis-
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implemented, leading to security issues. From a program analysis perspective, Android

communication mechanisms need to be treated carefully, to avoid missing security issues.

Our taxonomy showcases three major types of IPC mechanisms that may lead to vulnerable

communication:

• As described in Section 2.1, Intents provide a flexible IPC model for communication

among Android components. However, Intents are the root of many security vulnera-

bilities and malicious behaviors.

• Android Interface Definition Language (AIDL) is another IPC mechanism in Android

that allows client-server RPC-based communication. The implementation of an AIDL

interface must be thread-safe to prevent security issues resulting from concurrency

problems (e.g., race conditions) [3].

• Data Sharing is another mechanism that allows app components to communicate with

each other. Among the other methods, using Content Providers is the main technique

for sharing data between two applications. However, misusage of such components

may lead to security issues, such as passive content leaks (i.e., leaking private data),

and content pollution (i.e., manipulating critical data) [587].

2.4.1.4 Depth of Security Threats (T1.4)

The depth of security threats category reflects if the approach addresses a problem at the

application level or the framework level. The former aims at solely analyzing the application

software. Third party apps, especially those from an unknown or untrustworthy provenance,

pose a security challenge. However, there are some issues, such as overarching design flaws,

that require system-wide reasoning, and are not easily attainable by simply analyzing indi-

vidual parts of the system. Approaches at the framework level include research that focuses
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on modeling and analyzing the Android platform (e.g., for potential system-level design flaws

and issues encountered in the underlying framework).

Source of App (T1.4.1) An application’s level of security threat varies based on the source

from which its installation package (i.e., apk file) is obtained. As a result, it is important to

include a sub-dimension representing the source of the app in our taxonomy, which indicates

whether the app is obtained from the official Android repository:

• Official Repository: Due to the continuous vetting of the official Android repository

(i.e., Google Play), apps installed from that repository are safer than third-party apps.

• Sideloaded App: Sideloading, which refers to installing apps from sources other than

the official Android repository, exposes a new attack surface for malware. Hence, it

is critical for security research to expand their analysis beyond the existing apps in

Google Play.

2.4.1.5 Type of Artifact (T1.5)

Android apps are realized by different kinds of software artifacts at different levels of ab-

straction, from high-level configuration files (e.g., Manifest) to low-level Java source code or

native libraries implemented with C or C++. From the security perspective, each artifact

captures some aspects essential for security analysis. For instance, while permissions are

defined in the manifest file, inter-component messages (i.e., Intents) are implemented at the

source code level. This dimension of the taxonomy indicates the abstraction level(s) of the

extracted models that could lead to identification of a security vulnerability or malicious

behavior.

Type of Configuration (T1.5.1) Among different configuration files contributing to the

structure of Android app packages (APKs), a few artifacts encode significant security in-
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formation, most notably, the manifest file that contains high-level information such as app

components and permissions, as well as the layout file that defines the structure of app’s

user interfaces.

Type of Unconventional Code (T1.5.2) For different reasons, from legitimate to adver-

sarial, developers may incorporate special types of code in their apps. A security assessment

technique needs to tackle several challenges for analyzing such unconventional kinds of code.

Thus, we further distinguish the approaches based on the special types of code they support,

which includes the following:

• Obfuscated Code: Benign app developers tend to obfuscate their application to protect

the source code from being understood and/or reverse engineered by others. Malware

app developers also use obfuscation techniques to hide malicious behaviors and avoid

detection by antivirus products. Depending on the complexity of obfuscation, which

varies from simple renaming to invoking behavior using reflection, security assessment

approaches should tackle the challenges in analyzing the obfuscated apps [399, 400,

575, 388, 210, 361].

• Native Code: Beside Java code, Android apps may also consist of native C or C++

code, which is usually used for performance or portability requirements. An analysis

designed for Java is not able to support these kinds of apps. To accurately and precisely

analyze such apps, they need to be treated differently from non-native apps.

• Dynamically Loaded Code: Applications may dynamically load code that is not in-

cluded in the original application package (i.e., apk file) loaded at installation time.

This mechanism allows an app to be updated with new desirable features or fixes. De-

spite the benefits, this mechanism poses significant challenges to analysis techniques

and tools, particularly static approaches, for assessing security threats of Android ap-

plications.
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Figure 2.6: Proposed Taxonomy of Android Security Analysis, Solution Category.

• Reflective Code: Using Java reflection allows apps to instantiate new objects and invoke

methods by their names. If this mechanism is ignored or not handled carefully, it may

cause incomplete and/or unsound static analysis. Supporting reflection is a challenging

task for a static analysis tool, as it requires precise string and points-to analysis [325].

2.4.2 Approach Characteristics (Solution)

The second group of the taxonomy dimensions is concerned with classifying the “HOW”

aspects of Android security analysis research. It includes three dimensions, as shown in

Figure 2.6.

2.4.2.1 Type of Program Analysis (T2.1)

This dimension classifies the surveyed research based on the type of program analysis em-

ployed for security assessment. The type of program analysis leveraged in security domain

could be static or dynamic. Static analysis examines the program structure to reason about
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its potential behaviors. Dynamic analysis executes the program to observe its actual behav-

iors at runtime.

Each approach has its own strengths and weaknesses. While static analysis is considered to

be conservative and sound, dynamic analysis is unsound yet precise [184]. Dynamic analysis

requires a set of input data (including events, in event-based systems like Android) to run

the application. Since the provided test cases are often likely to be incomplete, parts of the

app’s code, and thereby its behaviors, are not covered. This could lead to false negatives,

i.e., missed vulnerabilities or malicious behaviors in security analysis. Moreover, it has been

shown that dynamic approaches could be recognized and deceived by advanced malware,

such as what anti-taint tracking techniques do to bypass dynamic taint analyses [434, 383,

390, 500, 397, 65, 277, 192].

On the other hand, by abstracting from the actual behavior of the software, static analysis

could derive certain approximations about all possible behaviors of the software. Such an

analysis is, however, susceptible to false positives, e.g., a warning that points to a vulnera-

bility in the code which is not executable at runtime.

To better distinguish different approaches with respect to the program analysis techniques

they rely on, we suggest sub-dimensions that further classify those two categories (i.e., static

and dynamic analyses). Five sub-dimensions are presented below, where the first three (i.e.,

T2.1.1, T2.1.2, and T2.1.3) classify static analysis techniques and the next two (i.e., T2.1.4,

and T2.1.5) are applied to dynamic analyses.

Analysis Data Structures (T2.1.1) In addition to lightweight static analyses that only

employ text-mining techniques, heavyweight but more accurate static approaches usually

leverage a few well-known data structures to abstract the underlying programs. The most

frequently encountered data structures are as follows:
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• Control Flow Graph (CFG) is a directed graph that represents program statements by

its nodes, and the flow of control among the statements by the graph’s edges.

• Call Graph (CG) is a directed graph, in which each node represents a method, and an

edge indicates the call of (or return from) a method.

• Inter-procedural Control Flow Graph (ICFG) is a combination of CFG and CG that

connects separated CFGs using call and return edges.

In addition, variation of these canonical data structures are used for special-purpose analyses.

The goal of this dimension is to characterize the analysis based on the usage of these data

structures.

Sensitivity of Analysis (T2.1.2) The sensitivities of the analyses vary for different algo-

rithms used by a static analysis technique, leading to tradeoffs among analysis precision and

scalability. Thus, this dimension classifies the static approaches based on their sensitivity to

the following properties.

• Flow Sensitive techniques consider the order of statements and compute separate in-

formation for each statement.

• Context Sensitive approaches keep track of the calling context of a method call and

compute separate information for different calls of the same procedure.

• Path Sensitive analyses take the execution path into account, and distinguish informa-

tion obtained from different paths.

There also exist other levels of sensitivity, such as field- and object-sensitivity, which are

discussed less often in the surveyed literature.

Code Representation (T2.1.3) Static analysis algorithms and methods are often imple-

mented on top of off-the-shelf frameworks that perform the analysis on their own intermediate
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representation (IR) of program code. This dimension classifies the analysis tools based on

the used IR (if any), which is translated from apps Dalvik bytecode prior to the analysis.

• Java Source Code may be analyzed since Android apps are mostly written in the Java

language. This assumption, however, limits the applicability of the analysis to either

open-source apps or the developers of an app.

• Java Bytecode may be analyzed, which widely broadens the applicability of an approach

compared to the first group. Distinct from Java, Android has its own Dalvik bytecode

format called Dex, which is executable by the Android virtual machine. As a result,

this class of tools needs to retarget Dalvik to Java bytecode prior to the analysis, using

APK-to-JAR transformers, such as dex2jar [8], ded [368], and its successor Dare[369].

• Jimple is a simplified version of Java bytecode that has a maximum of three compo-

nents per statement. It is used by the popular static analysis framework Soot [495].

Dexpler[93] is a plugin for the Soot framework that translates Dalvik bytecode to

Jimple.

• Smali is another intermediate representation, which is used by the popular Android

reverse engineering tool, Apktool [5].

Inspection Level (T2.1.4) To capture dynamic behavior of Android apps, analysis tech-

niques monitor the running apps at different levels. This dimension categorizes dynamic

analyses based on their inspection level, including:

• App-level monitoring approaches trace Java method invocation by weaving the byte-

code and injecting log statements inside the original app code or the Android frame-

work. A few approaches achieve this in a more fine-grained manner through instruction-

level dynamic analysis, such as data-flow tracking.
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• Kernel-level monitoring techniques collect system calls, using kernel modules and fea-

tures such as strace, or ltrace.

• Virtual Machine (VM)-level tools intercept events that occur within emulators. This

group of approaches can support several versions of Android. The more recent work

in this area supports the interception of Dalvik VM’s successor, Android Runtime

(ART) [149]. However, they are all prone to emulator evasion [364, 383, 357].

Input Generation Technique (T2.1.5) The techniques that employ dynamic analysis

for security assessment need to run mobile applications in order to perform the analysis.

For this purpose, they require test input data and events that trigger the application under

experiment. Security testing is, however, a notoriously difficult task. This is in part because

unlike functional testing that aims to show a software system complies with its specification,

security testing is a form of negative testing, i.e., showing that a certain (often a priori

unknown) behavior does not exist.

In addition to manually providing the inputs, which is neither systematic nor scalable, two

approaches are often leveraged by the surveyed research: fuzzing and symbolic execution.

• Fuzz testing or fuzzing [224] executes the app with random input data. Running apps

using inputs generated by Monkey[4], the state-of-the-practice tool for the Android

system testing, is an example of fuzz testing.

• Symbolic execution [292] uses symbolic values, rather than actual values, as program

inputs. It gathers the constraints on those values along each path of the program and

with the help of a solver generates inputs for all reachable paths.
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2.4.2.2 Supplementary Techniques (T2.2)

Besides various program analysis techniques, which are the key elements employed by ap-

proaches in the surveyed research, other supplementary techniques have also been leveraged

to complement the analysis. Among the surveyed research, Machine Learning and Formal

Analysis are the most widely used techniques. In fact, the program analysis either provides

the input for, or consumes the output of, the other supplementary techniques. This dimen-

sion of the taxonomy determines the techniques other than program analysis (if any) that

are employed in the surveyed research.

2.4.2.3 Automation Level (T2.3)

The automation level of a security analysis method also directly affects the usability of

such techniques. Hence, we characterize the surveyed research with respect to the manual

efforts required for applying the proposed techniques. According to this dimension, existing

techniques are classified as either automatic or semi-automatic.

2.4.3 Assessment (Validation)

The third and last section of the taxonomy is about the evaluation of Android security

research. Dimensions in this group, depicted in Figure 2.7, provide the means to assess the

quality of research efforts included in the survey.

The first dimension, evaluation method, captures how, i.e., with which evaluation method,

a paper validates the effectiveness of the proposed approach, such as empirical experimenta-

tion, formal proof, case studies, user studies, or other methods. Moreover, we further classify

the empirical evaluations according to the source of apps they selected for the experiments,

including the official Google Play repository, third-party and local repositories, collections of
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Figure 2.7: Proposed Taxonomy of Android Security Analysis, Assessment Category.

malware, and benchmark apps handcrafted by research groups for the purpose of evaluation.

The other dimension captures the extent to which surveyed research efforts enable a third

party to reproduce the results reported by the authors. This dimension classifies replicability

of research approaches by considering the availability of research artifacts. For example,

whether the approach’s underlying platform, tools and/or case studies are publicly available.

2.5 Survey Results and Analysis

This section presents the results of our literature review to answer the second research

question. By using the proposed taxonomy as a consistent point of reference, many insightful

observations surface from the survey results. The number of the research papers surveyed will

not allow elaboration on each one of them. Rather, we highlight some of them as examples

in the observations and analyses below.6

6Throughout this survey (including tables and figures), the approaches without name are shown in the
form of “first author’s surname ”.

37



2.5.1 Approach Positioning (Problem)

Tables 2.3 and 2.4 provide a summary of the problem-specific aspects that are extracted

from our collection of papers included in the survey. Note that the classifications are meant

to indicate the primary focus of a research paper. For example, if a certain approach is not

mentioned in the Spoofing column under the Type of Security Threat, it does not necessarily

indicate that it absolutely cannot mitigate such threat. Rather, it simply means spoofing

is not its primary focus. Furthermore, for some taxonomy categories, such as Depth of

Threat, a paper may have multiple goals and thus listed several times. On the other hand,

several dimensions only apply to a subset of papers surveyed, e.g., Test Input Generation

only applies to dynamic or hybrid approaches. As a result, percentages presented in the last

column of the table may sum up to more or less than 100%. In the following, we present the

main results for each dimension in the problem category.

2.5.1.1 Analysis Objective

Security assessment techniques proposed by a number of previous studies could be directly

used or extended for various purposes (e.g., detection of malware, grayware, or vulnerabil-

ities). In this survey, to distinguish the main objective(s) of each approach, we consulted

the threat model (or adversary model) and also the evaluation goals and results (if any)

described in the surveyed papers.

Based on the analysis of the research studies in the literature, it is evident that the majority of

Android security approaches have been applied to detection of malicious behaviors, compris-

ing 61% of the overall set of papers collected for this literature review. However, sometimes

the analysis techniques are not able to determine unequivocally if an application is malicious

or benign. Therefore, a number of studied approaches [275, 276, 585, 257, 433, 231] use

risk-based analysis to assign each app a level of security risk according to the analysis results
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Table 2.3: Problem Specific Categorization of the Reviewed Research, Part 1

Dimension Approaches %

A
n

a
ly

si
s

O
b

je
ct

iv
e

Vulnerability Detection

ADDICTED [585], Amandroid [514], ApkCombiner [307], App-ray [490], AppAudit [526], AppCaulk [446],
AppCracker [121], AppFence [252], AppGuard [75], AppProfiler [411], AppSealer [559], Aquifer [359],
ASM [247], AuthDroid [506], Bagheri [78], Bartel [94], Bartsch [95], Bifocals [144], Buhov [119],
Buzzer [127], CMA [455], CoChecker [155], ComDroid [143], ConDroid [445], ContentScope [587], Coo-
ley [148], COPES [92], COVERT [80], COVERT Tool [417], CredMiner [591], CRePE [147], Cryp-
toLint [174], Desnos [165], DexDiff [350], DroidAlarm [579], DroidChecker [133], DroidCIA [140], Droid-
Guard [81], DroidRay [577], Droidsearch [395], Enck [182], Epicc [371], FineDroid [565], Flowdroid [67],
Gallo [214], Geneiatakis [219], Grab’nRun [187], Harehunter [46], HornDroid [122], IccTA [308], IPCIn-
spection [202], IVDroid [190], Juxtapp [241], Kantola [283], KLD [453], Lintent [118], Lu [329], Mal-
loDroid [186], Matsumoto [345], Mutchler [355], NoFrak [220], NoInjection [274], Onwuzurike [374],
PaddyFrog [523], PatchDroid [353], PCLeaks [309], PermCheckTool [501], PermissionFlow [436], Poe-
plau [384], PScout [69], QUIRE [167], Ren [405], SADroid [240], SCanDroid [211], Scoria [497], Se-
cUP [533], SEFA [524], Smith [467], SMV-HUNTER [470], STAMBA [109], Stowaway [198], SUPOR [259],
TongxinLi [314], Vecchiato [498], VetDroid [566], WeChecker [154], Woodpecker [233], Zuo [594]

26%

Malware Detection Others * 61%

Grayware Detection
Achara [49], AdDroid [379], AdRisk [232], AndroidLeaks [222], APKLancet [545], AppFence [252], App-
Profiler [411], AppsPlayground [398], Han [239], LayerCake [408], Leontiadis [305], Pedal [322], Senevi-
ratne [447], Short [465], Wijesekera [518]

4%

T
y
p

e
o
f

S
ec

u
ri

ty
T

h
re

a
t

Spoofing

(Cl|Cr)

Amandroid [514], AnDarwin [152]Cl, AppCracker [121]Cr , AppIntegrity [499]Cl, AuthDroid [506]Cr ,

Bianchi [102], Bifocals [144], Buhov [119]Cr , Chen [136]Cl, ComDroid [143], Compac [512], Coo-

ley [148], CredMiner [591]Cr , CryptoLint [174]Cl, DNADroid [151]Cl, DroidCIA [140], Droid-

Kin [226]Cl, DroidMOSS [584]Cl, DroidSim [479]cl, Epicc [371], Gallingani [213], HunterDroid [556]Cl,

Juxtapp [241]Cl, Kantola [283], MalloDroid [186]Cr , MIGDroid [254]Cl, Mutchler [355], Mys-

teryChecker [269]Cl, NoFrak [220], NoInjection [274], Onwuzurike [374]Cr , PCLeaks [309], Permission-

Flow [436], PICARD [169]Cl, Ren [405], ResDroid [456]Cl, SCSdroid [318]Cl, SMV-HUNTER [470]Cr ,

STAMBA [109], WuKong [505]Cl, Zhou [583]Cl, Zuo [594]Cr

13%

Tampering
AppCracker [121], AppIntegrity [499], APSET [427], CMA [455], ContentScope [587], Desnos [165], Droid-
CIA [140], DroidFuzzer [549], Harehunter [46], MalloDroid [186], SMV-HUNTER [470], STAMBA [109] 4%

Repudiation 0%

Information
Disclosure

Achara [49], AdDroid [379], AdRisk [232], AdSplit [459], Amandroid [514], AMDetector [569],
Ananas [173], AndroidLeaks [222], ApkCombiner [307], APKLancet [545], AppAudit [526], App-
Caulk [446], AppFence [252], AppGuard [75], AppInspector [223], AppIntent [548], Apposcopy [203],
AppProfiler [411], AppSealer [559], AppsPlayground [398], AsDroid [260], AuDroid [382], Aurasium [535],
AutoCog [391], Bagheri [78], Bal [85], Barbon [86], Barros [91], Bartsch [95], Batyuk [96], Bayes-
Droid [493], Berthome [99], BlueSeal [251], Brahmastra [101], Brox [335], Capper [560], Cassandra [326],
CHEX [328], CMA [455], CoChecker [155], ComDroid [143], ContentScope [587], ConUCON [84], Copper-
Droid [403], CopperDroid2 [485], COVERT [80], COVERT Tool [417], DataChest [589], Defensor [375],
DexDiff [350], DroidGuard [81], DroidPAD [331], DroidSafe [227], DroidTest [412], DroidTrack [425],
Enck [182], Epicc [371], Feth [205], FineDroid [565], FlaskDroid [117], Flowdroid [67], Graa [230],
Graa2 [229], Han [239], Harehunter [46], HornDroid [122], ICC Map [178], IccTA [308], IFT [185],
IIF [551], Jia [271], KLD [453], Kynoid [443], LazyTainter [516], LeakMiner [547], Lee [302], Leon-
tiadis [305], Mann [341], Matsumoto [345], Mobile-Sandbox [471], MobSafe [534], MockDroid [98], Mon-
keyDroid [334], Morbs [509], MorphDroid [204], MOSES [573], Mudflow [70], Mutchler [355], NDroid [389],
Nishimoto [367], Onwuzurike [374], Paupore [378], PCLeaks [309], Pegasus [138], Porscha [372],
Relda [234], Ren [405], SADroid [240], ScanDal [291], SecUP [533], SEFA [524], Seneviratne [447],
SFG [59], Short [465], SmartDroid [574], Smith [467], Song [468], STAMBA [109], SUPOR [259],
TaintDroid [181], TISSA [592], TouchDevelop [528], TrustDroid [570], Uranine [401], VetDroid [566],
WeChecker [154], WifiLeaks [48], Wijesekera [518], Yaase [413]

35%

Denial of Service ASV [257], ComDroid [143], Enck [182], Ren [405], SecUP [533] 1%

Elevation of
Privilege

(O)

ADDICTED [585], AdDroid [379], Ananas [173], AppGuard [75], AppInspector [223], AppsPlay-

ground [398], Aurasium [535], Bagheri [78], Bartel [94]O , Bartsch [95], Bugiel [115], CHEX [328],

CoChecker [155], ComDroid [143], Compac [512], COPES [92]O , COVERT [80], COVERT Tool [417],
DeepDroid [511], Defensor [375], DroidAlarm [579], DroidBarrier [56], DroidChecker [133], Droid-
Guard [81], DroidRay [577], DroidTrace [578], Enck [182], Epicc [371], FineDroid [565], FlaskDroid [117],
FUSE [402], Gallo [214], Geneiatakis [219], Harehunter [46], IntentFuzzer [542], IPCInspection [202],

Johnson [280]O , Lee [302], Lintent [118], Lu [329], MobSafe [534], PaddyFrog [523], PCLeaks [309],

Pedal [322], Pegasus [138], PermCheckTool [501]O , PermissionFlow [436], PREC [248], PScout [69]O ,

QUIRE [167], SADroid [240], SecUP [533], SEFA [524]O , Stowaway [198]O , UID [179], WeChecker [154],
Woodpecker [233], Yaase [413]

17%

R: Risk-based, Cl: Cloning, Repackaging, or Piggybacking, Cr: Cryptography Misuse, O: Over-privilege apps
*: Including all other surveyed papers that are not mentioned as Vulnerability or Grayware detection
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(Denoted by R in Table 2.3).

4% of efforts in this area are devoted to the analysis of grayware that are less disruptive than

malware, but still worrying, particularly from a privacy perspective. Most research efforts

on grayware detection target the analysis of advertisement (ad) libraries that are linked

and shipped together with the host apps. In fact, a variety of private user data, including

a user’s call logs, phone numbers, browser bookmarks, and the list of apps installed on a

device are collected by ad libraries. Since the required permissions of ad libraries are merged

into a hosting app’s permissions, it is challenging for users to distinguish, at installation

time, the permissions requested by the embedded ad libraries from those actually used by

the app [379]. For this reason, AdRisk [232] decouples the embedded ad libraries from the

host apps and examines the potential unsafe behavior of each library that could result in

privacy issues. Other techniques, such as AdDroid [379], AFrame [562], AdSplit [459], and

LayerCake [408], introduce advertising frameworks with dedicated permissions and APIs

that separate privileged advertising functionality from host applications. Also, as a more

generic solution, Compac [512] provides fine-grained access control to minimize the privilege

of all third-party components.

Android vulnerability analysis has also received attention from a significant portion of exist-

ing research efforts (26% of the studied papers). Since techniques and methods used for one

of the above goals are often applicable to other goals, the target of many surveyed research

papers falls in both categories. However, there are some approaches that only target vulner-

ability detection. Among such approaches, Woodpecker [233] tries to identify vulnerabilities

in the standard configurations of Android smartphones, i.e., pre-loaded apps in such de-

vices, that may lead to capability leaks. A capability (or permission) leak is an instance of a

privilege-escalation threat, where some privileged functions (e.g., sending of a text message)

is left exposed to apps lacking the required permissions to access those functions.
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2.5.1.2 Type of Security Threat

The Android security approaches studied in this literature review have covered diverse types

of security threats. It can be observed from Table 2.3 that among the STRIDE security

threats (See Section 2.4.1.2), information disclosure is the most considered threat in Android,

comprising 35% of the papers. This is not a surprising result, since mobile devices are

particularly vulnerable to data leakage [261]. Elevation of privilege (including over-privilege

issue marked as O in Table 2.3) is the second class of threats addressed by 17% of the overall

studied papers. Examples of this class of threats, such as confused deputy vulnerability [245],

are shown to be quite common in the Android apps on the market [160, 198, 202].

Spoofing has received substantial attention (13%), particularly because Android’s flexible

Intent routing model can be abused in multiple ways, resulting in numerous possible attacks,

including Broadcast injection and Activity/Service launch [143]. Cloning or repackaging,

which is a kind of spoofing threat, is a common security issue in Android app markets,

and hence is addressed by several techniques, including [152, 499, 151, 584]. Note that these

techniques are marked as Cl in Table 2.3. Moreover, misusing cryptography techniques, such

as failure in the SSL/TLS validation process, might result in man in the middle attacks that

violate system authentication. Thus, we categorized the techniques attempting to identify

cryptography misuse, such as [186, 470], under spoofing. We distinguished these techniques

by label Cr in Table 2.3.

Tampering and denial of service issues are also considered in the literature, comprising

4% and 1% of the papers, respectively. Among the STRIDE’s threats, repudiation is not

explicitly studied in the surveyed research. We will revisit this gap in Section 2.6.
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Table 2.4: Problem Specific Categorization of the Reviewed Research, Part 2

Dimension Approaches %

G
ra

n
u

la
ri

ty
o
f

T
h

re
a
t

Intra-Comp. Others * 79%

Inter-
Comp.

Intent

Amandroid [514], Apex [362], ApkCombiner [307], AppAudit [526], AppCaulk [446], AppContext [546],
AppIntent [548], Apposcopy [203], APSET [427], AsDroid [260], Bal [85], Barros [91], Bartsch [95],
BlueSeal [251], Brahmastra [101], CoChecker [155], ContentScope [587], ConUCON [84], COVERT [80],
COVERT Tool [417], DataChest [589], DidFail [294], DroidAlarm [579], DroidAPIMiner [45], Droid-
Force [396], DroidGuard [81], DroidSafe [227], DroidSIFT [558], Epicc [371], Feth [205], FineDroid [565],
FUSE [402], Gallingani [213], Han [239], HornDroid [122], ICC Map [178], IccTA [308], IFT [185], Intent-
Fuzzer [542], IPCInspection [202], IVDroid [190], Jeong [270], Kantola [283], Lintent [118], Morbs [509],
Mutchler [355], PaddyFrog [523], PCLeaks [309], PermissionFlow [436], QUIRE [167], Ren [405],
SADroid [240], Shen [461], SmartDroid [574], UID [179], WeChecker [154], Woodpecker [233], Xman-
droid [114], Zhou [583]

18%

AIDL ASV [257], BlueSeal [251], CopperDroid [403], CopperDroid2 [485], DataChest [589], Morbs [509],
QUIRE [167], Woodpecker [233]

2%

SharedData ContentScope [587], Harehunter [46], KLD [453] 1%

Inter-App
Amandroid [514], ApkCombiner [307], Bal [85], Barros [91], Bartsch [95], Brahmastra [101],
COVERT [80], COVERT Tool [417], DataChest [589], DidFail [294], DroidForce [396], DroidGuard [81],
DroidTrack [425], FineDroid [565], FUSE [402], Harehunter [46], IccTA [308], IntentFuzzer [542], IPCIn-
spection [202], Jia [271], Morbs [509], PCLeaks [309], PermissionFlow [436], QUIRE [167], SEFA [524],
WeChecker [154], Xmandroid [114]

8%

D
ep

th

App Level Others ** 88%

Framework Level
(K)

ADDICTED [585], AdDroid [379], AntiMalDroid [568], Apex [362], Bagheri [78], Bartel [94], Bifo-
cals [144], Bugiel [115], Buzzer [127], COPES [92], CRePE [147], DataChest [589], DexDiff [350],
Dr.Android [268], DroidBarrier [56], DroidRay [577], DroidSafe [227], Feth [205], FineDroid [565],

Gallo [214]K , IFT [185], Jung [281], Kantola [283], Kynoid [443], Morbs [509], MpDroid [488], Nishi-

moto [367], NoFrak [220], PatchDroid [353], Porscha [372], PScout [69], SecUP [533]K , Shebaro [457],
Smith [467], Stowaway [198], TongxinLi [314], Vecchiato [498], VetDroid [566], WifiLeaks [48]

12%

T
y
p

e
o
f

A
rt

if
a
ct Config.

Manifest

A5 [502], AdDroid [379], AdRisk [232], Amandroid [514], Ananas [173], Androguard [166], Andrubis [320],
ApkCombiner [307], APKLancet [545], App-ray [490], AppAudit [526], AppContext [546], AppGuard [75],
Apposcopy [203], AppProfiler [411], APSET [427], Aquifer [359], AsDroid [260], AuthDroid [506], Au-
toCog [391], AVDTester [256], Bagheri [78], Barrera2 [88], Batyuk [96], Bianchi [102], BlueSeal [251],
Brahmastra [101], Capper [560], Cen [130], CoChecker [155], ComDroid [143], Compac [512], Con-
tentScope [587], COPES [92], COVERT [80], COVERT Tool [417], Dai [157], DiCerbo [131], Did-
Fail [294], Dr.Android [268], Drebin [64], DroidAlarm [579], DroidAnalytics [576], DroidAPIMiner [45],
DroidChecker [133], DroidForce [396], DroidFuzzer [549], DroidGuard [81], DroidMat [522], DroidPer-
missionMiner [68], DroidRanger [590], DroidRay [577], DroidSafe [227], Droidsearch [395], Duet [253],
Epicc [371], Flowdroid [67], FUSE [402], Gates [218], Geneiatakis [219], Harehunter [46], Huang [255],
ICC Map [178], IccTA [308], IFT [185], IVDroid [190], Johnson [280], Kantola [283], Kate [285],
Kim [290], Kirin [183], LeakMiner [547], Lee [302], Leontiadis [305], Lintent [118], Lu [329], Ma [336],
Malek [340], MalloDroid [186], Mama [430], Manilyzer [197], Mann [341], Marvin [319], MassVet [137],
MAST [132], Matsumoto [345], Mobile-Sandbox [471], Moonsamy [351], Moonsamy2 [352], Mudflow [70],
Mutchler [355], PaddyFrog [523], PCLeaks [309], Pegasus [138], Peiravian [380], PermCheckTool [501],
PermissionFlow [436], Permlyzer [536], ProfileDroid [515], PUMA2 [243], Relda [234], ResDroid [456],
Riskranker [231], SAAF [250], SADroid [240], Sahs [424], Sanz [432], Sarma [433], Sayfullina [435],
SCanDroid [211], SEFA [524], Shen [461], SherlockDroid [61], Short [465], SmartDroid [574], Smith [467],
SMV-HUNTER [470], StaDynA [571], TMSVM [529], TraceDroid [496], TrustDroid [570], UID [179],
Wang [510], WeChecker [154], Woodpecker [233], Yerima [550], Zhou [583], Zuo [594]

38%

Layout
Amandroid [514], AsDroid [260], Bianchi [102], BlueSeal [251], Brahmastra [101], DataChest [589], Flow-
droid [67], FUSE [402], IccTA [308], MassVet [137], Permlyzer [536], ResDroid [456], SUPOR [259],
UIPicker [360], WeChecker [154]

4%

Code
(P)

Obfuscated
AnDarwin [152]P , Apposcopy [203], CredMiner [591], Dendroid [474]P , Desnos [165]P , DNADroid [151]P ,

DroidKin [226]P , DroidSIFT [558], DroidSim [479], Graa [230], Graa2 [229]P , IREA [297], Jux-

tapp [241]P , MassVet [137], OpSeq [54], Pedal [322], ResDroid [456], Shen [461], ViewDroid [555]

6%

Native
Compac [512]P , CopperDroid [403], CopperDroid2 [485], Dagger [541], DeepDroid [511],

DroidRanger [590]P , DroidScope [539], FireDroid [414], Flowdroid [67]P , MAST [132]P , Mobile-

Sandbox [471]P , NDroid [389], PatchDroid [353], Poeplau [384]P , RetroSkeleton [161]P ,

Riskranker [231]P , VetDroid [566]

5%

Dynamic
AdRisk [232]P , AppContext [546]P , AppsPlayground [398], ConDroid [445], DroidAPIMiner [45],

DroidRanger [590]P , DroidTrace [578], Grab’nRun [187], Poeplau [384]P , Riskranker [231]P , Sta-
DynA [571], Yerima [550]

4%

Reflective
AdRisk [232]P , AppAudit [526]E , AppContext [546]P , AppGuard [75], AppsPlayground [398], Bar-

ros [91], DroidSafe [227]P , DroidSIFT [558], FUSE [402]P , HornDroid [122]P , IFT [185], IIF [551],

IREA [297], Pegasus [138], RetroSkeleton [161], Riskranker [231]P , SAAF [250]P , ScanDal [291]P , Sta-
DynA [571], TaintDroid [181], VetDroid [566], Wognsen [519]

7%

*: Including all other surveyed papers that are not mentioned as Inter-Comp or Inter-App
**: Including all other surveyed papers that are not mentioned as Framework Level
P: Partial coverage (usually adopting conservative approach and marking all instances of special code as dangerous/suspicious.)
K: exclusively at Kernel-level
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2.5.1.3 Granularity of Threat

We can observe from Table 2.4 that the majority of the Android security approaches are

intended to detect and mitigate security issues in a single component, comprising 79% of

the overall papers studied in this literature review, while a comparatively low number of

approaches (21%) have been applied to inter-component analysis.

The compositional approaches take into account inter-component and/or inter-app commu-

nication during the analysis to identify a broader range of security threats that cannot be

detected by techniques that analyze a single component in isolation. Among others, Ic-

cTA [308, 310] performs data leak analysis over a bundle of apps. It first merges multiple

apps into a single app, which enables context propagation among components in different

apps, and thereby facilitates a precise inter-component taint analysis.

The main challenge with such approaches for compositional analysis is the scalability is-

sue. Because as the number of apps increases, the cost of program analysis grows expo-

nentially. To address the scalability issue intrinsic to compositional analysis, some hybrid

approaches are more recently proposed that combine program analysis with other reason-

ing techniques [203, 83, 80]. For example, COVERT [80, 417] combines static analysis with

lightweight formal methods. Through static analysis of each individual app, it first extracts

relevant security specifications in an analyzable formal specification language (i.e., Alloy).

These app specifications are then combined together and checked as a whole with the aid of

a SAT solver for inter-app vulnerabilities.

Intent is the main inter-component communication mechanism in Android and thus, it has

been studied and focused more than other ICC mechanism (18% compared to 2% and 1%).

Epicc [371] and its successor IC3 [370] try to precisely infer Intent values, which are necessary

information for identifying vulnerable communications. BlueSeal [251] and Woodpecker [233]

briefly discuss AIDL, as another ICC mechanism, and how to incorporate it in control flow

43



graph. Finally, ContentScope [587] examines the security threats of using shared data as the

third way of achieving ICC.

2.5.1.4 Depth of Threat

We observe that most approaches perform the analysis at the application-level (88%), but

about ten percent of the approaches consider the underlying Android framework for analysis

(12%). The results of analyses carried out at the framework-level are also beneficial in

analysis of individual apps, or even revealing the root causes of the vulnerabilities found at

the application-level. For example, PScout [69] and Stowaway [198], through the analysis

of the Android framework, obtained permission-API mappings that specify the permissions

required to invoke each Android API call. However, due to intrinsic limitations of static and

dynamic analyses adopted by PScout and Stowaway, respectively, the generated mappings

are incomplete or inaccurate. Addressing this shortcoming, more recent approaches [94, 566]

have attempted to enrich the extracted permission mappings. Such permission mappings

have then been used by many other approaches, among others, for detecting over-privileged

apps that violate the “Principle of Least Privilege” [426] (See Section 2.4.1.2).

Among the approaches performing analysis at the framework level, some look into the vulner-

abilities of the Android framework that could lead to security breaches of the system, such as

design flaws in the permission model [78], security hazards in push-messaging services [314],

or security vulnerabilities of the WebView component [274, 144, 220].

Apps installed from arbitrary sources pose a higher security risk than apps downloaded from

Google Play. However, regardless of the source of the app, it must be installed using the

same mechanism for importing the app’s code into the Android platform, i.e., by installing

APK files. Nevertheless, to measure the effectiveness of a technique for identifying security

threats, researchers need to evaluate the proposed technique using both Google Play and
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sideloaded apps. We discuss, in detail, the sources of apps used to evaluate Android security

analysis techniques in Section 2.5.3.1.

2.5.1.5 Type of Artifact

As discussed in Section 2.4, Android apps are composed of several artifacts at different

levels of abstraction, such as high-level configuration files and code implementation. We

can observe from Table 2.4 that most of the studied approaches analyze multiple types of

artifacts.

Type of Configuration. Manifest is an XML configuration file, shipped with all Android

apps, and includes some high-level architectural information, such as the apps’ components,

their types, permissions they require, etc. Since a large portion of security-related infor-

mation are encoded in the apps’ manifest files (e.g., required or defined permissions), some

techniques only focus on the analysis of this file. Kirin [183], for instance, is among the

techniques that only performs the analysis on the app manifest files. By extracting the

requested permissions defined in the manifest file and comparing their combination against

a set of high-level, blacklist security rules, Kirin is able to identify the apps with potential

dangerous functionality, such as information leakage. However, the security policies in Kirin,

or similar techniques that are limited to the abstract level of configuration files, may increase

the rate of false warnings. For instance, a Kirin’s security rule, for mitigating mobile bots

that send SMS spam, is stated as “An application must not have SEND SMS and WRITE SMS

permission labels [183]”. As a result, an application requesting these two permissions is

flagged as malware, even if there are no data-flow between the parts of code corresponding

to these two permissions.

In addition to the manifest file, there are some other resources in the Android application

package (a.k.a., apk file) that also do not require complicated techniques to be analyzed.
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One example is the layout file that represents the user interface structure of the apps in

an xml format. The layout file can be parsed, among other things, to identify the callback

methods registered for GUI widget, which in turn improves the precision of generated call

graphs. CHEX [328] and BlueSeal [251, 460] are among the techniques that leverage layout

files for this purpose.

Moreover, the layout file contains information that is critical for security analysis. Password

fields, which usually contain sensitive data, are an example of security-critical information

embedded in layout files [67]. An example of a technique that leverages this information

is AsDroid [260]. It examines the layout file to detect stealthy malicious behavior through

identifying any contradiction between the actual app behavior and the user interface text

initiating that behavior (e.g., the name of a button that was clicked), which denotes the

user’s expectation of program behavior. Another example is MassVet [137] that captures

the user interface of apps by encoding layouts in a graph structure called a view graph and

then detects repackaged malware by calculating the similarity of view graphs.

Besides manifest and layout files, a few other types of configuration files are processed by

a number of analyses. For instance, string resources (i.e., String.xml) are parsed to capture

predefined URL strings [355] and to identify the label of sensitive fields [360], or style defi-

nition files, among other resources, are leveraged to detect repackaged malware apps [456].

Type of Unconventional Code. In addition to the configuration files, most of the surveyed

research perform analysis on apps’ code. However, due to analysis challenges, the majority

of those techniques (over 80%) neglect special types of code, such as obfuscated, native,

dynamically loaded, or reflective code, existing in many apps, including malware.

Obfuscation challenges security analysis of application code. For this reason, nearly all of the

surveyed static analyses cannot handle heavily obfuscated code. An example of a technique

that handles certain obfuscations is Apposcopy [203]. It is a static approach that defines a
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high-level language for semantically specifying malware signatures. Apposcopy is evaluated

against renaming, string encryption, and control-flow obfuscation.

Besides the type of obfuscations that Apposcopy is resilient to, more sophisticated obfusca-

tions include hiding behaviors through native code, reflection, and dynamic class loading.

These types of obfuscation have highly limited support among Android security analysis

techniques.

Among the static analysis techniques studied in our survey, none are able to perform anal-

ysis directly on native code, which is written in languages other than Java, such as C or

C++. However, some approaches [590, 384, 231] can only identify the usage of native code,

particularly if it is used in an abnormal way. For instance, RiskRanker [231] raises red flags

if it finds encrypted native code, or if a native library is stored in a non-standardized place.

Few approaches consider dynamically loaded code, which occurs after app installation. Some

static approaches, such as the tool developed by Poeplau et al. [384], are able to identify

the attempts to load external code that might be malicious. Nevertheless, more advanced

techniques are required to distinguish the legitimate usages of dynamically loaded code from

malicious ones. For example, handling of dynamically loaded code that considers an Android

component’s life-cycle, where a component can execute from multiple entry points, is not

considered. As another example, dynamically loaded code that is additionally encrypted

poses another challenge to static or hybrid analyses.

Approaches that consider Java reflection can be classified into two categories. One category,

adopts a conservative, black-box approach and simply marks all reflective calls as suspicious.

An example of such an approach is AdRisk [232]. The other thrust of research attempts

to resolve reflection using more advanced analysis. For example, DroidSafe [227] employs

string and points-to analysis to replace reflective calls with direct calls. As another example,

Pegasus [138] rewrites an app by injecting dynamic checks when reflective calls are made.

47



As mentioned above, a significant portion of surveyed research that are trying to address

special types of code, adopt a conservative approach. That is, instead of analyzing the

content of challenging parts of the app code, e.g. called native library or dynamically loaded

class, they flag any usage of such code as suspicious. To distinguish those techniques that

partially analyze native, obfuscated, dynamic, or reflective code, we marked them with P in

Table 2.4.

2.5.2 Approach Characteristics (Solution)

Tables 2.5–2.8 present a summary of the solution-specific aspects that are extracted from

the collection of papers included in the literature review. In the following, we summarize

the main results for each dimension in the solution category.

2.5.2.1 Type of Program Analysis

Table 2.5 separates the approaches with respect to the type of program analysis they leverage.

As discussed in Section 2.4, dynamic analysis is unsound but precise, while static analysis is

sound yet imprecise. According to their intrinsic properties, each type of analysis has its own

merits and is more appropriate for specific objectives. In particular, for security analysis,

soundness is considered to be more important than precision, since it is preferred to not

miss any potential security threat, even at the cost of generating false warnings. This could

explain why the percentage of static analysis techniques (65%) surpasses the percentage of

approaches that rely on dynamic analysis techniques (49%).

SCanDroid [211] and TaintDroid [181] are among the first to explore the use of static and

dynamic analysis techniques respectively for Android security assessment. SCanDroid em-

ploys static analysis to detect data flows that violate the security policies specified within an
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Table 2.5: Solution Specific Categorization of the Reviewed Research, Part 1

Dimension Approaches %

T
y
p

e
o
f

P
ro

g
ra

m
A

n
a
ly

si
s

Static

A3 [332], A5 [502], AAPL [327], AASandbox [106], Achara [49], Adagio [216], AdDroid [379], Adebayo [50],
AdRisk [232], Amandroid [514], AMDetector [569], Anadroid [317], Ananas [173], AnDarwin [152], Androguard [166],
AndroidLeaks [222], Andrubis [320], ApkCombiner [307], APKLancet [545], ApkRiskAnalyzer [142], App-ray [490],
Apparecium [489], AppAudit [526], AppCaulk [446], AppContext [546], AppCracker [121], AppIntent [548], Ap-
poscopy [203], AppProfiler [411], AsDroid [260], ASV [257], AuthDroid [506], AutoCog [391], AVDTester [256],
Bae [76], Bagheri [78], Barrera2 [88], Barros [91], Bartel [94], Bartsch [95], Batyuk [96], BayesDroid [493],
Bianchi [102], Bifocals [144], BlueSeal [251], Brahmastra [101], Brave [377], Brox [335], Buhov [119], Can-
fora3 [126], Capper [560], Cassandra [326], Cen [130], Chabada [228], Chen [136], Chen2 [135], CHEX [328],
CMA [455], CoChecker [155], ComDroid [143], ConDroid [445], ContentScope [587], COPES [92], COVERT [80],
COVERT Tool [417], CredMiner [591], Dai [157], Dendroid [474], Desnos [165], DexDiff [350], DiCerbo [131], Did-
Fail [294], DNADroid [151], Dr.Android [268], DRACO [100], Drebin [64], DroidADDMiner [316], DroidAlarm [579],
DroidAnalytics [576], DroidAnalyzer [448], DroidAPIMiner [45], DroidChecker [133], DroidCIA [140], Droid-
Force [396], DroidFuzzer [549], DroidGuard [81], DroidKin [226], DroidMat [522], DroidMiner [540], DroidMOSS [584],
DroidPermissionMiner [68], DroidRanger [590], DroidRay [577], DroidRisk [513], DroidSafe [227], Droidsearch [395],
DroidSIFT [558], DroidSim [479], Duet [253], Elish [177], Enck [182], Epicc [371], Fedler [194], Fest [567], Flow-
droid [67], FUSE [402], Gallingani [213], Gallo [214], Gates [218], Geneiatakis [219], Graa [230], Graa2 [229],
GroddDroid [47], Han [239], Harehunter [46], HornDroid [122], Huang [255], HunterDroid [556], ICC Map [178],
IccTA [308], IFT [185], IIF [551], IPCInspection [202], IREA [297], IVDroid [190], Jiao [272], Johnson [280],
Juxtapp [241], Kadir [282], Kantola [283], Kate [285], Kim [290], Kirin [183], KLD [453], LeakMiner [547],
Li [312], Lintent [118], Lu [329], Ma [336], Mahmood [338], Malek [340], MalloDroid [186], Mama [430], Mani-
lyzer [197], Mann [341], Marvin [319], MassVet [137], MAST [132], Masud [344], Matsumoto [345], MIGDroid [254],
Mobile-Sandbox [471], MobSafe [534], MonkeyDroid [334], Moonsamy [351], Moonsamy2 [352], MorphDroid [204],
Mudflow [70], Mutchler [355], NoInjection [274], Onwuzurike [374], OpSeq [54], PaddyFrog [523], Paupore [378],
PCLeaks [309], Pedal [322], Pegasus [138], Peiravian [380], Peng [381], PermCheckTool [501], PermissionFlow [436],
Permlyzer [536], Poeplau [384], ProfileDroid [515], PScout [69], Quan [392], RAMSES [172], Relda [234], Res-
Droid [456], Riskmon [275], RiskMon2 [276], Riskranker [231], SAAF [250], SADroid [240], Sahs [424], Sanz [432],
Sarma [433], Sayfullina [435], ScanDal [291], SCanDroid [211], Scoria [497], SecUP [533], SEFA [524], Senevi-
ratne [447], Shabtai [449], Shen [461], SherlockDroid [61], SmartDroid [574], Smith [467], SMV-HUNTER [470],
StaDynA [571], STAMBA [109], SUPOR [259], TMSVM [529], TouchDevelop [528], TraceDroid [496], TrustDroid [570],
UID [179], UIPicker [360], ViewDroid [555], Wang [510], WeChecker [154], WifiLeaks [48], Wognsen [519], Wood-
pecker [233], WuKong [505], Yerima [550], You [552], Zhou [583], Zuo [594]

65%

Dynamic

(E)

A5 [502], AASandbox [106], Achara [49], ADDICTED [585], Afonso [51], AMDetector [569], Ananas [173], Andru-

bis [320], AntiMalDroid [568], Apex [362]E , App-ray [490], AppAudit [526], AppCaulk [446], AppCracker [121],
AppFence [252], AppGuard [75], AppInspector [223], AppIntent [548], AppProfiler [411], AppsPlayground [398],

APSET [427], Aquifer [359], ASF [73]E , ASM [247]E , ASV [257], AuDroid [382]E , Aurasium [535], AuthDroid [506],
AVDTester [256], Bae [76], Bal [85], Berthome [99], Brahmastra [101], Brave [377], Bugiel [115], Buzzer [127], Can-

fora [124], Canfora3 [126], Capper [560]E , CMA [455], Compac [512]E , ConDroid [445], ContentScope [587], ConU-

CON [84]E , CopperDroid [403], CopperDroid2 [485], CRePE [147], Crowdroid [120], Dagger [541], DataChest [589],

DeepDroid [511]E , Defensor [375], Dr.Android [268], DRACO [100], DroidAnalyst [212], DroidAnalytics [576], Droid-

Barrier [56], DroidDolphin [525], DroidForce [396]E , DroidFuzzer [549], DroidGuard [81]E , DroidLogger [158],
DroidPAD [331], DroidRay [577], DroidScope [539], DroidTest [412], DroidTrace [578], DroidTrack [425], EASE-

Android [508], Fedler [194], Feth [205]E , FineDroid [565]E , FireDroid [414], FlaskDroid [117]E , Geneiatakis [219],

Graa [230], Graa2 [229], GroddDroid [47], Ham [236], HunterDroid [556], I-ARM-Droid [162]E , IntentFuzzer [542],

IPCInspection [202], Isohara [262], Jeon [267], Jeong [270], Jia [271]E , Jiao [272], Jung [281]E , Kadir [282],

Kantola [283], Karami [284]E , Kim [290], Kynoid [443], LazyTainter [516], Lee [302], Leontiadis [305], Li2 [313],
MADAM [168], Mahmood [338], Malek [340], Manilyzer [197], Marvin [319], Masud [344], MeadDroid [304], Mobile-

Sandbox [471], MobSafe [534], MockDroid [98]E , Morbs [509], MOSES [573]E , MpDroid [488]E , Mutchler [355],
NDroid [389], Nishimoto [367], Onwuzurike [374], Paranoid-Android [386], PatchDroid [353], Patronus [478], Pau-

pore [378], pBMDS [530], PeBA [97], Pegasus [138]E , Permlyzer [536], PICARD [169], Porscha [372]E , PREC [248],

ProfileDroid [515], PUMA [429], PuppetDroid [221], Quan [392], QUIRE [167], RetroSkeleton [161]E , Riskmon [275],

RiskMon2 [276], Saint [373]E , Schmidt [440], SCSdroid [318], SFG [59], Shebaro [457]E , Short [465], Smart-
Droid [574], SMV-HUNTER [470], StaDynA [571], STAMBA [109], Stowaway [198], Su [473], TaintDroid [181], Tchak-

ounte [486], TISSA [592]E , TMSVM [529], TraceDroid [496], TreeDroid [159]E , UIPicker [360]E , Uranine [401], Vet-

Droid [566], WifiLeaks [48], Wijesekera [518], Xmandroid [114]E , Yaase [413]E , Yerima [550], You [552], Zuo [594]

49%

Hybrid

A5 [502], AASandbox [106], Achara [49], AMDetector [569], Ananas [173], Andrubis [320], App-ray [490], Ap-
pAudit [526], AppCaulk [446], AppCracker [121], AppIntent [548], AppProfiler [411], ASV [257], AuthDroid [506],
AVDTester [256], Bae [76], Brahmastra [101], Brave [377], Canfora3 [126], Capper [560], CMA [455], ConDroid [445],
ContentScope [587], Dr.Android [268], DRACO [100], DroidAnalytics [576], DroidForce [396], DroidFuzzer [549],
DroidGuard [81], DroidRay [577], Fedler [194], Geneiatakis [219], Graa [230], Graa2 [229], GroddDroid [47], Hun-
terDroid [556], IPCInspection [202], Jiao [272], Kadir [282], Kantola [283], Kim [290], Lee [302], Mahmood [338],
Malek [340], Manilyzer [197], Marvin [319], Masud [344], Mobile-Sandbox [471], MobSafe [534], Mutchler [355],
Onwuzurike [374], Paupore [378], Pegasus [138], Permlyzer [536], ProfileDroid [515], Quan [392], Riskmon [275],
RiskMon2 [276], SmartDroid [574], SMV-HUNTER [470], StaDynA [571], STAMBA [109], TMSVM [529], Trace-
Droid [496], UIPicker [360], WifiLeaks [48], Yerima [550], You [552], Zuo [594]

21%

E: Enforcing security policies (providing a level of protection, in addition to dynamic detection)
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app’s configuration. TaintDroid leverages dynamic taint analysis to track the data leakage

from privacy-sensitive sources to possibly malicious sinks.

In addition to pure static or dynamic approaches, there exist few hybrid approaches that

benefit from the advantages of both static and dynamic techniques. These methods usually

first apply static analysis to detect potential security issues, and then perform dynamic

techniques to improve their precision by eliminating the false warnings. For example, SMV-

HUNTER [470] first uses static analysis to identify potentially vulnerable apps to SSL/TLS

man-in-the-middle attack, and then uses dynamic analysis to confirm the vulnerability by

performing automatic UI exploration.

Despite the fact that Android apps are mainly developed in Java, conventional Java pro-

gram analysis methods do not work properly on Android apps, mainly due to its particular

event-driven programming paradigm. Such techniques, thus, need to be adapted to address

Android-specific challenges. Here, we briefly discuss these challenges and the way they have

been tackled in the surveyed papers.

Event-driven structure. Android is an event-driven platform, meaning that an app’s behavior

is formed around the events caused by wide usage of callback methods that handle user

actions, component’s life-cycle, and requests from other apps or the underlying platform. If

an analysis fails to handle these callback methods correctly, models derived from Android

apps are disconnected and unsound. This problem has been discussed and addressed in

several prior efforts. Among others, Yang et al. [543] introduced a program representation,

called callback control-flow graph (CCFG), that supports capturing a rich variety of Android

callbacks, including life-cycle and user interactions methods. To extract CCFG, a context-

sensitive analysis traverses the control-flow of the program and identifies callback triggers

along the visited paths.

Multiple entry points. Another difference between an Android app and a pure Java pro-
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gram, is the existence of multiple entry points in Android apps. In fact, unlike conventional

Java applications with a single main method, Android apps comprise several methods that

are implicitly called by the Android framework based on the state of the application (e.g.,

onResume to resume a paused app).

The problem of multiple entry points has been considered by a large body of work in this

area [67, 547, 308, 328, 251, 460]. For instance, FlowDroid [67] models different Android

callbacks, including the ones that handle life-cycle, user interface, and system-based events

by creating a “dummy” main method that resembles the main method of conventional Java

applications. Similar to FlowDroid, IccTA [308, 310] also generates dummy main methods,

but rather than a single method for the whole app, it considers one per component. In

addition to handling multiple entry points problem, the way entry points are discovered is

also crucial for a precise analysis. Some approaches [233] [587] simply rely on the domain

knowledge, including the Android API documentation, to identify entry points. Some other

approaches employ more systematic methods. For instance, CHEX describes a sound method

to automatically discover different types of app entry points [328]. It iterates over all uncalled

framework methods overridden by app, and connects those methods to the corresponding

call graph node.

Inter-component communication. Android apps are composed of multiple components. The

most widely used mechanism provided by Android to facilitate communication between com-

ponents involves Intent, i.e., a specific type of event message in Android, and Intent Filter.

The Android platform then automatically matches an Intent with the proper Intent Fil-

ters at runtime, which induce discontinuities in the statically extracted app models. This

event-based inter-component communication (ICC) should be treated carefully, otherwise

important security issues could be missed. The ICC challenge has received a lot of atten-

tion in the surveyed research [143, 182, 294, 308, 371]. Epicc [371], among others, is an

approach devoted to identify inter-component communications by resolving links between
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components. It reduces the problem of finding ICCs to an instance of the inter-procedural

distributive environment (IDE) problem [406], and then uses an IDE algorithm to solve the

ICC resolution problem efficiently.

Modeling the underlying framework. In order to reason about the security properties of an

app, the underlying Android platform should be also considered and included in the security

analysis. However, analyzing the whole Android framework would result in state explosion

and scalability issues. Therefore, a precise, yet scalable model, of the Android framework is

crucial for efficient security assessment.

Various methods have been leveraged by the surveyed approaches to include the Android

framework in their analysis. Woodpecker [233] uses a summary of Android built-in classes,

which are pre-processed ahead of an app analysis to reduce the analysis costs associated

with each app. To enable a more flexible analysis environment, CHEX [328] runs in two

modes. In one mode, it includes the entire Android framework code in the analysis, and in

the other only a partial model of the Android’s external behaviors is used. DroidSafe [227]

attempts to achieve a combination of precision and scalability by generating analysis stubs,

abstractions of underlying implementation, which are incomplete for runtime, but complete

for the analysis. Finally, to automatically classify Android system APIs as sources and sinks,

SuSi [394] employs machine learning techniques. Such a list of sources and sinks of sensitive

data is then used in a number of other surveyed approaches, including, FlowDroid [67],

DroidForce [396], IccTA [308, 310], and DidFail [294].

2.5.2.2 Supplementary Techniques

We observe that most approaches (over 70%) only rely on program analysis techniques to

assess the security of Android software. Less than 30% of the approaches employ other

complementary techniques in their analysis. Among them, machine learning and formal
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Table 2.6: Solution Specific Categorization of the Reviewed Research, Part 2

Dimension Approaches %

S
u

p
p

le
m

en
ta

ry

T
ec

h
n

iq
u

es Machine Learning

(P|N)

AAPL [327]N , Adagio [216], Adebayo [50]P , Afonso [51], AnDarwin [152], AntiMalDroid [568], Ap-

pContext [546], AutoCog [391]N , Bae [76], Barrera2 [88], BayesDroid [493]P , Brave [377], Can-

fora [124], Cen [130]P , Chabada [228]N , Crowdroid [120], Dai [157], Dendroid [474], DiCerbo [131],
Drebin [64], DroidADDMiner [316], DroidAPIMiner [45], DroidDolphin [525], DroidLegacy [164],
DroidMat [522], DroidPAD [331], DroidPermissionMiner [68], DroidSIFT [558], EASEAndroid [508],

Fest [567], Gates [218]P , Huang [255], Jiao [272]P , Kate [285]P , KLD [453]P , Ma [336]N ,
MADAM [168], Mama [430], Marvin [319], MassVet [137], MAST [132], Milosevic [348], MobSafe [534],

MonkeyDroid [334]N , Moonsamy [351], Moonsamy2 [352], Mudflow [70], OpSeq [54], pBMDS [530],

Pedal [322], Peiravian [380], Peng [381]P , PICARD [169]P , PUMA2 [243], Quan [392], RAM-
SES [172], ResDroid [456], Riskmon [275], RiskMon2 [276], Sahs [424], Sanz [432], Sarma [433],

Sayfullina [435]P , Schmidt [440], Shabtai [449], SherlockDroid [61], Su [473], SUPOR [259]N ,

TMSVM [529], UIPicker [360]N , Wang [510], WuKong [505], Yerima [550]P , Zhou [583]

22%

Formal Analysis
Apposcopy [203], APSET [427], Armando [63], Bagheri [78], Barbon [86], Cassandra [326],
COVERT [80], COVERT Tool [417], DroidGuard [81], HornDroid [122], Jia [271], Lintent [118],
Lu [329], Mann [341], MorphDroid [204], Pegasus [138], SADroid [240], ScanDal [291], Scoria [497],
Smith [467], Song [468], TreeDroid [159]

7%

A
u

to
.

L
ev

el

Automatic Others * 93%

Semi-Automatic
Achara [49], AdSplit [459], AndroidLeaks [222], APKLancet [545], Apposcopy [203], AppProfiler [411],
Barros [91], Batyuk [96], Crowdroid [120], Dr.Android [268], DroidForce [396], DroidRay [577],
Graa [230], Ham [236], IFT [185], IREA [297], Isohara [262], Mann [341], PuppetDroid [221], Sco-
ria [497], Smith [467], StaDynA [571], Stowaway [198]

7%

P: Probabilistic approaches, N: Natural language processing (NLP) is used
*: Including all other surveyed papers that are not mentioned as Semi-Automatic

analysis techniques are the most widely used, comprising 22% and 7% of the overall set of

papers collected for this literature review, respectively.

These approaches typically first use some type of program analysis to extract specifications

from the Android software that are input to the analysis performed by other supplementary

techniques. For example, COVERT, combines formal app models that are extracted through

static analysis with a formal specification of the Android framework to check the overall

security posture of a system [80].

Machine learning techniques are mainly applied to distinguish between benign and malicious

apps. The underlying assumption in this thrust of effort is that abnormal behavior is a good

indicator of maliciousness. Examples of this class of research are CHABADA [228] and its

successor MUDFLOW [70], which are both intended to identify abnormal behavior of apps.

The focus of CHABADA is to find anomalies between app descriptions and the way APIs are

used within the app. MUDFLOW tries to detect the outliers with respect to the sensitive

data that flow through the apps.

Natural language processing (NLP) is another supplementary technique employed by CHABADA
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and a few other approaches (e.g., AAPL[327], AutoCog [391], SUPOR [259], UIPicker [360]),

mainly to process apps’ meta-data, such as app descriptions, which are expressed in natural

language form. Moreover, probabilistic approaches are also leveraged by a number of ma-

chine learning-based tools (e.g. [493, 381, 130, 435]) to distinguish malware apps from benign

ones, according to the observed probability of extracted features. Research using NLP and

probabilistic methods are highlighted by N and P, respectively, in Table 2.6.

2.5.2.3 Automation Level

We observe that most approaches (93%) are designed to perform Android security analysis

in a completely automated manner, which is promising as it enables wide-scale evaluation

of such automated techniques, discussed more in the following section (§ 2.5.3).

A number of approaches, however, require some manual effort (7%); for example, annotating

an app’s code with labels representing different security concerns. Once the code is annotated

manually, an automatic analysis is run to identify the security breaches or attacks in the

source code. For instance, IFT [185] requires app developers to annotate an app’s source

code with information-flow type qualifiers, which are fine-grained permission tags, such as

INTERNET, SMS, GPS, etc. Subsequently, app repository auditors can employ IFT’s type

system to check information flows that violate the secure flow policies. Manually applying

the annotations affects usability and scalability of such approaches, however, enables a more

precise analysis to ensue.

54



Table 2.7: Solution Specific Categorization of the Reviewed Research, Part 3

Dimension Static Approaches % (%)*

A
n

a
ly

si
s

D
a
ta

S
tr

u
ct

u
re

Text-based

A3 [332], AASandbox [106], Achara [49], AdDroid [379], Adebayo [50], AMDetector [569],
Ananas [173], Andrubis [320], ApkRiskAnalyzer [142], App-ray [490], AppCracker [121], AppPro-
filer [411], AuthDroid [506], AutoCog [391], Bae [76], Bagheri [78], Barrera2 [88], Batyuk [96],
BayesDroid [493], Bifocals [144], Brave [377], Buhov [119], Canfora3 [126], Cassandra [326], Cen [130],
Chabada [228], Chen2 [135], Dai [157], DiCerbo [131], Dr.Android [268], DRACO [100], Drebin [64],
DroidAnalyzer [448], DroidFuzzer [549], DroidKin [226], DroidMat [522], DroidMOSS [584], Droid-
PermissionMiner [68], DroidRay [577], DroidRisk [513], Droidsearch [395], Duet [253], Fedler [194],
Fest [567], Gallo [214], Gates [218], Geneiatakis [219], Huang [255], IREA [297], Jiao [272], John-
son [280], Juxtapp [241], Kadir [282], Kantola [283], Kate [285], Kim [290], Kirin [183], KLD [453],
Lintent [118], Lu [329], Ma [336], Malek [340], MalloDroid [186], Mama [430], Manilyzer [197],
Mann [341], Marvin [319], MAST [132], Masud [344], Matsumoto [345], Mobile-Sandbox [471],
MobSafe [534], Moonsamy [351], Moonsamy2 [352], Onwuzurike [374], OpSeq [54], Paupore [378],
Pedal [322], Peiravian [380], Peng [381], PermCheckTool [501], Permlyzer [536], ProfileDroid [515],
Quan [392], RAMSES [172], ResDroid [456], Riskmon [275], RiskMon2 [276], Sahs [424], Sanz [432],
Sarma [433], Sayfullina [435], Scoria [497], SecUP [533], Seneviratne [447], Shabtai [449], Sher-
lockDroid [61], Smith [467], SMV-HUNTER [470], STAMBA [109], TraceDroid [496], UIPicker [360],
Wang [510], WifiLeaks [48], WuKong [505], Yerima [550], You [552]

49%
(32%)

Control Flow
Graph (CFG)

A5 [502], Adagio [216], Amandroid [514], Anadroid [317], Androguard [166], APKLancet [545], Ap-
parecium [489], AppCaulk [446], AppContext [546], Apposcopy [203], AsDroid [260], ASV [257],
AVDTester [256], Barros [91], Bianchi [102], BlueSeal [251], Brahmastra [101], Capper [560],
CMA [455], CoChecker [155], ComDroid [143], ContentScope [587], COVERT [80], COVERT Tool [417],
CryptoLint [174], Dendroid [474], Desnos [165], DexDiff [350], DroidAlarm [579], DroidChecker [133],
DroidCIA [140], DroidForce [396], DroidGuard [81], DroidMiner [540], DroidSIFT [558], DroidSim [479],
Elish [177], Enck [182], Epicc [371], Flowdroid [67], Gallingani [213], Graa [230], Graa2 [229], Grod-
dDroid [47], Harehunter [46], IccTA [308], IIF [551], IVDroid [190], LeakMiner [547], MassVet [137],
MonkeyDroid [334], MorphDroid [204], NoInjection [274], PaddyFrog [523], PCLeaks [309], Permission-
Flow [436], Poeplau [384], Riskranker [231], SAAF [250], SADroid [240], Sahs [424], ScanDal [291],
SEFA [524], TMSVM [529], TouchDevelop [528], UID [179], WeChecker [154], Wognsen [519], Wood-
pecker [233], Zhou [583]

31%
(21%)

Call Graph

(CG)

Adagio [216], Amandroid [514], Androguard [166], AndroidLeaks [222], APKLancet [545], Appare-
cium [489], AppAudit [526], AppCaulk [446], AppContext [546], AppIntent [548], Apposcopy [203],
AppSealer [559], AsDroid [260], ASV [257], Bartel [94], Bianchi [102], BlueSeal [251], Brahmas-
tra [101], Brox [335], Capper [560], CMA [455], CoChecker [155], ContentScope [587], COPES [92],
COVERT [80], COVERT Tool [417], CryptoLint [174], DroidAlarm [579], DroidChecker [133], Droid-
CIA [140], DroidGuard [81], DroidRanger [590], DroidSafe [227], DroidSIFT [558], Epicc [371], Flow-
droid [67], FUSE [402], Gallingani [213], HunterDroid [556], IccTA [308], IPCInspection [202], Leak-
Miner [547], Mahmood [338], Malek [340], MonkeyDroid [334], MorphDroid [204], Mudflow [70],
Mutchler [355], NoInjection [274], PaddyFrog [523], PCLeaks [309], PermissionFlow [436], Poe-
plau [384], PScout [69], Relda [234], SADroid [240], SEFA [524], StaDynA [571], TouchDevelop [528],
TrustDroid [570], UID [179], WeChecker [154], Woodpecker [233], Zuo [594]

28%
(19%)

Inter-procedural

CFG (ICFG)

Amandroid [514], AppContext [546], Apposcopy [203], Capper [560], COVERT [80],
COVERT Tool [417], CryptoLint [174], DroidChecker [133], DroidGuard [81], Epicc [371], Flow-
droid [67], Gallingani [213], IccTA [308], LeakMiner [547], MonkeyDroid [334], MorphDroid [204],
PCLeaks [309], PermissionFlow [436], Poeplau [384], SEFA [524], TouchDevelop [528], UID [179],
WeChecker [154], Woodpecker [233]

10%
(7%)

S
en

si
ti

v
it

y
o
f

A
n

a
ly

si
s

Flow

AAPL [327], AdRisk [232], Amandroid [514], Apparecium [489], AppContext [546], Apposcopy [203],
AppSealer [559], AsDroid [260], Barros [91], Bartsch [95], Bianchi [102], BlueSeal [251], Brox [335],
Capper [560], CHEX [328], CMA [455], ComDroid [143], ContentScope [587], COVERT [80],
COVERT Tool [417], CredMiner [591], CryptoLint [174], DidFail [294], DroidADDMiner [316],
DroidAlarm [579], DroidAPIMiner [45], DroidChecker [133], DroidForce [396], DroidGuard [81], Droid-
SIFT [558], Elish [177], Enck [182], Epicc [371], Flowdroid [67], Han [239], Harehunter [46],
HornDroid [122], IccTA [308], IFT [185], LeakMiner [547], MorphDroid [204], NoInjection [274],
PCLeaks [309], Pegasus [138], PermissionFlow [436], Poeplau [384], Riskranker [231], ScanDal [291],
SCanDroid [211], SEFA [524], SUPOR [259], UID [179], WeChecker [154]

23%
(16%)

Context
AAPL [327], Amandroid [514], ApkCombiner [307], AppContext [546], AppIntent [548], Ap-
poscopy [203], AppSealer [559], Brox [335], Capper [560], CHEX [328], COVERT [80],
COVERT Tool [417], DidFail [294], DroidADDMiner [316], DroidForce [396], DroidGuard [81], Droid-
Safe [227], DroidSIFT [558], Epicc [371], Flowdroid [67], Han [239], IccTA [308], IFT [185], NoIn-
jection [274], PCLeaks [309], Pegasus [138], PermissionFlow [436], ScanDal [291], SCanDroid [211],
SUPOR [259], UID [179], WeChecker [154]

14%
(10%)

Path
ConDroid [445], ContentScope [587], DroidAnalytics [576], DroidForce [396], Gallingani [213], Wood-
pecker [233]

3%
(2%)

C
o
d

e
R

ep
re

se
n
ta

ti
o
n

Java Source
Bartel [94], IFT [185], IVDroid [190], Lu [329], Mann [341], Matsumoto [345], PermCheckTool [501],
PScout [69], SCanDroid [211], Smith [467], TouchDevelop [528]

5%
(3%)

Java Byte

AnDarwin [152], AndroidLeaks [222], AppAudit [526], AppCracker [121], AppIntent [548], AppPro-
filer [411], AppSealer [559], AsDroid [260], Bagheri [78], Capper [560], Cen [130], Chen2 [135],
CoChecker [155], ComDroid [143], Desnos [165], DNADroid [151], DroidChecker [133], Duet [253],
Enck [182], IPCInspection [202], KLD [453], LeakMiner [547], Lee [302], Malek [340], On-
wuzurike [374], Pedal [322], Pegasus [138], PermissionFlow [436], Permlyzer [536], Relda [234],
UID [179]

13%
(9%)

Jimple

A5 [502], AppContext [546], Apposcopy [203], Bartsch [95], BlueSeal [251], Brahmastra [101],
COPES [92], COVERT [80], COVERT Tool [417], DidFail [294], DroidForce [396], DroidGuard [81],
DroidSafe [227], Elish [177], Epicc [371], Flowdroid [67], Geneiatakis [219], Harehunter [46],
IccTA [308], MonkeyDroid [334], Mudflow [70], Mutchler [355], PCLeaks [309], Shen [461],
WeChecker [154]

11%
(7%)

Smali

AASandbox [106], AdRisk [232], AdSplit [459], Ananas [173], ApkCombiner [307], APKLancet [545],
Apparecium [489], Aurasium [535], AVDTester [256], Batyuk [96], Chabada [228], Chen [136],
CHEX [328], CMA [455], ContentScope [587], CredMiner [591], Dr.Android [268], DroidLegacy [164],
DroidMOSS [584], Harehunter [46], IREA [297], Johnson [280], Ma [336], Mobile-Sandbox [471], Mob-
Safe [534], PaddyFrog [523], ProfileDroid [515], SAAF [250], SADroid [240], Seneviratne [447], Smart-
Droid [574], SMV-HUNTER [470], SUPOR [259], TrustDroid [570], ViewDroid [555], Wognsen [519],
Woodpecker [233], WuKong [505], Yerima [550], Zuo [594]

17%
(12%)

*: The last column of this table should be read as follows:Percentage among static approaches (Percentage among all approaches)
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2.5.2.4 Analysis Data Structures 7

Almost half of static approaches (49%) leverage light-weight analysis that only relies on

text-based information retrieval techniques. Such approaches treat app’s code and con-

figuration as unstructured texts and try to extract security critical keywords and phrases

(e.g., permissions, sensitive APIs) for further analysis using supplementary techniques (See

Section 2.4.2.2). For instance, Drebin [64] extracts sets of strings, such as permissions, app

components, and intent filters by parsing the manifest, and API calls, and network addresses

from dex code. It then maps those extracted features to a vector space, which is further

used for learning-based malware detection.

On the other hand, many techniques take the structure of code into account when extracting

the security model of the apps. For this purpose, various data structures that represent apps

at an abstract level are commonly used by those analysis techniques. We observe that call

graphs (CGs) and control flow graphs (CFGs) are the most frequently used data structure

in the surveyed papers.

Taint information are propagated through call graph, among other things, to determine

the reachability of various sinks from specific sources. LeakMiner [547], RiskRanker [231],

TrustDroid [570], ContentScope [587] and IPC Inspection [202] are some examples that

traverse the call graph for taint analysis. Among others, ContentScope traverses CG to

find paths form public content provider interfaces to the database function APIs in order to

detect database leakage or pollution.

Moreover, generating and traversing the app’s CG is also essential in tracking the message

(i.e., Intent) transfer among the app’s components. Epicc [371] and AsDroid [260] are

among the approaches that use call graph for this purpose. In addition, PScout [69] and

7The percentages reported in Sections 2.5.2.4, 2.5.2.5 and 2.5.2.6 are calculated only for the static
techniques.
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PermissionFlow [436] perform reachability analysis over the CG to map Android permissions

to the corresponding APIs.

Control flow graph (CFG) is also widely used in the surveyed analysis methods. Con-

tentScope [587], for example, extracts an app’s CFG to obtain the constraints corresponding

to potentially dangerous paths. The collected constraints are then fed into a constraint

solver to generate inputs corresponding to candidate path executions. Enck et al. [182] have

also specified security rules over CFG to enable a control-flow based vulnerability analysis

of Android apps.

More advanced and comprehensive program analyses rely on a combination of CFG and CG,

a data structure called inter-procedural control flow graph (ICFG) that links the individual

CFGs according to how they call each other. FlowDroid [67], for example, traverses ICFG to

track tainted variables; Epicc [371] also performs string analysis over ICFG; IccTA [308, 310]

detects inter-component data leaks by running data-flow analysis over such a data structure.

Since the generated ICFG for the entire application is massive, complicated, and potentially

unscalable, a number of approaches leverage a reduced version of ICFG for their analysis.

For example, Woodpecker [233] locates capability leaks (See section 2.5.1.1) by traversing a

reduced permission-specific ICFG, rather than the generic one.

In addition to such canonical, widely-used data structures, a good portion of existing ap-

proaches leverage customized data structures for app analysis. One examples is G*, an

ICFG-based graph, in which each call site is represented by two nodes, one before the pro-

cedure call and the other after returning [371]. CHEX [328] introduces two customized data

structures of split data-flow summary (SDS) and permutation data-flow summary (PDS) for

its data flow analysis. SDS is a kind of CFG that also considers the notion of split, “a subset

of the app code that is reachable from a particular entry point method”. PDS is also similar

to ICFG, and links all possible permutations of SDS sequences. Another data structure

commonly used by app clone detectors, such as AnDarwin [152] and DNADroid [151], is
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program dependency graph (PDG). By capturing control and data dependencies between

code fragments, a PDG is able to compare similarity between app pairs.

2.5.2.5 Sensitivity of Analysis

Apart from lightweight, text-based approaches, other static approaches have adopted a level

of sensitivity in their analysis. According to our survey, flow-sensitive approaches that

consider the program statements sequence, have the highest frequency (23%) among the

static approaches. Following that, 14% of static techniques are context-sensitive, that is, they

compute the calling context of method calls. Finally, 3% of static analyses are path-sensitive,

meaning that only a handful of analysis approaches distinguish information obtained from

different execution paths. Generally, approaches with higher sensitivity, i.e.,considering more

program properties for the analysis, generate more accurate results, but they are less scalable

in practice.

2.5.2.6 Code Representation

Different approaches analyze various formats of the Java code, which are broadly distin-

guishable as source code vs. byte code. The applicability of the former group of approaches,

such as SCanDroid [211], are confined to apps with available source code.

Most recent approaches, however, support byte-code analysis. Such approaches typically

perform a pre-processing step, in which Dalvik byte code, encapsulated in the APK file, is

transferred to another type of code or intermediate representation (IR). Figure 2.8 shows

the distribution of the approaches based on the target IR of the analysis.

According to the diagram, Smali [19] is the most popular intermediate representations, used

in 17% of those studied approaches that are performing analysis on a type of IR. Also, 13%
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Figure 2.8: Distribution of research based on the type of code or intermediate representation
(IR) used for analysis.

of such approaches, in the pre-processing step, retarget Dalvik byte-code to Java byte-coded

JAR files. An advantage of this approach is the ability to reuse pre-developed, off-the-

shelf Java analysis libraries and tools. In exchange, APK-to-JAR decompilers suffer from

performance overhead and incomplete code coverage.

2.5.2.7 Inspection Level 8

Dynamic approaches monitor an app’s behavior using different techniques. According to

our results, about 35% of dynamic approaches intercept events that occur within the em-

ulated environments by modifying virtual machines (VMs). VM-based dynamic analyses

are further distinguishable by the type of virtual machine they modify: Dalvik VM (e.g.,

TaintDroid [181]) or QEMU VM (e.g., CopperDroid [485]). While QEMU-based systems

work on a lower level and are able to trace native code, Dalvik-based techniques tend to be

more efficient [364]. Therefore, a few tools, such as [320], take advantage of both techniques.

Around 39% of studied dynamic analyses weave monitoring code into Android apps or frame-

work APIs to capture app behaviors. Approaches that monitor the framework are marked

with F in Table 2.6. Different libraries are developed by the research community to facili-

8The percentages reported in Sections 2.5.2.7 and 2.5.2.8 are calculated only for the dynamic techniques.
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Table 2.8: Solution Specific Categorization of the Reviewed Research, Part 4

Dimension Dynamic Approaches % (%)*

In
sp

ec
ti

o
n

L
ev

el

Application

(F)

Achara [49], Ananas [173], Androguard [166], AntiMalDroid [568]F , Apex [362], APKLancet [545],
AppCaulk [446], AppGuard [75], AppIntent [548], AppProfiler [411], AppSealer [559], APSET [427],
ASM [247], Aurasium [535], AutoCog [391], Bagheri [78], Bartsch [95], Berthome [99], Brahmas-
tra [101], Buzzer [127], Capper [560], CMA [455], ConDroid [445], ContentScope [587], CRePE [147],
Dr.Android [268], DroidAnalytics [576], DroidDolphin [525], DroidForce [396], DroidFuzzer [549],

DroidGuard [81], DroidLogger [158], DroidRay [577], DroidTrack [425], Feth [205]F , FineDroid [565]F ,
Graa [230], GroddDroid [47], HunterDroid [556], I-ARM-Droid [162], ICC Map [178], IPCInspec-

tion [202], Jeon [267], Jung [281]F , Kantola [283], Lee [302], Li2 [313], Lintent [118], Lu [329],

Mahmood [338], Matsumoto [345], MobSafe [534], Morbs [509], MpDroid [488]F , Mutchler [355],

Nishimoto [367]F , PaddyFrog [523], Paupore [378], Pegasus [138], Permlyzer [536], Porscha [372]F ,

PUMA [429], PUMA2 [243], QUIRE [167], SADroid [240], SFG [59]F , Shebaro [457]F , Short [465],

SmartDroid [574], Smith [467], SMV-HUNTER [470], TruStore [572], Uranine [401], WifiLeaks [48]F ,
Wijesekera [518], Xmandroid [114], You [552]

39%
(23%)

Kernel

ADDICTED [585], Afonso [51], Ananas [173], Andrubis [320], AppsPlayground [398], Aquifer [359],
ASF [73], ASM [247], AVDTester [256], Bugiel [115], Canfora [124], Canfora3 [126], Compac [512],
CopperDroid [403], CopperDroid2 [485], Crowdroid [120], Dagger [541], DataChest [589], Deep-
Droid [511], Defensor [375], DroidBarrier [56], DroidScope [539], FineDroid [565], FlaskDroid [117],
Ham [236], Isohara [262], Jeong [270], Karami [284], MADAM [168], Mobile-Sandbox [471],
Paranoid-Android [386], pBMDS [530], PeBA [97], PICARD [169], PREC [248], ProfileDroid [515],
Quan [392], Schmidt [440], SCSdroid [318], Su [473], Tchakounte [486], TMSVM [529], Trace-
Droid [496]

27%
(13%)

VM

AASandbox [106], Afonso [51], Androguard [166], Andrubis [320], AppAudit [526], AppFence [252], Ap-
pInspector [223], AppsPlayground [398], Aquifer [359], ASF [73], ASM [247], ASV [257], AuDroid [382],
Aurasium [535], AVDTester [256], Bagheri [78], Bal [85], Bugiel [115], Compac [512], ConUCON [84],
CopperDroid [403], CopperDroid2 [485], CRePE [147], DataChest [589], DeepDroid [511], DexDiff [350],
Dr.Android [268], DroidPAD [331], DroidRay [577], DroidScope [539], FireDroid [414], FlaskDroid [117],
Graa [230], IPCInspection [202], Kantola [283], Kynoid [443], LazyTainter [516], Lee [302], Leon-
tiadis [305], MADAM [168], Marvin [319], MeadDroid [304], Mobile-Sandbox [471], Morbs [509],
MOSES [573], NDroid [389], Paranoid-Android [386], PatchDroid [353], PeBA [97], Quan [392],
QUIRE [167], Saint [373], StaDynA [571], TaintDroid [181], TISSA [592], TraceDroid [496], Tree-
Droid [159], TruStore [572], VetDroid [566], Yaase [413], Zuo [594]

35%
(18%)

In
p

u
t

G
en

er
a
ti

o
n Fuzzing

(H)

A5 [502]H , Afonso [51], Ananas [173], Andrubis [320], AppsPlayground [398]H , AVDTester [256],

Canfora [124], ContentScope [587], CopperDroid [403], CopperDroid2 [485]H , Dagger [541], DroidDol-
phin [525], DroidFuzzer [549], DroidScope [539], DroidTest [412], DroidTrack [425], HunterDroid [556],

IntentFuzzer [542], Jiao [272], Karami [284]H , LazyTainter [516], Mahmood [338], Malek [340]H ,

Mobile-Sandbox [471], MobSafe [534], MOSES [573], NDroid [389], Permlyzer [536], PUMA [429]H ,
RetroSkeleton [161], SmartDroid [574], SMV-HUNTER [470], TaintDroid [181], UIPicker [360], Ura-

nine [401], VetDroid [566], Zuo [594]H

23%
(11%)

Symbolic Exec. AppInspector [223], AppIntent [548], ConDroid [445], DroidAnalytics [576], Malek [340], You [552] 4% (2%)

H: Heuristics-based Approaches, F: Android Framework level
*: The last column should be read as follows: Percentage among dynamic approaches (Percentage among all approaches)

tate app-level monitoring, including: APIMonitor developed and used in DroidBox [12], a

Soot-based library proposed by [66], and SIF [242], a selective instrumentation framework.

Finally, about 26% of surveyed dynamic techniques capture app behavior through monitoring

system calls, using loadable kernel modules (e.g., ANANAS [173]) or debugging tools such as

strace (e.g., Crowdroid [120]). Most of the kernel-level techniques are able to trace native

code, but they are usually not compatible with multiple versions of Android [364].

To overcome the shortcomings and limitations pertaining to certain monitoring levels, a

number of tools leverage a combination of different inspection techniques. According to our

survey, around 22% of the studied dynamic approaches perform monitoring at multiple levels.

For instance, through monitoring both the Linux kernel and Dalvik VM, DroidScope [539],
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a dynamic malware analyzer, is able to identify anomalies in app behaviors.

2.5.2.8 Input Generation Technique

The Android security assessment approaches that rely on dynamic analysis require test input

data and events to drive the execution of apps.

We can observe from Table 2.8 that most of such approaches use fuzz testing, comprising

23% of the dynamic approaches studied for this literature review. Fuzzing is a form of

negative testing that feeds malformed and unexpected input data to a program with the

objective of revealing security vulnerabilities. For example, it has been shown that an SMS

protocol fuzzer is highly effective in finding severe security vulnerabilities in all three major

smartphone platforms [347]. In the case of Android, fuzzing found a security vulnerability

triggered by simply receiving a particular type of SMS message, which not only kills the

phone’s telephony process, but also kicks the target device off the network [347].

Despite the individual success of fuzzing as a general method of identifying vulnerabilities,

fuzzing has traditionally been used as a brute-force mechanism. Using fuzzing for testing is

generally a time consuming and computationally expensive process, as the space of possible

inputs to any real-world program is often unbounded. Existing fuzzing tools, such as An-

droid’s Monkey [4], generate purely random test case inputs, and thus are often ineffective

in practice.

To improve the efficiency of fuzzing techniques, a number of approaches [485, 502, 398] have

devised heuristics that guide a fuzzer to cover more segments of app code in an intelligent

manner. For instance, by providing meaningful inputs for text boxes by using contextual

information, AppsPlayground [398] avoids redundant test paths. This in turn enables a more

effective exploration of the app code.
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A comparatively low number of dynamic approaches (4%) employ symbolic execution, mainly

to improve the effectiveness of generated test inputs. For example, AppInspector [223]

applies concolic execution, which is the combination of symbolic and concrete execution. It

switches back and forth between symbolic and concrete modes to enable analysis of apps that

communicate with remote parties. Scalability is, however, a main concern with symbolic

execution techniques. More recently, some approaches try to improve the scalability of

symbolic execution. For instance, AppIntent [548] introduces a guided symbolic execution

that narrows down the space of execution paths to be explored by considering both the app

call graph and the Android execution model. Symbolic execution is also used for feasible

path refinement. Among others, Woodpecker [233] models each execution path as a set of

dependent program states, and marks a path “feasible” if each program point follows from

the preceding ones.

2.5.3 Assessment (Validation)

We used reputable sites in our review protocol (See section 2.3), which resulted in the

discovery of high-quality refereed research papers from respectable venues. To develop better

insights into the quality of the research papers surveyed, here we use Evaluation Method

(T 3.1) and Replicability (T 3.2), which are the two validation dimensions in the taxonomy.

Tables 2.9 and 2.10 presents a summary of the validation-specific aspects that are extracted

from the collection of papers included in the literature review. In the following, we summarize

the main results for each dimension in this category.
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Table 2.9: Assessment Specific Categorization of the Reviewed Research, Part 1

Dimension Approaches %

E
v
a
lu

a
ti

o
n

Proof Apposcopy [203], Bagheri [78], Cassandra [326], HornDroid [122], ScanDal [291], SCanDroid [211],
Scoria [497], Smith [467]

2%

E
m

p
ir

ic
a
l

Google Play

AAPL [327], AASandbox [106], Adagio [216], AdDroid [379], Adebayo [50], AdRisk [232], Aman-
droid [514], AMDetector [569], Ananas [173], AnDarwin [152], AndroidLeaks [222], AntiMalDroid [568],
ApkCombiner [307], ApkRiskAnalyzer [142], App-ray [490], Apparecium [489], AppAudit [526], Ap-
pCaulk [446], AppContext [546], AppCracker [121], AppFence [252], AppGuard [75], AppInspec-
tor [223], AppIntegrity [499], AppIntent [548], Apposcopy [203], AppProfiler [411], AppSealer [559],
AppsPlayground [398], APSET [427], Aquifer [359], AsDroid [260], AuDroid [382], AutoCog [391],
AVDTester [256], Bae [76], Bagheri [78], Bartsch [95], Batyuk [96], BayesDroid [493], Bianchi [102],
Bifocals [144], BlueSeal [251], Capper [560], Cen [130], Chabada [228], Chen [136], Chen2 [135],
CHEX [328], CMA [455], ComDroid [143], ConDroid [445], ContentScope [587], COPES [92],
COVERT [80], CredMiner [591], CryptoLint [174], Dagger [541], Dai [157], DataChest [589],
DNADroid [151], Dr.Android [268], DRACO [100], DroidADDMiner [316], DroidAnalytics [576], Droid-
Analyzer [448], DroidAPIMiner [45], DroidChecker [133], DroidCIA [140], DroidDolphin [525], Droid-
Force [396], DroidGuard [81], DroidKin [226], DroidMat [522], DroidMiner [540], DroidRanger [590],
DroidRay [577], DroidRisk [513], Droidsearch [395], DroidSIFT [558], DroidSim [479], DroidTest [412],
DroidTrace [578], Duet [253], Enck [182], Epicc [371], Flowdroid [67], FUSE [402], Gallingani [213],
Gates [218], Han [239], Harehunter [46], HornDroid [122], HunterDroid [556], I-ARM-Droid [162],
ICC Map [178], IccTA [308], IntentFuzzer [542], IVDroid [190], Jiao [272], Johnson [280], Jux-
tapp [241], Kantola [283], Kate [285], Kirin [183], LeakMiner [547], Leontiadis [305], Ma [336],
MalloDroid [186], Manilyzer [197], Marvin [319], MassVet [137], MAST [132], MeadDroid [304], Mock-
Droid [98], Moonsamy2 [352], MorphDroid [204], MpDroid [488], Mudflow [70], Mutchler [355],
NDroid [389], NoFrak [220], NoInjection [274], Onwuzurike [374], OpSeq [54], Patronus [478],
PCLeaks [309], Pedal [322], Pegasus [138], Peiravian [380], Peng [381], PermCheckTool [501], Per-
missionFlow [436], Permlyzer [536], Poeplau [384], PREC [248], ProfileDroid [515], PUMA [429],
PUMA2 [243], PuppetDroid [221], Quan [392], RAMSES [172], Relda [234], Ren [405], ResDroid [456],
RetroSkeleton [161], Riskmon [275], RiskMon2 [276], Riskranker [231], SAAF [250], Sarma [433], Scan-
Dal [291], SEFA [524], Seneviratne [447], Shabtai [449], Shen [461], SherlockDroid [61], Short [465],
SMV-HUNTER [470], StaDynA [571], Stowaway [198], SUPOR [259], TaintDroid [181], TISSA [592],
TMSVM [529], TongxinLi [314], UID [179], UIPicker [360], Uranine [401], VetDroid [566], Wang [510],
WeChecker [154], WifiLeaks [48], Wognsen [519], Woodpecker [233], Xmandroid [114], Zhou [583],
Zuo [594]

53%

Third Party

Adagio [216], Afonso [51], AnDarwin [152], AndroidLeaks [222], APKLancet [545], AppCracker [121],
AppIntegrity [499], AppProfiler [411], APSET [427], AsDroid [260], Aurasium [535], Bagheri [78],
Barros [91], Chen [136], CHEX [328], CoChecker [155], ContentScope [587], COVERT [80],
CredMiner [591], DNADroid [151], Drebin [64], DroidAnalytics [576], DroidAnalyzer [448],
DroidAPIMiner [45], DroidChecker [133], DroidGuard [81], DroidLegacy [164], DroidMiner [540], Droid-
MOSS [584], DroidRanger [590], DroidSIFT [558], FUSE [402], HunterDroid [556], Isohara [262],
Jiao [272], Juxtapp [241], Kim [290], MassVet [137], Mobile-Sandbox [471], MobSafe [534], Moon-
samy [351], Moonsamy2 [352], PaddyFrog [523], Relda [234], Riskranker [231], WuKong [505],
Zhou [583]

14%

Malware
Collections

A5 [502], Adagio [216], Adebayo [50], Afonso [51], Amandroid [514], AMDetector [569], Ananas [173],
ApkCombiner [307], APKLancet [545], ApkRiskAnalyzer [142], AppAudit [526], AppContext [546],
AppIntent [548], Apposcopy [203], AppsPlayground [398], AsDroid [260], Aurasium [535], Bae [76],
Bianchi [102], BlueSeal [251], Brave [377], Brox [335], Cen [130], Chabada [228], Chen2 [135],
CopperDroid [403], CopperDroid2 [485], COVERT [80], Dagger [541], Dai [157], Dendroid [474],
DRACO [100], DroidADDMiner [316], DroidAlarm [579], DroidAnalytics [576], DroidAPIMiner [45],
DroidDolphin [525], DroidGuard [81], DroidKin [226], DroidLegacy [164], DroidLogger [158], Droid-
Mat [522], DroidMiner [540], DroidPAD [331], DroidPermissionMiner [68], DroidRisk [513], Droid-
Scope [539], Droidsearch [395], DroidSIFT [558], DroidSim [479], DroidTrace [578], EASEAndroid [508],
Elish [177], Flowdroid [67], FUSE [402], Gates [218], GroddDroid [47], Ham [236], Han [239], Ic-
cTA [308], IIF [551], IREA [297], Jeong [270], Jiao [272], Juxtapp [241], Kadir [282], Karami [284],
Kate [285], Kim [290], Lee [302], Ma [336], Mama [430], Manilyzer [197], Marvin [319], MAST [132],
MIGDroid [254], Mobile-Sandbox [471], MpDroid [488], Mudflow [70], OpSeq [54], Patronus [478], Pe-
gasus [138], Peiravian [380], Peng [381], PREC [248], PUMA2 [243], PuppetDroid [221], Quan [392],
RAMSES [172], ResDroid [456], SAAF [250], Sanz [432], Sarma [433], SherlockDroid [61], Sta-
DynA [571], TMSVM [529], UID [179], VetDroid [566], Wang [510], Xmandroid [114]

30%

Benchmark

AAPL [327], Amandroid [514], Anadroid [317], ApkCombiner [307], APKLancet [545], AppAudit [526],
BayesDroid [493], CoChecker [155], DidFail [294], DroidBarrier [56], DroidGuard [81], DroidPAD [331],
DroidSafe [227], DroidScope [539], Enck [182], FireDroid [414], Flowdroid [67], FUSE [402], Horn-
Droid [122], IccTA [308], IFT [185], Kynoid [443], MorphDroid [204], MOSES [573], NDroid [389],
QUIRE [167], Smith [467], WeChecker [154]

8%

Case Study

Achara [49], AdRisk [232], AdSplit [459], Amandroid [514], Androguard [166], Apex [362], AP-
KLancet [545], AppCaulk [446], AppCracker [121], AppGuard [75], AppIntent [548], AppsPlay-
ground [398], Aquifer [359], AsDroid [260], ASM [247], ASV [257], Aurasium [535], AuthDroid [506],
Bagheri [78], Bartsch [95], Batyuk [96], BlueSeal [251], Buhov [119], Buzzer [127], Can-
fora3 [126], ComDroid [143], Compac [512], ContentScope [587], COVERT [80], COVERT Tool [417],
CredMiner [591], CRePE [147], Dagger [541], Defensor [375], Desnos [165], DexDiff [350], Did-
Fail [294], DNADroid [151], DroidAlarm [579], DroidChecker [133], DroidCIA [140], DroidGuard [81],
DroidRanger [590], DroidScope [539], DroidTrace [578], Enck [182], FineDroid [565], FlaskDroid [117],
Flowdroid [67], FUSE [402], Gallo [214], Graa [230], Graa2 [229], Harehunter [46], HornDroid [122],
IIF [551], Jeong [270], Jia [271], Juxtapp [241], Kadir [282], KLD [453], LayerCake [408], Li2 [313],
Lintent [118], Lu [329], Mann [341], Morbs [509], NDroid [389], PCLeaks [309], Pegasus [138], PI-
CARD [169], Poeplau [384], PuppetDroid [221], Riskmon [275], RiskMon2 [276], Riskranker [231],
SCanDroid [211], Scoria [497], SecUP [533], SEFA [524], SFG [59], Shebaro [457], Shen [461],
SmartDroid [574], Smith [467], Song [468], STAMBA [109], SUPOR [259], TaintDroid [181], Tchak-
ounte [486], TreeDroid [159], VetDroid [566], Woodpecker [233]

28%

User Study (D)
AppProfiler [411], Grab’nRun [187]D , IFT [185]D , MalloDroid [186], Riskmon [275], RiskMon2 [276],
WifiLeaks [48], Wijesekera [518] 2%

D: App Developer
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(a) Distribution of surveyed research based
on the number of apps used in their experi-
ments.

(b) Distribution of app repositories used in
the empirical evaluations.

Figure 2.9: Distribution of surveyed papers based on the number of source of the apps used
for empirical evaluation.

2.5.3.1 Evaluation Method

Table 2.9 depicts the share of different evaluation methods in assessing the quality of Android

security analysis approaches. Most of the approaches have used empirical techniques to assess

the validity of their ideas using a full implementation of their approach (e.g., Chabada [228],

CHEX [328], Epicc [371], and COVERT [80]). Some research efforts (28%) have developed a

proof-of-concept prototype to perform limited scale case studies (e.g., SCanDroid [211] and

SmartDroid [574]). A limited number (2%) of approaches (e.g., Chaudhuri et al. [134]) have

provided mathematical proofs to validate their ideas.

Availability of various Android app repositories, such as the Google Play Store [15], is a

key enabling factor for the large-scale empirical evaluation witnessed in the Android security

research. Figure 2.9a shows the distribution of surveyed research based on the number of

selected apps that are used in the experiments. We observe that most of the experiments

(72%) have been conducted over sets of more than one hundred apps.

Figure 2.9b depicts the distribution of app repositories used in the evaluations of surveyed

research. We observe that the Google Play Store, the official and largest repository of

Android applications, is the most popular app repository, used by 85% of the papers with

64



Table 2.10: Assessment Specific Categorization of the Reviewed Research, Part 2

Dimension Approaches %

R
ep

li
ca

b
il
it

y Available
Tool

A5 [502], Adagio [216], Amandroid [514], Androguard [166], AndroTotal [337], Andrubis [320], ApkCom-
biner [307], Apparecium [489], AppContext [546], AppGuard [75], AppProfiler [411], Aquifer [359],
ASM [247], Aurasium [535], AutoCog [391], Barros [91], Brahmastra [101], Chabada [228], Com-
Droid [143], CopperDroid [403], CopperDroid2 [485], COVERT [80], COVERT Tool [417], Den-
droid [474], Desnos [165], DidFail [294], DroidForce [396], DroidSafe [227], DroidScope [539],
Enck [182], Epicc [371], FlaskDroid [117], Flowdroid [67], FUSE [402], Geneiatakis [219],
Grab’nRun [187], IccTA [308], IFT [185], Kirin [183], LayerCake [408], Lintent [118], MalloDroid [186],
Marvin [319], Mobile-Sandbox [471], MockDroid [98], Morbs [509], Mudflow [70], NoInjection [274],
PermCheckTool [501], PScout [69], SCanDroid [211], StaDynA [571], Stowaway [198], TaintDroid [181],
TraceDroid [496], Wognsen [519]

17%

Available
Source Code

A5 [502], Adagio [216], Amandroid [514], Androguard [166], ApkCombiner [307], Apparecium [489],
AppContext [546], Aquifer [359], ASM [247], Barros [91], Desnos [165], DidFail [294], Droid-
Safe [227], DroidScope [539], Enck [182], FlaskDroid [117], Flowdroid [67], Geneiatakis [219],
Grab’nRun [187], IccTA [308], Kirin [183], LayerCake [408], Lintent [118], MalloDroid [186], Mock-
Droid [98], Morbs [509], NoInjection [274], PermCheckTool [501], PScout [69], SCanDroid [211], Sta-
DynA [571], TaintDroid [181], Wognsen [519]

10%

an empirical evaluation. There are several other third-party repositories, such as F-Droid

open source repository [13], used by 24% of the evaluation methods. A number of malware

repositories (such as [586, 21, 20, 64, 576]) are also widely used in assessing approaches

designed for detecting malicious apps (45%). Finally, about 14% of the evaluations use

hand-crafted benchmark suites, such as [10, 16], in their evaluation. A benefit of apps

comprising such benchmarks is that the ground-truth for them is known, since they are

manually seeded with known vulnerabilities and malicious behavior, allowing researchers to

easily assess and compare their techniques in terms of the number of issues that are correctly

detected.

Finally, a few papers (2%) assess their proposed approach by conducting controlled exper-

iments on a set of users, either app developers (e.g., measuring development overhead in

[185]), or app consumers (e.g., studying user reactions in [518]).

2.5.3.2 Replicability

The evaluation of security research is generally known to be difficult. Making the results

of experiments reproducible is even more difficult. Table 2.10 shows the availability of the

executable artifacts, as well as the corresponding source code and documentations in the

surveyed papers. According to Table 2.10, overall only 17% of published research have made
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Figure 2.10: Comparison Graph: X → Y means research method X has quantitatively
compared itself to method Y.

their artifacts publicly available. The rest have not made their implementations, prototypes,

tools, and experiments available to other researchers.

Having such artifacts publicly available enables, among other things, quantitative compar-

isons of different approaches. Figure 2.10 depicts the comparison relationships found in the

evaluation of the studied papers. In this graph, the nodes with higher fan-in (i.e., incoming

edges) represent the tools that are widely used in evaluation of other research efforts. For

instance, Enck et al. [181] provided a stable, well-documented monitoring tool, TaintDroid,

which is widely used in the literature as the state-of-the-art dynamic analysis for evaluating

the effectiveness of the newly proposed techniques.

Similarly, making a research tool available, particularly in the form of source code, enables

other researchers to expand the tool and build more advanced techniques on top of it. Fig-

ure 2.11 illustrates the dependency relationships found in the implementation of the surveyed

papers. In this graph, the nodes with higher fan-in represent the tools that are widely used

to realize the other research efforts. For instance, FlowDroid [67], with 6 incoming edges,

has an active community of developers and a discussion group—and is widely used in several

research papers surveyed in our study.
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Figure 2.11: Dependency Graph: X→ Y means research method X is built on top of method
Y.

2.5.4 Cross Analysis

In this section, we extend our survey analysis across the different taxonomy dimensions.

Given the observations from the reviewing process, we develop the following cross-analysis

questions (CQs):

CQ1. What types of program analysis have been used for each security assessment objec-

tives?

CQ2. What types of program analysis have been used for detecting each of the STRIDE’s

security threats?

CQ3. Is there a relationship between the granularity of security threats and the type of

employed program analysis techniques?

CQ4. Is there a relationship between the depth of security threats, i.e., app-level vs. framework-

level, and the type of analysis techniques employed in the surveyed research?

CQ5. Which evaluation methods are used for different objectives and types of analysis?
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Figure 2.12: Types of program analysis that have been used for detecting a© different security
assessment objectives (i.e.,malware vs. vulnerability detection), and b© different security
threats.

CQ6. How reproducible are the surveyed research based on the objectives and types of

analysis?

CQ7. Is there a relationship between the availability of research artifacts and their respective

citation numbers?

CQ1. Analysis objectives and types of program analysis. As shown in Fig-

ure 2.12 a©, static and dynamic analyses have been used for identifying both malicious be-

havior and vulnerabilities. However, static approaches are more frequently leveraged for

detecting vulnerable apps rather than malware (58% vs. 50%), while dynamic techniques

have more application in malware detection compared to vulnerability analysis (36% vs.

27%). Hybrid approaches, though at lower scales, have also been used (15%-16%) for both

purposes.

CQ2. STRIDE’s security threats and type of program analysis. According to

Figure 2.12 b©, none of the analysis types (i.e., static, dynamic, hybrid) are intended to

identify the repudiation security thread (see discussion and gap analysis in Section 2.6).

Moreover, according to this figure, a limited number of research efforts have been devoted

to identifying Denial of Service (Dos) attacks. Finally, the cross analysis results show that
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Figure 2.13: a© Granularity and b© Depth (Level) of each type of program analysis.

static approaches, compared to the other types of program analysis, has been widely used

for detecting various security threats, particularly spoofing, where the number of static

techniques is almost three times higher than the number of dynamic or hybrid approaches.

As discussed before, one reason is that for security analysis soundness is usually considered

to be more important than precision, since it is preferred to not miss any security threat,

even at the cost of generating false warnings.

CQ3. Granularity of security threats and type of analysis techniques. In Fig-

ure 2.13 a©, we observe a similar distribution pattern in use of different analysis types

(i.e.,static, dynamic, hybrid) for capturing security threats at different levels of granular-

ity (i.e, intra-component, inter-component, inter-app). In general, for identifying security

threats in a single component, or between multiple component in a single or multiple apps,

static analysis techniques are the most common methods (about 50%) used by the state-of-

the-art approaches, followed by dynamic analysis (35%), and hybrid techniques (15%).

CQ4. Depth of security threats and type of analysis techniques. The depth

of security threats also exhibit a relation with the type of analysis techniques (cf., Fig-

ure 2.13 b©). We observe that the dynamic approaches are employed more often for analysis

at the framework-level (55%). One reason is that dynamic approaches can employ runtime

modules, such as monitors, which are deployed in the Android framework, thereby enabling
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Figure 2.14: Approach validation versus a© research objectives and b© types of analysis.

tracking otherwise implicit relations between system API calls and the Android permissions.

Such runtime framework-level activity monitoring is not possible using static analysis tech-

niques. Moreover, due to the large size of Android framework (over ten million lines of code),

dynamic techniques are more scalable and less-expensive for framework-level monitoring.

CQ5. Evaluation method vs. the objectives and types of analysis. We observe

a similar distribution pattern in use of different evaluation methods across various types of

analysis and also analysis objectives, except that user study is more popular in grayware

analysis, compared to the other objectives. One reason is that the privacy concerns of end

users are critical in assessing grayware, such as ad libraries. In general, empirical evaluation

is the most widely used, followed by the case study and user study methods and formal

proofs (See Figure 2.14).

CQ6. Reproducibility vs. the objectives and types of analysis. As shown in Fig-

ure 2.15, the research artifacts intended to identify security vulnerabilities are more likely

to be available in comparison to those designed for malware/grayware detection (27% vs.

20%/13%). Moreover, availability ratio of the tools performing different types of analysis

(i.e., static, dynamic, and hybrid) are all close and under 20%, which restricts the other re-

searchers from reproducing, and potentially adopting, achievements in this thrust of research.
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Figure 2.15: Availability of tools/artifacts based on the a© objective and, b© type of analysis.

CQ7. Artifact availability and citation count. To investigate this research question,

we ranked the surveyed papers based on their citation counts. Since older papers have a

higher chance of getting more citations, we also provided the same ranking for each year,

separately, from 2009 to 2015. Afterwards, we checked the artifact availability of highly

cited papers. The summary of our findings are provided in Table 2.11, which indicates that

papers with publicly available artifacts get more citations. 100% of overall top-5 cited, and

88% of top-cited papers of each year, have available artifacts.

Table 2.11: Artifact availability of highly cited research papers.

Rank Year Tool # of Citations* Availability

Top cited papers - overall
1 2010 TaintDroid[181] 1563 3
2 2011 Stowaway[198] 745 3
3 2009 Kirin[183] 625 3
4 2011 Enck [182] 599 3
5 2011 ComDroid[143] 502 3

Top cited papers - yearly
1 2009 Kirin[183] 625 3
1 2010 TaintDroid[181] 1563 3
1 2011 Stowaway[198] 745 3
1 2012 DroidRanger[590] 429 7
1 2013 AppsPlayground[398] 129 3
1 2014 Flowdroid[67] 225 3
1 2015 IccTA[308] 21 3

* By the end of 2015
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Figure 2.16: Observed trends in Android security analysis research with respect to a© ob-
jectives of the analysis, b© type of analysis, and c© number of apps used in the evaluation
(normalized by dividing the number of apps to the number of publications in each year).

2.6 Discussion and Directions for Future Research

To address the third research question (RQ3), in this section, we first provide a trend analysis

of surveyed research, and then discuss the observed gaps in the studied literature that can

help to direct future research efforts in this area.

Based on the results of our literature review (See Section 2.5), it is evident that Android

security has received a lot of attention in recently published literature, due mainly to the

popularity of Android as a platform of choice for mobile devices, as well as increasing reports

of its vulnerabilities. We also observe important trends in the past decade, as reflected by

the results of the literature review. Figure 2.16 shows some observed trends in Android

security analysis research.

• According to Figure 2.16 a©, malicious behavior detection not only has attracted more

attention, compared to vulnerability identification, but also research in malware anal-

ysis tends to grow at an accelerated rate.

• As illustrated in Figure 2.16 b©, static analysis techniques dominate security assessment

in the Android domain. Dynamic and hybrid analysis techniques are also showing

modest growth, as they are increasingly applied to mitigate the limitations of pure
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static analysis (e.g., to reason about dynamically loaded code, and obfuscated code).

• The more recent approaches reviewed in this survey have used larger collections of apps

in their evaluation (See Figure 2.16 c©). Such large-scale empirical evaluation in the

Android security research is promising, and can be attributed to the meteoric rise of

the numbers of apps provisioned on publicly available app markets that in some cases

provide free or even open-source apps.

Despite considerable research efforts devoted to mitigating security threats in mobile plat-

forms, we are still witnessing a significant growth in the number of security attacks target-

ing these platforms [407]. Therefore, our first and foremost recommendation is to increase

convergence and collaboration among researchers in this area from software engineering, se-

curity, mobility, and other related communities to achieve the common goal of addressing

these mobile security threats and attacks.

More specifically, the survey—through its use of our proposed taxonomy—has revealed re-

search gaps (RGs) in need of further study. To summarize, future research needs to focus

on the following to stay ahead of today’s advancing security threats:

RG1: Pursue integrated and hybrid approaches that span not only static and dynamic

analyses, but also other supplementary analysis techniques: Recall from Table 2.6

that only 29% of approaches leverage supplementary techniques, which are shown

to be effective in identifying modern malicious behaviors or security vulnerabilities.

RG2: Move beyond fuzzing for security test input generation: According to Section 2.5.2.8,

only 8% of test input generation techniques use a systematic technique (i.e., sym-

bolic execution or heuristic-based fuzzing), as opposed to brute-force fuzzing. Fuzzing

is inherently limited in its abilities to execute vulnerable code. Furthermore, such

brute-force approaches may fail to identify malicious behavior that may be hidden

behind obfuscated code or code that requires specific conditions to execute.
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RG3: Continue the paradigm shift from basic single app analysis to overall system moni-

toring, and exploring compositional vulnerabilities: Recall from Sections 2.5.1.3 and

2.5.1.4, and Table 2.4, that the majority of the existing body of research is limited

to the analysis of single apps in isolation. However, malware exploiting vulnerabili-

ties of multiple benign apps in tandem on the market are increasing. Furthermore,

identifying some security vulnerabilities requires a holistic analysis of the Android

framework. For example, consider the analysis of the Android permission protocol

to check whether it satisfies the security requirement of preventing unauthorized

access [78]. Ensuring that the system achieves such security goals, however, is a

challenging task, inasmuch as it can be difficult to predict all the ways in which a

malicious application may attempt to misuse the system. Identifying such attacks,

indeed, requires system-wide reasoning, and cannot be easily achieved by analysis

of individual parts of the system in isolation.

RG4: Construct techniques capable of analyzing ICC beyond Intents: Only 3% of papers,

as shown in Table 2.4, consider ICCs involving data sharing using Content Providers

and AIDL. These mechanisms are, thus, particularly attractive vectors for attackers

to utilize, due to the limited analyses available. Consequently, research in that space

can help strengthen countermeasures against such threats.

RG5: Consider dynamically loaded code that is not bundled with installed packages: Recall

from Table 2.4 that a highly limited amount of research (4%) analyzes the secu-

rity implications of externally loaded code. This Android capability can be easily

exploited by malware developers to evade security inspections at installation time.

RG6: Analyze code of different forms and from different languages: Besides analyzing Java

and its basic constructs, future research should analyze other code constructs and

languages used to construct Android apps, such as native C/C++ code or obfus-

cated code. The usage of complicated obfuscation techniques and/or native libraries
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for hiding malicious behavior are continually growing. Recall from section 2.5.1.5

and Table 2.4 that only 5− 6% of surveyed approaches consider obfuscated or na-

tive code, where most of those approaches do not perform analysis on the content

of such code.

RG7: Improve the precision of analysis: Recall from Section 2.5.2.5 and Table 2.7 that a

low percentage (3−23%) of static analysis techniques use high precision sensitivities,

leading to high false positives. Moreover, in parallel to enhancing precision, a

practical analysis is also needed to scale up to large and complicated apps.

RG8: Consider studying Android repudiation: The SLR process returned no results for

Android repudiation, as shown in Table 2.3. Consequently, there is a need for

studies that target such threats, particularly in terms of potential weaknesses in the

way Android app ecosystem handles digital signatures and certificates. However,

repudiation also has a major legal component [206], which may require expertise not

held by researchers in software security, software engineering, or computer science.

Properly addressing this gap may require inter-disciplinary research.

RG9: Promote collaboration in the research community: To that end, we recommend mak-

ing research results more reproducible. This goal can be achieved through increased

sharing of research artifacts. Recall from Table 2.10 that less than 20% of surveyed

papers have made their research artifacts available publicly. At the same time, Fig-

ure 2.10 shows that few approaches conduct quantitative comparisons, mainly due

to unavailability of prior research artifacts. Papers that make their artifacts avail-

able publicly are able to make a bigger impact, as measured by the citation count

(recall Table 2.11). We hope this will provide another impetus for the research

community to publicly share their tools and artifacts. To further aid in achieving

reproducibility, we also advocate the development of common evaluation platforms

and benchmarks. Recall from Figure 2.9b that only 14% of studied approaches con-
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sidered benchmarks for their evaluation. A benchmark of apps with known set of

issues allows the research community to compare strengths and weaknesses of their

techniques using the same dataset, thus fostering progress in this area of research.

2.7 Conclusion

In parallel with the growth of mobile applications and consequently the rise of security

threats in mobile platforms, considerable research efforts have been devoted to assess the

security of mobile applications. Android, as the dominant mobile platform and also the

primary target of mobile malware threats, has been in the focus of much research. Existing

research has made significant progress towards detection and mitigation of Android security.

This chapter proposed a comprehensive taxonomy to classify and characterize research efforts

in this area. We have carefully followed the systematic literature review process, resulting in

the most comprehensive and elaborate investigation of the literature in this area of research,

comprised of 336 papers published from 2008 to the beginning of 2016. Based on the results

of our literature review, it is evident that Android security has received much attention in

recently published literature, due mainly to the popularity of Android as a platform of choice

for mobile devices, as well as increasing reports of its vulnerabilities and malicious apps. The

research has revealed patterns, trends, and gaps in the existing literature, and underlined

key challenges and opportunities that will shape the focus of future research efforts.

In particular, the survey showed the current research should advance from focusing primar-

ily on single app assessment to a more broad and deep analysis that considers combinations

of multiple apps and Android framework, and also from pure static or dynamic to hybrid

analysis techniques. We also identified a gap in the current research with respect to special

vulnerable features of the Android platform, such as native or dynamically loaded code.
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Finally, we encourage researchers to publicly share their developed tools, libraries, and other

artifacts to enable the community to compare and evaluate their techniques and build on

prior advancements. We believe the results of our review will help to advance the much

needed research in this area and hope the taxonomy itself will become useful in the devel-

opment and assessment of new research directions.
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Chapter 3

Research Problem

Permissions are the cornerstone for the Android security model, as they enable secure access

to sensitive resources as well as cross-application interactions. Google provides recommenda-

tions and best practices on the correct use of permission model, and relies on app developers

to properly apply them in their products. However, prior research [143, 160, 202] has shown

that many app developers fail to follow such principles in practice. Misuse of Android permis-

sions could disrupt the functional (e.g., crashing) and non-functional (e.g., security breach)

behavior of apps. Due to the lack of automated tools for detecting such issues, many of

those defects are shipped with the final product, which not only dissatisfies end users but

also poses security risks to their phones. In this context,

The goal of my research is to provide a set of automated tools for detection and preven-

tion of permission-induced issues in Android applications, namely (I) permission-induced

security attacks, and (II) permission-induced compatibility defects.

These two problems are among the gaps in the current state of the research, identified

through a comprehensive study and literature survey (§ Chapter 2).
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3.1 Permission-Induced Security Attacks

While access to phone resources can be controlled by the Android permission system, en-

forcing permissions is not sufficient to prevent security violations, as permissions may be

mismanaged, intentionally or unintentionally. Android’s enforcement of permissions is at

the level of individual apps, allowing multiple malicious apps to collude and combine their

permissions or to trick vulnerable apps to perform actions on their behalf that are beyond

their individual privileges. Despite significant progress in Android security research, prior

approaches are substantially intended to detect and mitigate vulnerabilities in a single app,

but fail to identify vulnerabilities that arise due to the interaction of multiple apps.

Hypothesis 1: A scalable and formal approach for analysis of Android apps can

be developed to identify permission-induced inter-app attacks.

Moreover, by ignoring the temporal aspects of an attack during the analysis and enforcement,

the state-of-the-art approaches aimed at protecting the users against permission-induced

attacks are prone to have low-coverage in detection and high-disruption in prevention of

permission-induced attacks. Finally, the proposed approaches are mostly realized through

modification of either the Android framework or the implementation logic of apps, resulting

in all sorts of undesirable side effects, such as app crashes and unexpected behaviors.

Hypothesis 2: By incorporating the notion of time in both detection and pre-

vention of permission-induced attacks, it is possible to provide an effective, yet

non-disruptive defense against permission-induced attacks, which is highly reliable

and compatible with the majority of Android apps available on the marketplace.
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3.2 Permission-Induced Compatibility Defects

An effective approach that can be used in this research to address the first group of problems,

i.e., security breaches, is to leverage dynamic permission mechanism, which is recently intro-

duced in Android and allows revocation of permissions after the installation of an app. This

countermeasure, i.e, revoking unsafe permissions, however, could itself result in other sorts

of defects, such as crash, if the target app suffers from dynamic-permission-compatibility

issues—any unexpected behavior occurs due to improper handling of dynamic permissions,

after migrating old apps to Android 6 (or above). To verify the compatibility of an app

under dynamic permission model, developers should test it under a wide range of permis-

sion combinations, since app’s behavior may change depending on the granted permissions.

At the state-of-the-art, in the absence of any automated tool support, a developer needs

to either manually determine the interaction of tests and app permissions, or exhaustively

re-execute tests for all possible permission combinations, thereby increasing the time and

resources required to test apps.

Hypothesis 3: An efficient approach for permission-aware testing of Android apps

can be developed that achieves comparable code coverage and fault detection ability

as the exhaustive testing.
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Chapter 4

Compositional Analysis of

Permission-Induced Security

Vulnerabilities in Android

As discussed in Section 2.6 of Chapter 2, moving beyond single app analysis and exploring

compositional vulnerabilities is among the gaps in the current state of the research. This

chapter attempts to propose an approach to address this research gap.

4.1 Introduction

Mobile app markets are creating a fundamental paradigm shift in the way software is de-

livered to the end users. The benefits of this software supply model are plenty, including

the ability to rapidly and effectively acquire, introduce, maintain, and enhance software

used by the consumers. By providing a medium for reaching a large consumer market at a

nominal cost, app markets have leveled the software development industry, allowing small
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entrepreneurs to compete with prominent software development companies. Application

frameworks are the key enablers of these markets. An application framework, such as the

one provided by Android, ensures apps developed by a wide variety of suppliers can inter-

operate and coexist together in a single system (e.g., a phone) as long as they conform to

the rules and constraints imposed by the framework.

This paradigm shift, however, has given rise to a new set of security challenges. In parallel

with the emergence of app markets, we are witnessing an increase in the security threats tar-

geted at mobile platforms. This is nowhere more evident than in the Android market (i.e.,

Google Play), where many cases of apps infected with malwares and spywares have been

reported [449]. Numerous culprits are at play here, and some are not even technical, such

as the general lack of an overseeing authority in the case of open markets and inconsequen-

tial implication for those caught provisioning applications with vulnerabilities or malicious

capabilities.

In this context, Android’s security has been a thriving subject of research in the past few

years. Leveraging program analysis techniques, these research efforts have investigated weak-

nesses from various perspectives, including detection of information leaks [143, 181, 252],

analysis of the least-privilege principle [198, 183], and enhancements to Android protection

mechanisms [207, 115, 167]. The majority of these approaches, however, are subject to a

common limitation: they are intended to detect and mitigate vulnerabilities in a single app,

but fail to identify vulnerabilities that arise due to the interaction of multiple apps. Vul-

nerabilities due to the interaction of multiple apps, such as collusion attacks and privilege

escalation chaining [198], cannot be detected by techniques that analyze a single app in iso-

lation. Thus, security analysis techniques in such domains need to become compositional in

nature.

This chapter contributes a novel approach, called Covert, for compositional analysis of

Android inter-app permission leakage vulnerabilities. Unlike all prior techniques that focus
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on assessing the security of an individual app in isolation, our approach has the potential to

greatly increase the scope of application analysis by inferring the security properties from

individual apps and checking them as a whole by means of formal analysis. This, in turn,

enables reasoning about the overall security posture of a system (e.g., a phone device) in

terms of the security properties inferred from the individual apps.

Covert combines static analysis with formal methods. At the heart of our approach is a

modular static analysis technique for Android apps, designed to enable incremental and au-

tomated checking of apps as they are installed, removed, or updated on an Android device.

Through static analysis of each app, our approach extracts essential information and cap-

tures them in an analyzable formal specification language. These formal specifications are

intentionally at the architectural level to ensure the technique remains scalable, yet represent

the true behavior of the implemented software, as they are automatically extracted from the

installation artifacts. The set of models extracted in this way are then checked as a whole

for vulnerabilities that occur due to the interaction of apps comprising a system. Covert

uses Alloy as a specification language [265], and the Alloy Analyzer as the analysis engine.

Alloy is a formal specification language based on first order logic, optimized for automated

analysis.

Since Covert’s analysis is compositional, it provides the analysts with information that is

significantly more useful than what is provided by prior techniques. Our experiences with

a prototype implementation of the approach and its evaluation against one of the most

prominent inter-app vulnerabilities, i.e.,privilege escalation, in the context of hundreds of

real-world Android apps collected from variety of repositories have been very positive. The

results, among other things, corroborate its ability to find vulnerabilities in bundles of some

of the most popular apps on the market.

This chapter makes the following contributions:

83



• Formal model of Android framework: We develop a formal specification representing

the behavior of Android apps that is relevant for the detection of inter-app permission

leakage vulnerabilities. We construct this formal specification as a reusable Alloy

module to which all extracted app models conform.

• Modular analysis: We show how to exploit the power of our formal abstractions by

building a modular model extractor that uses static analysis techniques to automati-

cally extract formal specifications (models) of apps form their installation artifacts.

• Implementation: We develop a prototype implementation on top of our formal frame-

work for compositional security analysis of Android apps.

• Experiments : We present results from experiments run on over 500 real-world apps,

corroborating Covert’s ability in effective compositional analysis of Android inter-app

permission leakage vulnerabilities in the order of minutes.

The remainder of this chapter is organized as follows. Section 4.2 motivates our research

through an illustrative example. Section 4.3 provides an overview of Covert. Sections 4.4

and 4.5 describe the details of model extraction and formal analysis, respectively. Section 4.6

presents the evaluation of the research.

4.2 Motivating Example

To motivate the research and illustrate our approach, we provide an example of a vulnera-

bility pattern having to do with Inter-Process Communication (IPC) among Android apps.

Android provides a flexible model of IPC using a type of application-level message known

as Intent (See Section 2.1). A typical app is comprised of multiple processes (e.g., Activity,

Service) that communicate using Intent messages. In addition, under certain circumstances,
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1 public class C a l l e r A c t i v i t y extends Act iv i ty {
2 public void onCreate ( Bundle savedIns tanceSta te ) {
3 . . .
4 S t r ing ac t i on ;
5 i f ( selectedMenu == 1)
6 ac t i on = ”PHONE CALL” ;
7 else
8 ac t i on = ”PHONE TEXT MSG” ;
9 btnOK = ( Button ) findViewById (R. id . btnOK) ;

10 btnOK . se tOnCl i ckL i s t ene r (new OnCl ickListener ( ) {
11 public void onCl ick ( View v ) {
12 Intent i n t e n t = new In tent ( ac t i on ) ;
13 i n t e n t . setClassName ( ”com . phonese rv i ce ” , ”com . phonese rv i c e . PhoneActivity ” ) ;
14 i n t e n t . putExtra ( ”PHONE NUM” , ”900−512−1677” ) ;
15 s t a r t A c t i v i t y ( i n t e n t ) ;
16 }
17 }
18 }

Figure 4.1: Malicious app: sends an Intent to call a premium-rate phone number.

an app’s processes could send Intent messages to another app’s processes to perform actions

(e.g., take picture, send text message, etc.). As an example, Figure 4.1 shows CallerActiv-

ity belonging to a malicious app sending an Intent message to PhoneActivity (Figure 4.2)

belonging to a vulnerable app for placing a call to a premium-rate telephone number.

The vulnerability occurs on line 30 of Figure 4.2, where PhoneActivity initiates a system

Intent of type ACTION CALL, resulting in a phone call. This is a reserved Android action

that requires special access permissions to the system’s telephony service. Although Phone-

Activity has that permission, it also needs to ensure that the sender of the original Intent

message has the required permission to use the telephony service. An example of such a

check is shown in hasPermission method of Figure 4.2, but in this particular example it

does not get called (line 15 is commented) to illustrate the vulnerability. If CallerActivity

does not have the permission to make phone calls (i.e., it is not specified in the corresponding

app’s manifest file), it is able to make PhoneActivity perform that action on its behalf. This

is a privilege escalation vulnerability and has been shown to be quite common in the apps

on the market [143]. It could be exploited by a malware running on the same phone to call

premium-rate numbers.
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1 public class MainActivity extends Act iv i ty {
2 public void onCreate ( Bundle savedIns tanceState ) {
3 . . .
4 In tent i n t e n t = new In tent ( this , PhoneActivity . class ) ;
5 s t a r t A c t i v i t y ( i n t e n t ) ;
6 }
7 }
8
9 public class PhoneActivity extends Act iv i ty {

10
11 public void onCreate ( Bundle savedIns tanceState ) {
12 . . .
13 Intent i n t e n t = ge t In t en t ( ) ;
14 St r ing number = i n t e n t . ge tSt r ingExtra ( ”PHONE NUM” ) ;
15 // i f ( hasPermiss ion ( ) )
16 makePhoneCall ( number ) ;
17 else
18 . . .
19 }
20
21 boolean hasPermiss ion ( ) {
22 i f ( checkCa l l ingPermis s i on ( ” android . permis s ion .CALL PHONE” )==PackageManager .

PERMISSION GRANTED)
23 return true ;
24 return fa l se ;
25 }
26
27 void makePhoneCall ( S t r ing number ) {
28 Intent c a l l I n t e n t = new In tent ( Intent .ACTION CALL) ;
29 c a l l I n t e n t . setData ( Uri . parse ( number ) ) ;
30 startActivity (callIntent); // privilege escalation vulnerability
31 }
32 }

Figure 4.2: Vulnerable app: receives an Intent and makes a phone call.

The above example points to one of the most prominent inter-app vulnerabilities, i.e.,privilege

escalation, that we take as a running example from a class of vulnerabilities that require com-

positional analysis to be able to detect effectively.

4.3 Approach Overview

This section overviews our approach to automatically identify such vulnerabilities that occur

due to the interaction of apps comprising a system, and determine whether it is safe for a

bundle of apps, requiring certain permissions and potentially interacting with each other, to

be installed together. As depicted in Figure 4.3, Covert consists of two parts: (1) Model

Extractor that uses static code analysis techniques to elicit formal specifications (models) of
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Figure 4.3: Overview of Covert.

the apps comprising a system as well as the phone configuration; and (2) Formal Analyzer

that is intended to use lightweight formal analysis techniques to verify certain properties

(e.g., known security vulnerability patterns) in the extracted specifications.

Covert relies on two types of models: 1) app model that Model Extractor generates auto-

matically for each Android app; 2) Android framework spec. that defines a set of rules to lay

the foundation of Android apps, how they behave (e.g., application, component, messages,

etc.), and how they interact with each other. The framework specification is constructed

once for a given platform (e.g., version of Android) as a reusable model to which all extracted

app models must conform. It can be considered as an abstract specification of how a given

platform behaves.

Model Extractor takes as input a set of Android application package archives (APK files1).

To generate the app models, it first examines the application manifest file to determine its

architectural information. Besides such high-level, architectural information collected from

the manifest file, Model Extractor utilizes static analysis techniques to extract other essential

information from the application bytecode. We have built a prototype implementation of

the model extractor component on top of Soot [495] for static analysis and Dexpler [93]

for reverse engineering Android APK files. As a result, our prototype implementation of

the approach only requires the availability of Android executable files, and not the original

1APKs are Java bytecode packages used to distribute and install Android applications.
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source code. Covert, thus, can be used not only by developers, but also by end-users as

well as third-party reviewers to assess the trustworthiness of their mobile devices.

The set of app models extracted in this way are then combined together with a formal

specification of the application framework, and checked as a whole for vulnerabilities that

occur due to the interaction of apps comprising a system. Finally, a report is returned to

the user describing the list of detected vulnerabilities. Upon reviewing the report, end-users

and third-party reviewers may choose to protect their devices in a variety of ways, e.g., by

disallowing the installation of certain combination of apps, or dynamically restricting certain

inter-app communications.

In this research work, we rely on lightweight formal analysis techniques [520] for modeling and

verification purposes. Such lightweight, yet formally-precise methods, bring fully automated

analysis techniques to partial models that represent the key aspects of a system [554]. The

analysis is accordingly conducted by exhaustive enumeration over a bounded scope of model

instances. These methods thus facilitate application of formal analyzers in development of

software-intensive systems. In our prototype tool implementation, we use Alloy [265], as

the specification language, and the Alloy Analyzer as the analysis engine. Alloy is a formal

specification language based on first order logic, optimized for automated analysis.

Our approach can be applied in an offline setting to determine if a particular configuration for

a system comprised of several apps harbors security vulnerabilities. Although not the focus

of this research, we believe the approach could also be applied at runtime to continuously

verify the security properties of an evolving system as new apps are installed, and old ones

are updated and removed.

In the following two sections, we describe the details of static analysis used to capture

essential application information and formal analysis for verification.
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4.4 Model Extractor

In order to automatically analyze vulnerabilities, we first need a model of each application

that would allow us to determine the potential inter-process communications and to also

reason about the security properties. In our approach, an app model is composed of the in-

formation extracted from two sources: manifest file and bytecode. This section first formally

defines the model we extract for each app, and then describes the extraction process.

Definition 1. A model for an Android application is a tuple A =< C, I, F, P, S >, where

• C is a set of components, where each component c ∈ C has a set of Intent messages

intents(c) ⊆ I, a set of Intent filters ifilters(c) ⊆ F , a set of permissions perms(c) ⊆ P

required to access the component c, and a set of sensitive (i.e., security relevant) paths

paths(c) ⊆ S. Each component is defined as one of the four Android pre-defined

component types: Activity, Service, Broadcast Receiver, and Content Provider.

• I is a set of event messages that can be used for both inter- and intra-app commu-

nications. Each Intent i ∈ I has a sender component sender(i) ∈ C, may have a

recipient component, and three sets of action(i), data(i) and categories(i), specifying

the general action to be performed in the recipient component, additional information

about the data to be processed by the action, and the kind of component that should

handle i, respectively. If the set component(i) is non-empty, the Intent i is called an

explicit Intent, as the recipient component is given explicitly.

• F is a set of Intent Filters, where each filter ifilter ∈ F is attached to a component

c ∈ C, and describes an interface (capability) of c in terms of Intents that it can handle.

Each ifilter has a non-empty set of actions(ifilter) and two sets of data(ifilter) and

categories(ifilter).

• P is a union of required and enforced permissions, P = PReq∪PEnf , where PReq specifies
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the permissions to which the application needs to have access to run properly and

PEnf specifies the permissions required to access components of the application under

consideration. We let the set of permissions actually used within a component c as

permUsed(c) ⊆ PReq.

• S is a finite set of vulnerable paths; each path belongs to a component c ∈ C, and is

represented as a tuple < Entry,Destination >, where Entry and Destination represent

either permission-required APIs or IPC calls.

Algorithm 4.1: Model Extractor
Input: app: Android App
Output: A: App’s Extracted Model

1 A←< {}, {}, {}, {}, {} >
2 ICFG← {}
3 summaries← {}
// I Entity Extraction - See Sec. 4.4.1

4 A.C ← extractManifestComponents(app)
5 A.P ← extractManifestPermissions(app)
6 A.F ← extractManifestFilters(app)
7 IFEntities ← {}
8 foreach method ∈ app do
9 IFEntities ← identifyIFEntity(method, summaries)

10 end
11 resolveIFEntityAttr(IFEntities)
12 A.I ← getIntents(IFEntities)
13 A.F ← getIntentF ilters(IFEntities) ∪A.F

// I ICFG Augmentation - cf. Sec. 4.4.2
14 G← constructICFG(app)
15 E ← extractImplicitCallBacks(app)
16 ICFG← augmentICFG(G,E)

// I Vul. Paths Identification - cf. Sec. 4.4.3
17 A.S ← findVulPaths(A.C, ICFG)

As shown in Algorithm 4.1, the Model Extractor performs three major steps to obtain a

model of Android app: Entity Extraction and Resolution (lines 4–13), Control Flow Aug-

mentation (lines 14–16), and Vulnerable Paths Identification(line 17). In the first step, the

entities are extracted from either the manifest file or the bytecode. Second, Covert builds an

inter-procedural control-flow graph augmented to account for implicit invocations. The gen-

erated inter-procedural control-flow graph is further annotated with permissions required
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to enact Android API calls and Intents. Finally, in the last step, a reachability analysis

is performed over the generated graph to determine the exposed components that contain

unguarded execution paths reaching permission-required functionalities.

Details of each step, elaborated by Algorithms 4.2 and 4.3, are discussed in the rest of this

section. To help explain the approach, Figure 4.4 illustrates the steps of applying our model

extraction to the motivating example (See Section 4.2).

4.4.1 Entity Extraction and Resolution

As part of the entity extraction process, the Model Extractor first identifies the entities com-

prising the app by parsing and examining the app’s manifest files. As shown in Algorithm4.1

(lines 4–6), it can readily obtain information such as the app’s components (C) and their

types, permissions that the app requires (PReq), and the enforced permissions (PermsEnf )

that the other apps must have in order to interact with the app components. It also identifies

some of the public interfaces exposed by each application, which are essentially entry points

defined in the manifest file through Intent Filters (F ) of components. However, not all entry

points can be extracted from the manifest file, as discussed further below. Figure 4.4a shows

the entities extracted at this stage of analysis corresponding to our running example from

Section 4.2. Although the figure depicts the entities extracted for both apps, the reader

should note that in practice Covert’s program analysis runs separately on each app, the

results of which are then transformed into separate formal specification modules, as detailed

in Section 4.5.

After collecting these entities through examining the application manifest file, the Model

Extractor identifies complementary information latent in the application bytecode. In par-

ticular, we also need to extract Intents and Intent Filters, which may be defined program-

matically in the bytecode, rather than in the manifest file. Intent Filters for components of
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Legend

Figure 4.4: Extracted models for the apps described in Figure 4.1 and 4.2 at different steps
of analysis.
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type Service and Activity must be declared in their manifest, but for Broadcast Receivers,

though, either in the manifest or at runtime.

For each method in an app’s component, the algorithm detects and extracts Intents and

Intent Filters, as shown in lines 8–10. Android API reference documentation [1] is used in

this step to associate specific entities to framework-provided APIs defining or manipulating

these entities. In the motivating example (Section 4.2), samples of entities are identifiable:

an Intent entity is created in line 12 of Figure 4.1; the framework API getIntent is

called in line 13 of Figure 4.2.

Intents and Intent Filters extracted this way need to be further analyzed to obtain additional

information about their attributes. To that end, Model Extractor iterates over each method

of the app and calls identifyIFEntity, which applies a summary-based iterative data-

flow analysis [53] to detect entities and their attributes. For each Intent message, for example,

it tracks the message’s sender, the target component, the type of action it has (if any), data

to be processed by the action, and categories of components that should handle the Intent.

Note, however, that the values of attributes are resolved through an additional analysis

described later in this section.

identifyIFEntity computes a method summary for each analyzed method. The method

summary describes information about entities that can be inferred from a method. Method

summaries make entity resolution inter-procedural, allowing an entire app to be analyzed.

Methods are analyzed in reverse topological order with respect to the app’s call graph so that

a given method’s summary is computed before any methods that call it are analyzed. Cycles

in the call graph (e.g., from recursion) are handled in the standard manner, by treating the

involved methods as one “super method.”

The details of identifyIFEntity are shown in Algorithm 4.2. identifyIFEntity

outputs the set IFEntities , which contains identified Intents and Intent Filters that are
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Algorithm 4.2: identifyIFEntity
Input: method, summaries
Output: IFEntities

1 IFEntities ← {}
2 gen[entry]← {entities passed as parameters to method}
3 workList← {all statements of method}
4 repeat
5 stmt← workList.head
6 foreach stmt′ ∈ pred(stmt) do
7 in[stmt]← in[stmt] ∪ out[stmt′]
8 end
9 switch stmt.type do

10 case Intent or Intent Filter Constructors do
11 entity ← corresponding entity of statement
12 gen[s]← {entity}
13 kill[s]← set of reassigned entities
14 IFEntities ← {entity} ∪ IFEntities

15 end
16 case Entity Attribute Assignment do
17 entity ← corresponding entity of statement;
18 updateAttr(entity)

19 end
20 case Intent Sender or Intent Filter Registration do
21 entity ← corresponding entity of statement
22 kill[s]← {entity}
23 end
24 case Non-Android API Method Call do
25 updateFromSummary(gen, kill, IFEntities, summaries)
26 end

27 end
28 prevOut← out[stmt]
29 out[stmt]← (in[stmt] \ kill[stmt) ∪ gen[stmt]
30 if prevOut 6= out[stmt] then
31 workList← workList ∪ succ(stmt)

32 until workList = ∅;
33 summarize(gen, kill, IFEntities, summaries)

defined and utilized in the Android app’s source code. There are four types of statements

that need to be considered to retrieve entity properties: (1) statements that create an entity,

(2) statements that set the attributes of an entity, (3) statements that consume an entity,

and (4) statements that invoke non-Android API methods.

The first type of statement, handled in lines 10–15 of Algorithm 4.2, correspond to the APIs

creating an entity (e.g., through the constructors). In this case, the newly-created entity is

added to the gen set in order to be used in the other cases; any entities that are reassigned
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are added to the kill set to prevent further propagation of such entities; and IFEntities is

updated with the new entity.

The second type of statement, handled by the case of lines 16–19, are the ones that set

the attributes of the entity under consideration (i.e., the action, category, data, and target

attributes). For example, Intent.setClassName() sets the target component for the

given Intent.

The third type of statement, handled in lines 20–23 of Algorithm 4.2, correspond to the APIs

that consume entities. Entities are consumed in different ways. An Intent, for example, is

consumed when it is sent to a component: startActivity(Intent) launches a new

Activity by sending an Intent that carries the Activity’s description. An Intent Filter,

however, is consumed when it is used in registering a Broadcast Receiver. Since the attributes

of an entity cannot be set after consumption, the consumed entity is added to the kill set.

Finally, for method calls that are not part of the Android API, identifyIFEntity utilizes

the summary of an invoked method to determine the entities and their attributes that are

computed in the method (lines 24–26 of Algorithm 4.2). In particular, identifyIFEntity

utilizes the summary of the method invoked in the program statement stmt under analy-

sis to update the gen, kill, and IFEntities sets. For example, in line 16 of Figure 4.2,

the non-Android API method makePhoneCall is invoked, where a new Intent is cre-

ated with action and data attributes. identifyIFEntity utilizes the method summary

for makePhoneCall to determine that the invocation of that method results in the cre-

ation of a new Intent with action ACTION CALL and a data attribute. In this case,

updateFromSummary adds this new Intent to the gen and IFEntities sets so that the

new Intent is recorded and will be propagated by the data-flow analysis. The kill set is

not modified in this case since the new Intent is not assigned to an already-defined Intent

reference.
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For aliasing in the case of entities and their attributes, we utilize class hierarchy analysis [53],

which produces accurate results for our purposes (as shown in Section 4.6). However, our

algorithm can subsitute the class hierarchy analysis for a more precise analysis (e.g., a points-

to analysis), possibly trading off efficiency for precision.

The overall algorithm (line 11 of Algorithm 4.1) then calls resolveEntityAttr to resolve

the values associated with the retrieved entity attributes (e.g., the action, categories, and

data types of Intents). To do this, it uses string values obtained from string constant propa-

gation [53], which provides a precise solution since, by convention, Android apps use constant

strings to define these values. In cases where a string variable’s value cannot be determined

statically, we take a conservative approach and assume the value to be any string. Despite

this conservative approach, our evaluation results (see Section 4.6) show our technique to be

significantly precise, while remaining scalable.

It is also possible that a property is disambiguated to more than one value. For instance,

consider our running example, the Intent action could be assigned to two different values

at runtime, namely “PHONE CALL” and “PHONE TEXT MSG” defined on lines 6 and 8 of

Figure 4.1, respectively. We take a conservative approach to handle such an issue and

generate a separate entity for each of these values, as they contribute different exposure

surfaces or event messages in the case of Intent Filters and Intents, respectively.

Figure 4.4b shows the extracted model corresponding to our running example (recall Sec-

tion 4.2) at this stage of analysis. In this particular example, Intents, as well as their

properties (not depicted), are the only additional entities extracted from the bytecode. For

clarity of presentation, Figure 4.4b only depicts the Intents relevant to the vulnerability in

our example.
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4.4.2 Control Flow Augmentation

Subsequent to extracting entities, Model Extractor needs to determine control flow between

methods in order to detect vulnerabilities for privilege escalation. To that end, Model

Extractor constructs an inter-procedural control-flow graph (ICFG) of the entire application.

An ICFG is a collection of control-flow graphs (CFGs) connected to each other at call sites.

However, due to the event-driven structure of the Android platform, the traditional ICFG

generation methods do not connect CFGs at call sites corresponding to implicit invocations.

To generate an ICFG that takes implicit invocation into account, we need to include call-

backs of an app. These are Android-API methods that no other part of the application

explicitly invokes.

To connect the CFGs over implicit calls, we traverse the nodes of each CFG in a depth-first

manner, and connect all implicit invocation nodes with the corresponding call-back nodes.

For example, in lines 11–15 of Figure 4.1, an anonymous inner-class is defined within the

onCreate method to handle the Click events triggered by the btnOk button. Thus, an

edge is added to the app’s ICFG from the setOnClickListener invocation to the entry

point of onClick.

Figure 4.4c shows some parts of ICFGs extracted for each of the apps from Section 4.2. Here,

the dashed line between nodes M© and N© indicates an implicit invocation.

4.4.3 Vulnerable Paths Identification

The last step is to determine if there is a path from each component’s IPC entry point to

an invocation of a permission-required functionality that is either inappropriately-guarded

or unguarded, which may lead to IPC vulnerabilities. For this purpose, Covert leverages

the reachability analysis described in Algorithm 4.3.
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Here, the entry nodes are IPC calls, which represent methods in a component that handle

Intents generated by other components or the Android framework itself. Specifically, all

app components, including Activities and Services, are required to follow pre-specified life-

cycles [2] managed by the framework in an event-driven manner. Each component, thus,

registers event handlers that serve as the IPC entry points through which the framework

starts or activates the component once handled events occur. An Activity, for example, gen-

erates a StartActivity event that results in another Activity’s onCreate() method

to be called. Moreover, for each entry node, the corresponding component definition in the

manifest file is also examined to ensure the component is public (line 5 of Algorithm 4.3).

Recall from Section 2.1, a component is public, if its specification sets the EXPORTED flag

or declares Intent filter(s).

The destination nodes are defined as permission-required API calls or Intent messages that

are not properly checked. As shown in lines 7–11, to determine destination nodes, for each

node in ICFG, tagCheckedPerm marks it with two tags: (1) Reqprm tag denotes that a

statement is called at the node under consideration that requires a particular permission

of “prm”; and (2) Checkprm tag shows the node is guarded by permission “prm” check-

ing. Thus, a vulnerable destination node is a node tagged with Reqprm but not with the

corresponding Checkprm tag.

To identify Reqprm tags, tagCheckedPerm uses API permission maps available in the

literature, and in particular the PScout permission map [69], one of the most recently updated

and comprehensive permission maps available for the Android framework. PScout specifies

mappings between Android API calls/Intents and the permissions required to perform those

calls. The nodes tagged as permission-required are distinguishable in Figure 4.4d by ! sign.

For example, node F© is a tagged node as it uses Telephony API that requires CALL PHONE

permission.

Identifying and applying Checkprm is trickier, since permission enforcement for a compo-
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Algorithm 4.3: findVulPaths
Input: C: set of Components, ICFG
Output: Vulnerable Paths

1 Entry ← {}
2 Dest← {}
3 foreach c ∈ C do
4 if isPublic(c) then
5 Entry ← Entry ∪ getEntryPoints(c)

6 end
7 foreach n ∈ ICFG do
8 tagCheckedPerm(n)
9 if n.hasTag(Reqprm) ∧ !n.hasTag(Checkprm) then

10 Dest← Dest ∪ n

11 end
12 return pathF inder(Entry,Dest, ICFG)

nent could be defined at two levels. While the coarse-grained permissions specified in the

manifest file are enforced over a whole component, a developer can also add permission

checks throughout the code controlling access to particular aspects of a component. The

former can be readily checked using the information extracted from the manifest file (recall

Section 4.4.1), but the latter requires further program analysis.

To determine permission-check API invocations that act as guards in code, tagCheckedPerm

leverages a context-sensitive analysis (i.e., it considers the calling context of a method call)

that handles the two most common cases. The first case occurs when a permission-check API

is called directly. For the second case, tagCheckedPerm determines if a statement invokes

a method that results in a call to a permission-check API (e.g., the commented permission

check on line 15 of Figure 4.2). To handle aliasing in this case, tagCheckedPerm utilizes

class hierarchy analysis, which has proven sufficiently precise for our purposes.

Once entry and destination nodes are identified, findVulPaths determines the paths between

them (line 12 of Algorithm 4.3). To achieve high precision in determining paths between

entry and destination nodes, our approach is context-sensitive. In the interest of scalability,

Covert’s analysis, however, is not path-sensitive (i.e., the analysis does not distinguish in-

formation obtained from different paths). The results (see Section 4.6) indicate no significant
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imprecision caused by path-insensitivity in the context of Android vulnerability analysis.

Components that contain an entry → destination path, returned by findVulPaths, are vul-

nerable to various inter-app attacks. For instance, in Figure 4.4d the red-colored path of

< A©, B©, D©, F©> is vulnerable, as there is a path from an entry node A© to an invocation of a

permission-required API (i.e., Telephony API). As shown in Figure 4.1, a malicious app can

exploit this vulnerability and call the Telephony API without having the proper privilege.

To achieve scalable, yet precise alias analysis for identifying vulnerable paths, we perform

an on-demand alias analysis [492]. More specifically, instead of applying the analysis to

all variables, only the variables utilized at statements invoking source or sink methods are

considered for analysis during vulnerable-path identification.

The Model Extractor produces an extended-manifest file for each Android application. This

extended-manifest, documented in an XML format, encompasses all information extracted

from both the app bytecode as well as the app manifest file. Once an app model is ex-

tracted, it can then be reused for analysis within several bundles of apps. Given a set of

extended-manifest files corresponding to a bundle of apps, Covert generates a package of

Alloy modules, which in turn enables their compositional analysis. The next section details

the structure of generated Alloy models.

4.5 Formal Analyzer

In this section we show that our ideas for compositional, formal, and automated analysis of

Android apps can be reduced to practice. Our approach automatically transforms the models

derived through static analysis into an analyzable specification language, and verifies them

against certain properties using the automated analyzers associated with such languages. As

an enabling technology, we use the Alloy language [265], to represent a model of Android
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framework, application models, and to-be-analyzed properties.

There are four main reasons that motivate our choice of Alloy for this work. First, its com-

prehensible, object-oriented-like syntax, backed with logical and relational operators, makes

Alloy an appropriate language for declarative specification of both applications and proper-

ties to be checked (i.e., assertions). Second, its ability to automatically analyze specifications

with no custom programming is useful as an automation mechanism.

Third, and more importantly, its effective module system allows us to split the overall, com-

plicated system model among several tractable modules. A simple module system is not

only convenient, but is an important part of our approach, as it enables effective composi-

tional analysis of, among other things, impenetrable scenarios, where for example a malicious

app can leverage a chain of vulnerable components to leak sensitive data or to perform ac-

tions that are beyond its individual privileges. Android apps and properties to be checked

are strictly separated and modularized in different specifications, which further facilitates

reusability of such specifications, and this is clearly where much of the power of our work

comes from. Specifically, Android framework specification, application specifications, and

specifications of vulnerabilities to be analyzed are all reusable, and this research shows the

promise of paying a one-time cost to formally specify them to enable compositional analysis

of Android vulnerabilities.

Lastly, the extraction approach we take in COVERT to generate bundle specifications is

incremental. More specifically, the Model Extractor produces a separate extraction-output

file for each Android application, independent of other apps in the bundle. The set of

extracted app models are then combined together to check for inter-app vulnerabilities.

Hence, once an app model is extracted, it can then be reused for analysis within several

bundles of apps. That means to add, update or remove an app from the bundle, we only

need to add, update, or remove information for that particular app.
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To appreciate Covert’s approach, consider that an alternative approach is to detect the

inter-app vulnerabilities by performing the program analysis on a whole set of apps simul-

taneously. But such an approach suffers from two shortcomings. First, it would face serious

scalability issues, as a typical mobile device may have tens or hundreds of apps installed

on it, and the analysis space grows exponentially with the number of apps to-be-analyzed.

Second, it would require such a complex analysis to be performed every time any of the apps

are updated, added, and removed. COVERT does not suffer from the same shortcomings

because it analyzes the apps in isolation, and relies on the declarative power of formal spec-

ification languages (namely Alloy) to separate the various models needed for the analysis,

thereby facilitating reuse of the models as well as the results.

In the rest of this section, we first provide a brief overview of Alloy, and then describe how

we use it in modeling and thereby analysis of Android applications.

4.5.1 Alloy Overview

Alloy is a formal modeling language with a comprehensible syntax that stems from notations

ubiquitous in object orientation, and semantics based on the first-order relational logic [265].

The Alloy Analyzer is a constraint solver that supports automatic analysis of models written

in Alloy. The analysis process is based on a translation of Alloy specifications into a Boolean

formula in conjunctive normal form (CNF), which is then analyzed using off-the-shelf SAT

solvers.

The analyzer provides two types of analysis: Simulation, in which the analyzer demon-

strates consistency of model specifications by generating a satisfying model instance; and

Model Checking, which involves finding a counterexample—a model instance that violates a

particular assertion. We use the former to compute model instances, represented as satisfying

solutions to the combination of models captured from app implementations. This shows the
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validity of such extracted models, confirming that the captured models are self-consistent,

mutually compatible and consistent with the Android specifications modeled in a separate

module. The latter is used to verify security properties of interest within the models.

The Alloy Analyzer is a bounded checker, so a certain scope of instances needs to be specified.

The scope, for example, states the number of app components. The analysis is thus performed

through exhaustive search for satisfying instances within the specified scopes. As a result,

the analyzer is sound and complete within such scopes. To take advantage of partial models,

the latest version of the analyzer uses KodKod [491] as its constraint solver so that it can

support incremental analysis of models as they are constructed. The generated instances are

then visualized in different formats such as graph, tree representation or XML.

The essential constructs of the Alloy modeling language include: Signatures, Facts, Predi-

cates, Functions and Assertions. Signatures provide the vocabulary of a model by defining

the basic types of elements and the relationships between them. Facts are formulas that take

no arguments, and define constraints that any instance of a model must satisfy. Predicates

are parameterized and reusable constraints that are always evaluated to be either true or

false. Functions are parameterized expressions. A function similar to a predicate can be in-

voked by instantiating its parameter, but what it returns is either a true/false or a relational

value instead. An assertion is a formula required to be proved. It can be used to check a

certain property of a model.

4.5.2 Formal Model of Android Framework

To carry out the verification analysis, we begin by defining a common Alloy module, an-

droidDeclaration, that models the Android application fundamentals (e.g., application, com-

ponent, intent, etc.) and the constraints that every application must obey. Technically

speaking, this module can be considered as a meta-model for Android applications. It is

103



manually constructed once and does not change, unless there are substantial changes in the

way Android operates.

Figure 4.5 partially outlines androidDeclaration module, representing Android application

fundamentals in Alloy. The essential element types (See Definition 1) are defined as top-level

Alloy signatures. As mentioned earlier, a signature introduces a basic element type and a

set of its relations, called fields, accompanied by the type of each field.

1 module andro idDec la ra t ion
2
3 abs t r a c t s i g App l i ca t ion {
4 use sPermi s s i ons : s e t Permiss ion ,
5 appPermiss ions : s e t Permiss ion
6 }
7 abs t r a c t s i g Component{
8 app : one Appl icat ion ,
9 i n t e n t F i l t e r s : s e t I n t e n t F i l t e r ,

10 pe rmi s s i ons : s e t Permiss ion ,
11 paths : s e t Path
12 }
13 abs t r a c t s i g I n t e n t F i l t e r {
14 a c t i o n s : some Action ,
15 data : s e t Data ,
16 c a t e g o r i e s : s e t Category ,
17 }
18 f a c t I n t e n t F i l t e r C o n s t r a i n t s {
19 a l l i : I n t e n t F i l t e r | one i . ˜ i n t e n t F i l t e r s
20 no i : I n t e n t F i l t e r | i . ˜ i n t e n t F i l t e r s in Provider
21 }
22 abs t r a c t s i g Intent {
23 sender : one Component ,
24 component : l one Component ,
25 ac t i on : lone Action ,
26 c a t e g o r i e s : s e t Category ,
27 data : s e t Data ,
28 }
29 abs t r a c t s i g Path{
30 entry : one Resource ,
31 d e s t i n a t i o n : one Resource
32 }
33 abs t r a c t s i g Permiss ion {}

Figure 4.5: Alloy specifications of essential Android application elements.

There are six top-level signatures to model the basic element types: Application, Component,

IntentFilter, Intent, Path, and Permission. Note that these signatures are defined

as abstract, meaning that they cannot have an instance object without explicitly extending

them. Containment relations (e.g., between Applications and Permissions) are de-

fined as Alloy relations.
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According to lines 4–5, the Application signature contains two fields of usesPermissions

and appPermissions that identify two sets of permissions, representing PReq and PEnf ,

respectively (See Definition 1).

The app field within the Component signature (line 8) identifies the parent application that

a component belongs to. The keyword one states that every Component object is mapped

to exactly one Application object. Signature declarations of four core component types,

namely Activity, Service, Receiver and Provider, extend the Component signature. In the

interest of space, their specifications are omitted from Figure 4.5. A component may have

any number of filters, each one describing a different interface of the component. Such filters

are captured by the intentFilters field (line 9). The permissions field represents a

set of permissions required to access a component. The paths field then indicates vulnerable

paths within a component.

The IntentFilter signature contains three fields of actions, data and categories.

The multiplicity keyword some in Alloy denotes that the declared actions relation con-

tains at least one element, and the keyword set tells Alloy that data and categories map

each IntentFilter object to zero or more Data and Category objects, respectively.

Properties of the IntentFilter signature are declared as a fact paragraph (lines 18–21). The

∼ operator denotes the relational inverse operation, forming a new relation by reversing the

order of atoms in each tuple of the relation. The statement of line 18, thus, states that each

IntentFilter belongs to exactly one Component. Out of four core component types,

three of them can define IntentFilters. To exclude Content Providers from having

IntentFilters, we add a separate fact constraint specification, represented in line 20.

The Intent signature contains five fields of sender, component, action, data and

categories. The first one denotes the component sending the intent. The component

field identifies the recipient component. The keyword lone indicates that this element is

105



optional, and an Intent may have one or no declared recipient component. Recall from

Section 4.4, if it maps to a non-empty set, the Intent object is called an explicit Intent.

The Android intent-resolver delivers explicit Intents to the designated component, without

considering other information of the Intent object.

To determine to which component an implicit Intent—one that does not specify any recipient

component—should be delivered, three elements of action, data, and categories are

consulted. The action filed names the general action to be performed in the recipient

component. The data field indicates additional information about the data to be processed

by the action, and each Data instance consists of both the URI of the data to be acted on

and its MIME media type. Finally, the categories field indicates the kind of component

that should handle the Intent object. Each of these elements corresponds to a test, in which

the Intent’s element is matched against that of the IntentFilter. An IntentFilter may have

more actions, data, and categories than the Intent, but it cannot contain less.

We define the entry and destination fields of the Path signature based on canonical permission-

required resources identified by Holavanalli et al. for Android applications [251]. Examples

of entry and destination resources are NETWORK, IMEI, and SDCARD. Among others, the

permission NETWORK, for example, allows the app to access the Internet, through either

WIFI or cellular network. In addition to permission domains, the IPC mechanism aug-

ments both entry and destination sets, which allows apps to provide services to one another.

Figure 4.6 shows a path identified in VicApp with an IPC as publicly accessible entry point.

Finally, the last top-level signature is Permission. Covert captures both the system-

defined permissions—declared within the system’s Android Manifest—and application-

defined permissions—declared within the application manifest file, and documents them

as a separate Alloy model shared between Alloy modules of all apps.
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Figure 4.6: A vulnerability identified by Covert for the apps described in figures 4.1 and
4.2. The red lines and nodes indicate the vulnerable path.

4.5.3 Formal Model of Apps

Three pieces of Alloy specifications are conjoined in the process of modeling various parts of

Android apps extracted from their APK files. First, a specification module, called appDec-

laration, that documents basic element types, such as Action, Category and Permission,

shared between Alloy models of all apps. Second, an app model, comprising Components

that constitute the app, IntentFilters of each Component, as well as required and enforced

Permissions of the app. This model is represented in a separate Alloy module for each app.

Third, an inter-process communication (IPC ) module that models all Intent messages cre-

ated within the apps under consideration. All these models rely on the Android framework

specification module, presented in the previous Section.

We use snippets of the running example (See Section 4.2) to explain each piece of our formal

model. Let us begin with the appDeclaration module.

Consider the portion of the appDeclaration module, shown in Figure 4.7. At the top, the
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module appDeclarat ion

open andro idDec la ra t i on

one s i g MAIN extends Action {}
one s i g CALL PHONE extends Permiss ion {}
. . .

Figure 4.7: Part of the declaration of basic element types automatically extracted from
Android apps.

1 module MalApp
2
3 open appDec larat ion
4
5 one s i g MalApp extends Appl i ca t ion {}{
6 no use sPermi s s i ons
7 no appPermiss ions
8 }
9

10 one s i g C a l l e r A c t i v i t y extends Act i v i ty {}{
11 app in MalApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 1
13 no permi s s i ons
14 no paths
15 }
16
17 one s i g I n t e n t F i l t e r 1 extends I n t e n t F i l t e r {}{
18 a c t i o n s = MAIN
19 c a t e g o r i e s = LAUNCHER
20 no data
21 }

Figure 4.8: Part of the generated specification for Malicious app shown in Figure 4.1.

specification imports the Alloy module for the Android framework. It then declares MAIN

to be a singleton subset of Action. Typically, one activity in an app is specified as the

“main” activity, declaring it as the main entry point to the app, and presented to the user

when launching the app. In a signature declaration, the keyword one specifies the declared

signature to contain exactly one atom, thereby restricting the signature to be unique. This

naming scheme allows us to reuse the term MAIN when we want to declare the main ac-

tivity of each application. The next statement represents a permission example declared

in a similar way. For the sake of clarity, we use the permissions’ shorthand in our Al-

loy model. For example, here we use CALL PHONE to model the particular permission of

android.permission.CALL PHONE.
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Figure 4.8 partially delineates the generated specification for the malicious app shown in

Figure 4.1. It starts by importing the appDeclaration module (line 3), and then the MalApp

is declared as an extension of the Application signature. This app does not declare any

permission neither as required (usesPermissions) nor as enforced (appPermissions).

The MalApp has a Component of type Activity, named CallerActivity, which declares

an IntentFilter with MAIN and LAUNCHER settings, marking it as the main activity of the

app.

The code snippet of Figure 4.9 represents the generated specification for the Victim app

shown in Figure 4.2. The VicApp has access to the CALL PHONE permission (line 6), but

declares no permission requirement for other apps to access its own Components (line 7).

This app specification then declares the PhoneActivity component, exposing a vulnerable

path (path1) from its entry point to a permission required resource (PHONECALL), as

represented in Figure 4.6.

1 module VicApp
2
3 open appDec larat ion
4
5 one s i g VicApp extends Appl i ca t ion {}{
6 use sPermi s s i ons = CALL PHONE
7 no appPermiss ions
8 }
9

10 one s i g PhoneActivity extends Act i v i ty {}{
11 app in VicApp
12 i n t e n t F i l t e r = I n t e n t F i l t e r 2
13 no permi s s i ons
14 paths = path1
15 }
16
17 one s i g path1 extends Path{}{
18 entry = IPC
19 d e s t i n a t i o n = PHONECALL
20 }

Figure 4.9: Part of the generated specification for Victim app shown in Figure 4.2.

Application interactions in Android occur through Intent messages. We record the inter-

actions among app Components in a separate Alloy module, called IPC. The code snippet

shown in Figure 4.10 represents part of the generated specification for the IPC module. After
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importing modules of the involved apps (lines 3–4), the specification in lines 6–12 models

the Intent of Figure 4.1, where the CallerActivity Component sends an explicit Intent

(i.e., intent1 as shown in Figure 4.6) to the PhoneActivity Component, with specified

action to be performed and with extra data.

1 module IPC
2
3 open VicApp
4 open MalApp
5
6 one s i g i n t en t1 extends Intent {}{
7 sender = C a l l e r A c t i v i t y
8 component = PhoneActivity
9 ac t i on = PHONE CALL

10 no c a t e g o r i e s
11 extraData = Yes
12 }
13 . . .

Figure 4.10: Part of the generated inter-component communication module.

4.5.4 Checking Android Application Models

The previous sections present a formal model of Android framework (Section 4.5.2), devel-

oped as a reusable Alloy module to which extracted app models conform (Section 4.5.3).

Here, we describe the essence of this work: how one can use the power of proposed formal

abstractions to perform the compositional analysis of Android apps.

To that end, we develop assertions that model a set of security properties required to be

checked. These assertions express properties that are expected to hold in the extracted speci-

fications. Similar to Android specification, vulnerability assertions are manually constructed

once and do not change, unless there are substantial changes in Android that resolve or

modify the known types of inter-app vulnerabilities.

Considering the privilege escalation, Davi et al. [160] state it as follows: “An application

with less permissions (a non-privileged caller) is not restricted to access components of a

more privileged application (a privileged callee).” Figure 4.11 formally expresses the privilege
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escalation assertion in Alloy. In short, the assertion states that the dst component (victim)

has access to a permission (usesPermission) that is missing in the src component

(malicious), and that permission is not being enforced in the source code of the victim

component, nor by the application embodying the victim component. Recall from Section 4.4

that there are two ways of checking permissions in Android.

1 a s s e r t p r i v i l e g e E s c a l a t i o n {
2 no d i s j src , dst : Component , i : In tent |
3 ( s r c in i . sender ) &&
4 ( dst in s r c . ˆ t ran s i t i v e IPC ) &&
5 ( some p : dst . app . use sPermi s s i ons |
6 not (p in s r c . app . use sPermi s s i ons ) &&
7 not ( ( p in dst . pe rmi s s i on s ) | | ( p in dst . app . appPermiss ions ) ) )
8 }

Figure 4.11: privilegeEscalation specification in Alloy.

1 fun t ran s i t i v e IPC : Component −> Component {
2 { src , dst : Component | some i : Intent , d : Path |
3 ( s r c in i . sender ) &&
4 ( dst in i n t en tRe so l v e r [ i ] ) && some dst . paths
5 }
6 }
7
8 fun in t en tRe so l v e r ( i : In t ent ) : s e t Component{
9 {c : Component | some i . component

10 i m p l i e s {c = i . component}
11 e l s e { some f : I n t e n t F i l t e r |
12 f . ˜ i n t e n t F i l t e r in c
13 && i . a c t i on in f . a c t i o n s
14 && i . c a t e g o r i e s in f . c a t e g o r i e s
15 && ( i . data . u r i = f . data . u r i
16 && i . data . type = f . data . type ) }
17 }
18 }

Figure 4.12: IntentResolver and transitiveIPC specifications in Alloy.

To address a situation, in which more than two components are involved in the privi-

lege escalation, the assertion relies on the specification of the transitiveIPC function,

shown in Figure 4.12. The operator “ˆ” represents transitive closure. The expression

src.ˆtransitiveIPC thus represents the set of all components reachable from src fol-

lowing one or more IPCs. The transitiveIPC itself relies on the specification of an

intentResolver function. The Component, Intent and IntentFilter signatures are speci-

fied such that they have all the necessary attributes required for Intent resolution. We thus
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describe intent-resolver as a function augmenting the aforementioned androidDeclaration

module. This function takes as input an Intent and returns a set of Components that may

handle the Intent under consideration. Given the Intent is explicit, it should be delivered

to the recipient identified by the component field of the Intent (line 10). Otherwise, the

resolver checks Components’ IntentFilters to find those whose elements are matched against

the given Intent. Specifically, an implicit Intent must pass a matching test with respect to

each of the action, data, and categories elements on the IntentFilters bound to a component

(as stated in lines 13–16). Seeing that a component can define multiple IntentFilters, an

Intent that does not match one of a component’s IntentFilters may match another (lines

11–12).

If an assertion does not hold, the analyzer reports it as a counterexample, along with the

information useful in finding the root cause of the violation. Counterexample is a particular

model instance that makes the assertion false. Given our running example, the analyzer

automatically generates the following counterexample:

. . . // omitted d e t a i l s o f model i n s t a n c e s
p r i v i l e g e E s c a l a t i o n s r c ={MalApp/ C a l l e r A c t i v i t y }
p r i v i l e g e E s c a l a t i o n d s t={VicApp/ PhoneActivity }
p r i v i l e g e E s c a l a t i o n i ={ i n t en t1 }
p r i v i l e g e E s c a l a t i o n p={appDeclarat ion /CALL PHONE}

It states that the VicApp/PhoneActivity component has access to the CALL PHONE

permission, and is resolved by the formal analyzer as the receiver of intent1 (as shown by a

dashed line in Figure 4.6), which is being sent by the MalApp/CallerActivity compo-

nent lacking access to the CALL PHONE permission. The generated counterexample confirms

that the composition of Victim and Malicious apps could result in privilege escalation.
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4.6 Empirical Evaluation

To assess the effectiveness of our approach in revealing Android inter-app vulnerabilities, we

have conducted an evaluation that addresses the following research questions:

RQ1. What is the importance of this research? To what extent are Android apps overpriv-

ileged and unsafe due to usage of permission-required APIs?

RQ2. How well does Covert perform? Does it enable compositional analysis of real-world

Android apps? How much manual effort is involved in the analysis process?

RQ3. What is the overall accuracy of Covert in detecting inter-app vulnerabilities?

RQ4. How does compositional analysis compare to single app analysis?

RQ5. What is the performance of our prototype tool implemented atop SAT solving tech-

nologies and static analyzers?

Our experimental subjects are a set of Android apps drawn from four different app reposi-

tories. The first sample set consists of a snapshot of the top 100 popular free apps, available

on the Google Play [15] in late November 2013. Our second set of test subjects is represen-

tative of open source apps, and includes 300 apps collected from the F-Droid open source

repository [13]. To cover the apps available in third-party repositories, we also included 50

apps from Bazaar [6], a local app store, as the third set. The fourth one is a collection of 50

malicious apps identified by the MalGenome project [586].

Figure 4.13 illustrates the distribution of apps from Google Play repository that were used

in our experiments, showing that they are sufficiently diverse, from different categories, and

representative of what one can find installed on a typical device. For brevity, we do not show

the distribution of apps from other repositories that have different set of categories, but the

apps selected from these other repositories were similarly diverse.
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Figure 4.13: Distribution of apps selected from the Google Play repository.

To answer RQ1, we examine all of the aforementioned subject apps, to obtain some evidence

as to the likelihood of encountering privilege escalation vulnerability in the apps that are

available in such markets (§ 4.6.1).

To address RQ2, we partition the set of apps under study into 10 bundles, each containing

50 apps from three repositories, except the last bundle whose apps are only from the open

source repository to enable manual analysis. These bundles simulate collections of apps

installed on end-user devices, and we use them to conduct 10 independent experiments. We

then report and analyze the experimental results (§ 4.6.2).

To evaluate the accuracy of warnings reported by Covert (RQ3), we randomly select 50

apps from the F-Droid open source apps and run our prototype tool on them. We then

manually analyze each warning to detect the rate of tool error, i.e., false positive (§ 4.6.3).

To address RQ4 (single vs. compositional app analysis), we adopt a set of practical security

rules, called Kirin rules, for Android apps from Enck et al. [183], and formally model each
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of these rules in such a way that enables their applications for both “compositional” analysis

as well as analysis of each “single” app in isolation. We then analyze all the apps in the

Malgenome repository against these rules, and compare the results of single and composi-

tional app analysis (§ 4.6.4).

To address RQ5 (performance benchmarks), we measure the computation time required for

both model extraction and formal analysis activities (§ 4.6.5).

We use the Covert apparatus we developed based on the approach for carrying out the

experiments. Covert is implemented as a publicly available tool2. We have built a pro-

totype implementation of the model extractor component on top of the Soot [495] static

analysis tools. Soot is developed for analyzing Java bytecode [495]. We thus first use the

Dexpler transformer [93] to translate Android’s dalvik bytecode into the Soot’s intermediate

representation language, called Jimple. As a result, our prototype implementation of the ap-

proach only requires the availability of Android executable files, and not the original source

code. Covert, thus, can be used not only by developers, but also by end-users as well as

third-party reviewers. The translation of captured app models into the Alloy language is

implemented using the FreeMarker template engine [14].

4.6.1 Significance of Compositional Analysis

Table 4.1 outlines the amount of permissions requested by apps in each repository, along

with the fraction of which is actually used through API calls, as well as enforced—depicted

as checked in Table 4.1—by the apps. Based on the permission map provided by Au et

al. [69], we analyzed the fraction of permissions actually needed for API calls performed by

the apps under consideration (See Section 4.4).The result shows that overall 32% of acquired

permissions are necessary for API calls. This confirms previous studies that showed many

2Research artifacts and experimental data are available at https://seal.ics.uci.edu/projects/covert
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Table 4.1: Summary of statistical information about Permissions in subject systems

Permissions
Repository used checked

1472
GPlay 364 156

(%24.7.1) (%10.6)
1031

F-Droid 505 77
(%49.0) (%7.5)

499
MalGenome 100 5

(%20.0) (%1.0)
305

Bazaar 105 16
(%34.4) (%5.2)

Android apps on the market are over-privileged [198, 69]. Applications having extraneous

permissions violate the least privilege principle. We also analyzed what fraction of the ob-

tained permissions are checked either within the app manifest file or throughout the code.

The difference between the set of used and checked permissions are important for privilege

escalation. The extraneous permissions that result in overprivilege are not susceptible to

privilege escalation, unless they are actually used by the permission holders. On average,

each app has about 2 unchecked but used permissions that could lead to exploitable vulner-

abilities. Indeed, such an unsafe use of permission-required APIs may lead to an exploitable

vulnerability provided that there is a path from the exported interface of the app component

to the API use. This analysis is the subject of next section.

4.6.2 Automated Analysis of Applications

The aim of RQ2 is to evaluate the automation level when using COVERT for compositional

analysis of real-world Android apps, and how much manual effort is involved in the analy-

sis process. To that end, we evaluate COVERT on bundles of real-world Android apps to

determine its ability to detect inter-app vulnerabilities for privilege escalation. Table 4.2

summarizes the statistical results obtained through running Covert on Android app bun-
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dles. The total number of components defined by the apps in each bundle is shown in

the second column. Overall, Activities, Services, Broadcast receivers, and

Content providers account for 73%, 11%, 12% and 2% of components, respectively.

Table 4.2: Summary of experimental results obtained from running Covert over App bun-
dles.

Components Intents Intent Exposed Total

Activities Services Receivers Providers explicit implicit Filters Comps Perms Warnings

691 456
Bundle 1 511 70 91 19 300 156 169 5 10 34

(%73.95) (%10.13) (%13.17) (%2.75) (%65.79) (%34.21)
603 432

Bundle 2 434 76 78 15 302 130 148 7 2 16
(%71.97) (%12.6) (%12.94) (%2.49) (%69.91) (%30.09)

592 312
Bundle 3 425 65 85 17 218 94 185 4 3 25

(%71.79) (%10.98) (%14.36) (%2.87) (%69.87) (%30.13)
582 366

Bundle 4 423 75 71 13 232 134 191 4 9 32
(%72.68) (%12.89) (%12.2) (%2.23) (%63.39) (%36.61)

695 803
Bundle 5 569 61 53 12 408 394 359 2 15 16

(81.88)% (8.78)% (7.63)% (1.73) % (50.81) % (49.07) %
553 528

Bundle 6 445 52 47 9 278 249 225 2 10 15
(80.48)% (9.41)% (8.5)% (1.63) % (52.66) % (47.16) %

352 577
Bundle 7 242 43 62 5 349 227 137 4 16 35

(68.75)% (12.22)% (17.62)% (1.43) % (60.49) % (39.35) %
682 1209

Bundle 8 556 57 62 7 728 480 175 3 5 22
(81.53)% (8.36)% (9.1)% (1.03) % (60.22) % (39.71) %

511 622
Bundle 9 358 71 75 7 251 370 231 5 7 22

(70.06)% (13.9)% (14.68)% (1.37) % (40.36) % (59.49) %
660 527

Bundle 10 496 67 68 29 347 180 132 5 9 30
(%75.15) (%10.15) (%10.3) (%4.39) (%65.84) (%34.16)

The Intents column delineates the fraction of implicit/explicit Intents out of total Intents

in each bundle; on average, about 40% of Intents are implicit, showing that developers, by

and large, make inter-component communications explicit. This is promising as there is

no guarantee that the implicit Intent will be received by the intended recipient. The next

column represents the number of components’ interfaces described in terms of Intent filters.

The Exposed column shows the number of component surfaces and permissions unsafely

exposed to other applications. On average, Covert detects 5 exposed components in each

Bundle. Such components have defined Intent filters that make the components accept
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incoming Intents, but do not properly enforce access permission, neither in the manifest file

nor in the source code. The last column then presents the total number of warnings generated

by Covert for applications of each bundle, and each one represents a unique combination

of source and destination components that can lead to a privilege escalation.

Note that reported warnings are about potential security issues. As with other techniques

relying on static analysis, our approach is subject to false positives, which could be due to

two types of failures in model extraction:

• Strings are used extensively as identifiers in Android apps. Intent properties such

as actions, data types, and permissions are all constructed from strings, as shown in

our examples. Such strings could also be altered by stateful operations, such as the

append method, which makes their accurate value elicitation quite challenging. In case

an ambiguous value is encountered, during the entity resolution step (Section 4.4.1),

Covert takes a conservative approach, and considers all possible assignable values.

• Covert performs reachability analysis (Section 4.4.3) to determine the permissions

actually used by each component, thus ignoring permissions that are obtained, but not

used. Yet, there is a possibility that at run-time the permission-required API call or

System Intent is not actually reached due to some conditional statements, for example.

The conservative approach we take to deal with non-determinism thus may introduce unnec-

essary false positives. Encouragingly, this automated analysis still results in a substantial

reduction in subsequent manual analysis. Specifically, less than 1% of application compo-

nents (See Table 4.2, exposed components vs. total components) require further analysis

by users. Also, the limitations of the static analysis with respect to, among other things,

dynamically loaded code could lead to false negatives as well. To facilitate the process of

manual analysis, Covert provides the location of the potential vulnerability (i.e., filename

and method) within the source code.
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The results also confirm that an approach combining static analysis and model checking is

effective in compositional analysis of Android apps. In this particular case, the reported

vulnerabilities provide crucial clues to the security analyst tasked with assessing the security

properties of a complex system. Such analysis is not possible with state-of-the-practice tools

(e.g., Fortify) that analyze the source code of an application in isolation.

In the next section, we interpret the results through manual analysis of a bundle of open-

source applications.

4.6.3 Manual Analysis

We selected 50 applications from the F-Droid open source repository, and then manually

inspected Covert’s warnings for these applications to evaluate how many warnings corre-

spond to real exploitable vulnerabilities. Statistics of the selected app set are provided as

Bundle 10 in the Table 4.2. More details about the apps, including their name and model

can be found on the project site3. In this section, we present the findings of our manual

analysis and discuss three representative examples in detail.

Covert generated 30 warnings for the 50 applications. We manually reviewed all and cate-

gorized them according to the classification provided by Chin et al. [143], where each warning

is classified as a vulnerability, not a vulnerability, or undetermined. We define a vulnera-

bility to be a component lacking a particular permission getting access to a functionality

requiring that permission through an interface exposed by a vulnerable component. In order

to detect vulnerabilities, we reviewed the application source code of both sides (sender and

destination) for each warning.

Among the 30 reported warnings, we discovered 18 definite vulnerabilities. This represents a

60% true positive rate, which is superior to the prior technique [143], that aimed to identify

3https://seal.ics.uci.edu/projects/covert
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inter-app vulnerabilities by analyzing the source code of each app in isolation, with a true

positive rate of 27.6%. More interestingly, of the 5 application components identified as

exposing permissions, all contain at least 1 exploitable vulnerability.

In the rest of this section, we describe a few representative applications and the vulnerabilities

we discovered in them.

Case 1: Aard Dictionary → Podax.

The first app is Aard Dictionary, a simple dictionary and an offline Wikipedia reader.

It defines a WebViewClient interface for handling incoming urls, and creates and sends an

implicit Intent with the VIEW action, should the scheme of the given url matches with one

of the specified schemes, such as http, https and ftp.

On the other hand, the app bundle contains the Podax app, a podcast downloader and player

application. This app accepts Intents with the VIEW action, and http scheme, which in

turn can lead to message passing between the two apps. While the first app that sends

the Intent does not have the INTERNET permission, the recipient app (Podax) has. In

addition, the Podax app does not check whether the caller has the appropriate permission.

This combination, thus, gives rise to a privilege escalation vulnerability.

The sender app here is benign, but if it was malicious it could use the other app’s unprotected

capability, which may lead to some security risks, such as phishing, by bringing up a web

page and enticing the user to enter payment or other private information.

Case 2: Binaural beats therapy → Ermete SMS.

Ermete SMS is a free web-based text messaging application that has WRITE SMS per-

mission. An Activity component of this application exposes an unprotected interface that

receives Intents with SEND action. Upon receiving an Intent, the ComposeActivity com-

ponent extracts the payload of the given Intent, and sends that data via text message to a
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number specified in the payload, without checking the permission of Intent sender.

The other app, Binaural beats therapy, is designed for relaxation, creativity and

many other desirable mental states. This app does not have the WRITE SMS permission,

but it sends an Intent with SEND action and text/plain payload data, which could be received

by the first app. This case represents a false positive as the Intent sent by the Binaural

beats therapy app does not actually contain the fields required by Ermete SMS to send

a text message, but points to an important security risk, where a malicious app could use

the exposed messaging service.

Case 3: PurpleDock → RMaps.

RMaps is an on- and off-line navigation tool. In addition to GPS permissions like

ACCESS FINE LOCATION, it has INTERNET permissions to work with online maps such

as Google and Microsoft maps. This application exposes an activity, which receives VIEW

Intents with geo scheme, a URI scheme for geographic locations. On the other hand,

PurpleDock is a simple app that automatically turns on when the handset is placed into

the car mount, and provides navigation as one of its features.

RMaps’s geo Intents are intended for internal use, and other applications, including Purple-

Dock that sends a geo message via Intent, should not be able to control locations shown

by the app interface. However, with the current implementation, as it does not check the

permission of Intent senders, the exposed component can be manipulated by a malicious

application for GPS spoofing (i.e., display a wrong location).

4.6.4 Compositional vs. Single App Analysis

Enck et al. [183] provide a set of practical security rules, called Kirin rules, to prevent

malwares from exploiting Android applications. Each rule represents undesirable security
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1 // ( a ) s i n g l e app a n a l y s i s
2 a s s e r t Kir inRule6 {
3 no p1 , p2 : Permiss ion | {some app : App l i ca t ion |
4 ( p1 = RECEIVE SMS) and ( p2 = WRITE SMS) and
5 ( p1 in app . use sPermi s s i ons ) and ( p2 in app . use sPermi s s i ons )
6 }
7 }
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 // (b) compos i t i ona l app a n a l y s i s

10 a s s e r t KirinRule6 Compos{
11 no d i s j p1 , p2 : Permiss ion | {some app1 , app2 : Appl icat ion ,
12 c1 , c2 : Component , i n t en t1 : In tent |
13 ( p1 in RECEIVE SMS+WRITE SMS) and
14 ( p2 in RECEIVE SMS+WRITE SMS) and
15 ( p1 in app1 . use sPermi s s i ons ) and ( p2 in app2 . use sPermi s s i ons )
16 and ( i s P r i v i l e g e E s c a l a t i o n [ c1 , c2 , intent1 , p2 ] or ( app1 = app2 ) )
17 }
18 }

Figure 4.14: Specification of a Kirin rule for (a) single and (b) compositional app analysis.

properties in terms of the configuration available in manifest files. Kirin rules, thus, decide

whether the security configuration bundled with a single app is safe or not, but they do

not consider the case in which malicious apps collude to combine their permissions, allowing

them to perform actions beyond their individual privileges.

To analyze these rules using our approach, we formalized them in Alloy. Each rule is modeled

as an assertion to be analyzed independently. We also developed a compositional version of

each rule, leveraging the privilege escalation predicate. This in turn enabled us to apply the

two sets of rules and compare the results of isolated analysis versus compositional analysis.

To make the idea concrete, we illustrate one of these rules along with its formal representa-

tions for both compositional and single app analysis. Consider the following Kirin security

rule (KSR 6): “An application must not have RECEIVE SMS and WRITE SMS permission

labels [183].”

Figure 4.14 partially outlines the two Alloy assertions specified to check the rule against either

(a) a single app or (b) a combination of apps that may collude to combine their permissions.

Assertion (a) states a direct representation of the aforementioned rule in Alloy, while assertion

(b) restates the same rule against multiple apps. It uses the isPrivilegeEscalation
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Table 4.3: Compositional vs. Single App Analysis of Kirin Rules over the Malgenome app
repository.

Sec. Sing. App. Compositional
Rule Analysis Analysis

KSR 1 - -
KSR 2 - -
KSR 3 2 2
KSR 4 2 8
KSR 5 2 11
KSR 6 10 14
KSR 7 11 14
KSR 8 3 3
Overall 30 52

predicate (line 16) to check the occurrence of privilege escalation between the two apps with

respect to the p2 permission. The p1 and p2 permissions could be either RECEIVE SMS

or WRITE SMS (lines 11–12), but they should be distinct as enforced by disj keyword (line

11). The predicate takes as input two components c1 and c2, an Intent, and a permission.

The c1 component belongs to the app1 and c2 to the app2, omitted in Figure 4.14 (b) in

the interest of space. The assertion then at the very end of line 16 checks the case in which

one app contains both permission labels. Note that in practice developing two different

assertions is not necessary as the latter, in effect, covers the former. Here, we developed the

former for experimental purposes, and to compare the results of single versus compositional

analysis.

We analyzed all the apps in the Malgenome repository against each of these rules. Table 4.3

summarizes the results. Rows represent Kirin security rules that we formally modeled in

Alloy to be analyzed using our approach. Columns represent the analysis type, either single

app analysis (as performed by the Kirin tool [183]) or compositional analysis. Each cell

indicates the number of vulnerabilities detected. As we can see, the compositional rule

analysis detects more vulnerabilities, without missing any vulnerability identified by single

app analysis. The experimental results indicate the overall improvement of 73% in detecting

vulnerabilities using a compositional analysis approach.
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Figure 4.15: Scatter plot representing analysis time for model extraction of Android apps.

4.6.5 Performance and Timing

The final evaluation criteria are the performance benchmarks of model extraction and formal

analysis activities. We used a PC with an Intel Core i7 2.4 GHz CPU processor and 8 GB

of main memory, and leveraged Sat4J as the SAT solver during the experiments.

Compositional Analysis of Android apps using our approach consists of three steps: (1) The

app models are collected and documented as Alloy specifications. (2) The extracted Alloy

models are transformed into 3-SAT clauses using the Alloy Analyzer. (3) An off-the-shelf

SAT solver explores the space to find counterexamples. We measured the computation time

required for each step separately.

The scatter diagram shown in Figure 4.15 plots the time taken to analyze the collected apps

for model extraction in seconds. The results show that the analysis time scales almost lin-

early with the size of apps in all three repositories. However, as the set of most popular apps

collected from the Google Play repository—represented by dark blue in the diagram—are

typically larger than apps from the other two repositories, their model extraction takes more

time. According to the diagram, our approach is able to statically analyze and infer spec-
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Table 4.4: Experiments performance statistics.

Construction Analysis
Time (Sec) Time (Sec)

Bundle 1 412 252
Bundle 2 226 123
Bundle 3 441 65
Bundle 4 158 57
Bundle 5 191 239
Bundle 6 88 85
Bundle 7 120 123
Bundle 8 350 374
Bundle 9 295 299
Bundle 10 204 45

ifications for the largest apps in less than three minutes. As our implementation separates

model extraction analysis from Alloy model generation, and each app bytecode is analyzed

independently (See Section 4.4), the total static analysis time scales linearly with the total

size of apps.

Table 4.4 shows the time involved in compositional verification of Android apps (steps 2

and 3). The first column represents the time spent on transforming Alloy models into 3-

SAT clauses, and the second the time spent in SAT solving to find all counterexamples for

each app bundle. The timing results show that Covert is able to analyze bundles of apps

containing hundreds of components in the order of a few minutes (on an ordinary laptop),

confirming that the proposed technology based on a lightweight formal analyzer is feasible.

4.7 Discussion

There is a growing need for technologies that can support the security analysis of complex

systems in a compositional manner, whereby the security of a system is reasoned about in

terms of the security properties inferred from its constituents. We argue this is the holy

grail of software security analysis research. For the security analysis techniques to scale to

ever-increasing complex systems, they need to become compositional in nature. Covert
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takes an important step towards this overarching objective in the context of Android apps,

but we envision the ideas set forth in this research to find a broader application in other

computing domains as well.

Note that single app analysis and compositional analysis have their own technical merits.

From an application developer’s perspective, analyzing each app in isolation may provide

sufficient feedback to fix the issues in the code (i.e., remove the vulnerabilities). On the other

hand, when the purpose of analysis is to assess the trustworthiness of a system, comprised

of multiple proprietary apps that may interact with one another, compositional analysis is

needed to detect vulnerabilities that may exist in the system. One can imagine an organi-

zation may need to use a tool such as Covert to analyze the security properties of apps

deployed on phones assigned to its employees. Such an organization may not be in a position

to fix the issues in the apps, as the apps may be proprietary, but it can control the apps that

are installed on the devices.

Our analysis indicates that IPC vulnerabilities are ubiquitous, and demonstrates why prior

techniques relying only on single app analysis are insufficient for detecting such vulnerabili-

ties. Our experiences with a novel approach for compositional app analysis and its evaluation

in the context of hundreds of real-world Android apps collected from variety of repositories

have been very positive. The experimental data shows that Covert can effectively detect

such inter-app vulnerabilities in the order of few minutes.

Development Effort

The framework specification is not expected to be written by individual users of Covert,

rather by the provider of the framework or Covert. The specification for a framework,

such as Android, is developed once and can be reused by others. Thus, it poses a one-time

cost, and the required effort depends on the level of familiarity with the framework and the
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specification language. Using executable specification languages, one can also immediately

check the correctness of even partial specifications. In our own experience, Alloy helped us

to find errors early in specifying formal semantics. More specifically, during the modeling

process, its analyzer performed syntactic checks to expose, for instance, inaccurate use of

signatures (such as accessing a nonexistent field of a signature). We also used the analyzer

to check the conformance of automatically generated models of apps derived through static

analyzer to the framework meta-model.

1 a s s e r t appCol lus ion {
2 no d i s j cmp1 , cmp2 : Component |
3 some cmp1 . paths && some cmp2 . paths &&
4 cmp1 . app != cmp2 . app &&
5 match [ cmp1 . paths . d e s t i na t i on , cmp2 . paths . entry ]
6 }
7
8 pred match ( pathSink : s e t Resource+Intent ,
9 pathSource : s e t Resource+I n t e n t F i l t e r ) {

10 SDCARD in pathSource & pathSink | |
11 LOG in pathSource & pathSink | |
12 ( some i : Intent , f : I n t e n t F i l t e r |
13 i in pathSink && f in pathSource && matchIPC [ i , f ] )
14 }

Figure 4.16: Specification of the application collusion vulnerability in Alloy.

4.7.1 Other Types of Vulnerabilities

While privilege escalation vulnerability has been the focus of our research, we believe

COVERT can be extended, and significant components of it reused, for detecting other types

of inter-app vulnerabilities. For instance, an important class of inter-app vulnerabilities are

due to information leakage. For these types of vulnerabilities, Covert’s program analysis

needs to be extended to take information flow into account for Android apps. While not the

focus of this research, in an alternative configuration, we augmented Covert’s reachability

analysis described in Section 5.3 with a taint flow analysis approach (see [67]) to detect

possible information leaks between apps.

We illustrate the reuse and extension potential of Covert through an example of the ap-
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plication collusion vulnerability. Consider two applications A and B; B reads data from a

particular folder in SD card and sends the data out through Internet, and A writes data

to the folder that B reads from. Since B does not expose the sending action through its

interface (IntentFilter), it cannot be detected by the privilegeEscalation check, specified in

Figure 4.11.

To extend Covert for supporting the analysis of this scenario, the only thing required is to

model it as an assertion, expressing properties to be checked in the extracted specifications.

Figure 4.16 expresses such an assertion for the application collusion. The assertion states

that there are two components in different applications; each contains a sensitive data flow

path, where the sink of one matches the source of the other. Recall from Section 4.5 that the

paths field denotes information paths between permission domains for each component.

Continuing with our example, the apps A and B contain the flow permissions: IMEI →

SDCARD and SDCARD → NETWORK, respectively. These two paths will set the match pred-

icate to be true (line 8), and thus Covert identifies it as an instance of the application col-

lusion. Note that since applications specifications and properties to be checked are strictly

separated, arbitrary vulnerabilities can be detected with minimal effort.

4.8 Conclusion

This chapter presents a novel approach for compositional analysis of Android inter-app

vulnerabilities. Our approach employs static analysis to automatically recover models that

reflect Android apps and interactions among them. It is able to leverage these models to

identify vulnerabilities due to interaction of multiple apps that cannot be detected with prior

techniques relying on a single app analysis. We formalized the basic elements of our analysis

in an analyzable specification language based on relational logic, and developed a prototype
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implementation, Covert, on top of our formal analysis framework. The experimental results

of evaluating Covert against privilege escalation—one of the most prominent inter-app

vulnerabilities—in the context of hundreds of real-world Android apps corroborates its ability

to find vulnerabilities in bundles of some of the most popular apps on the market.
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Chapter 5

Automatic Enforcement of

Permission-Based Security Policies for

Android

Previous chapter presented Covert, which is intended to identify security threats that occur

due to interaction of multiple apps. In this chapter, I present a complementary approach

that thwarts the identified security threats through enforcement of security policies, allowing

end-users to safeguard the apps installed on their device from inter-app vulnerabilities.

5.1 Introduction

The ubiquity of smartphones and our growing reliance on mobile apps are leaving us more

vulnerable to cyber-security attacks than ever before. According to the Symantec’s Nor-

ton report [484], in 2013 the annual financial loss due to cybercrime exceeded $113 billion

globally, with every second 12 people become the victim of cybercrime. An equally ominous
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report from Gartner [215] predicts 10 percent yearly growth in cybercrime-related financial

loss through 2016. This growth is attributed in part to the new security threats targeted

at emerging platforms, such as Google Android and Apple iOS, as 38% of mobile users

have experienced cybercrime [484]. This is, though, nowhere more evident than in the

Android market, where many cases of apps infected with malware and spyware have been

reported [449].

In this context, smartphone platforms, and in particular Android, have emerged as a topic

du jour for security research. These research efforts have investigated weaknesses from

various perspectives, including detection of information leaks [341, 222, 181, 252], analysis

of the least-privilege principle [198, 183], and enhancements to Android protection mech-

anisms [207, 115, 167]. Above and beyond such security techniques that are substantially

intended to detect vulnerabilities in a single application, researchers have recently investi-

gated techniques tackling security vulnerabilities that arise due to the interaction of multiple

applications, such as inter-component data leaks [308, 514, 294] and permission leaks [251]

shown to be quite common in the apps on the markets.

While the prior techniques mainly aim to find security weaknesses in existing combination

of apps, we are also interested in the dual of this problem, that is what security attacks are

possible given a set of vulnerable apps? Many Android malware are embedded in supposedly

normal apps that aim to leverage vulnerabilities in either the platform or other apps on the

market for nefarious purposes [481]. If we could automatically generate security exploits for

a given combination of apps, it would allow us to identify possible security attacks before

the adversary, and thus protect our systems prior to the realization of such attacks.

In this chapter, we propose a proactive scheme to develop Android security policies for

vulnerabilities that occur due to the interaction of apps comprising a system. Our approach

aims to automatically find vulnerabilities in a given bundle of apps and generate specifications

of possible exploits for them, which then can proactively be applied as preventive measures
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to guard against yet unknown malicious behavior.

Specifically, we have developed an automated system for synthesis and enforcement of secu-

rity policies for Android, called Separ, a Persian word for shield. It combines scalable static

analysis with lightweight formal methods. Separ leverages static analysis to automatically

infer security-relevant facts about software systems.1 The app specifications are sufficiently

abstract—extracted at the architectural level—to be amenable to formal analysis, and to

ensure the technique remains scalable to real-world Android apps, yet represent the true

behavior of the implemented software, as they are automatically extracted from the app

bytecode, and appear sufficiently detailed to express subtle inter-app vulnerabilities.

Separ then uses a SAT-based engine to analyze the system model against compositional

security properties and generate potential attack scenarios. In fact, it mimics the adversary

by leveraging recent advancements in constraint solving techniques to synthesize possible

security exploits, from which fine-grained security policies are then derived and enforced for

each particular system. The synthesis of system-specific security policies allows the user

to proactively deploy preventive measures prior to the discovery of those exploits by the

adversaries.

To summarize, this chapter makes the following contributions:

• Formal Synthesis of Security Policies: We introduce a novel approach to synthesize

specifications of possible exploits for a given combination of apps, from which system-

specific security policies are derived. The policy synthesizer relies on a fully analyzable

formal model of Android framework and a scalable static analysis technique extracting

formal specifications of Android apps.

• Runtime Enforcement of Security Policies: We develop a new technology to automati-

1By a software system, we mean a set of independently developed apps jointly deployed on top of a
common computing platform, e.g. Android framework, that interact with each other, and collectively result
in a number of software solutions or services.
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cally apply and dynamically enforce the synthesized, fine-grained policies (at the level

of event messaging), specifically generated for a particular collection of apps installed

on the end-user device.

• Experiments : We present results from experiments run on 4,000 real-world apps as

well as DroidBench2.0 test suite [11], corroborating Separ’s ability in (1) effective

compositional analysis of Android inter-application vulnerabilities and generation of

preventive security policies, that many of those vulnerabilities cannot be even detected

by state-of-the-art security analysis frameworks; (2) outperforming other compositional

analysis tools also in terms of scalability; and (3) finding multiple crucial security

problems in the apps on the markets that were never reported before.

The remainder of chapter is organized as follows. Section 5.2 motivates our research through

an illustrative example. Section 5.3 provides an overview of Separ. Sections 5.4, 5.5 and 5.6

describe the details of static model extraction, formal synthesis and dynamic enforcement of

policies, respectively. Section 5.7 present implementation and evaluation of the research.

5.2 Motivating Example

To motivate the research and illustrate our approach, we provide an example of a vulnerabil-

ity pattern having to do with inter-component communication (ICC) among Android apps.

Android provides a flexible model of component communication using a type of application-

level message known as Intent. A typical app is comprised of multiple components (e.g.,

Activity, Service) that communicate using Intent messages. In addition, under certain cir-

cumstances, an app’s component could send Intent messages to another app’s components

to perform actions (e.g., take picture, send text message, etc.). Figure 5.3 partially shows a

bundle of two benign, yet vulnerable apps, installed together on a device.
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1 public class Locat ionFinder extends S e r v i c e {
2 public void onStartCommand ( Intent intent , int f l a g s , int s t a r t I d ) {
3 LocationManager lm = getSystemServ ice ( Context .LOCATION SERVICE) ;
4 Locat ion lastKnownLocation =
5 lm . getLastKnownLocation ( LocationManager .GPS PROVIDER) ;
6 Intent i n t e n t = new In tent ( ) ;
7 i n t e n t . s e tAct ion ( ”showLoc” ) ;
8 i n t e n t . putExtra ( ” l o c a t i o n I n f o ” , lastKnownLocation . t oS t r i ng ( ) ) ;
9 s t a r t S e r v i c e ( i n t e n t ) ;

10 . . .
11 }
12 }

Figure 5.1: LocationFinder sends the retrieved location data to another component of the
same app via implicit Intent messaging.

1 public class MessageSender extends S e r v i c e {
2 public void onStartCommand ( Intent intent , int f l a g s , int s t a r t I d ) {
3 St r ing number = i n t e n t . ge tSt r ingExtra ( ”PHONE NUM” ) ;
4 St r ing message = i n t e n t . ge tSt r ingExtra ( ”TEXT MSG” ) ;
5 // i f ( hasPermiss ion ( ) )
6 sendTextMessage ( number , message ) ;
7 . . .
8 }
9 void sendTextMessage ( S t r ing num, St r ing msg) {

10 SmsManager mngr = SmsManager . ge tDe fau l t ( ) ;
11 mngr . sendTextMessage (num, null , msg , null , null ) ;
12 }
13 boolean hasPermiss ion ( ) {
14 i f ( checkCa l l ingPermis s i on ( ” android . permis s ion .SEND SMS” )==PackageManager .

PERMISSION GRANTED)
15 return true ;
16 return fa l se ;
17 }
18 }

Figure 5.2: MessageSender receives an Intent and sends a text message.

The first application is a navigation app that obtains the device location (GPS data) in one of

its components and sends it to another component of the app via Intra-app Intent messaging.

The Intent involving the location data (Figure 5.1, lines 3–9), instead of explicitly specifying

the receiver component, i.e., RouteFinder service, implicitly specifies it through declaring

a certain action to be performed in that component. This represents a common practice

among developers, yet an anti-pattern that may lead to unauthorized Intent receipt [143], as

any component, even if it belongs to a different app, that matches the action could receive

an implicit Intent sent this way.

On the other hand, the vulnerability of the second application, a messenger app, occurs
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on line 11 of Figure 5.2, where MessageSender, specified as a public component in the app

manifest file, uses system-level API SmsManager, resulting in a message sent to the phone

number previously retrieved from the Intent. This is a reserved Android API that requires

special access permissions to the system’s telephony service. Although MessageSender has

that permission, it also needs to ensure that the sender of the original Intent message has

the required permission to use the SMS service. An example of such a check is shown in

hasPermission method of Figure 5.2, but in this particular example it does not get called

(line 6 is commented) to illustrate the vulnerability.

Given these vulnerabilities, a malicious app can send the device location data to the de-

sirable phone number via text message, without the need for any permission. As shown in

Figure 5.3, the malicious app first hijacks the Intents containing the device location info from

the first app. Then, it sends a fake Intent to the second app, containing the GPS data and

adversary phone number as the payload. While the example of Figure 5.3 shows exploitation

of vulnerabilities in components from two apps, in general, a similar attack may occur by

exploiting the vulnerabilities in components of either single app or multiple apps. Moreover,

since the malicious app does not require any security sensitive permission, it is easily con-

cealed as a benign app that only sends and receives Intents. This makes the detection of

such malicious apps a challenging task for individual security inspectors or anti-virus tools.

The above example points to one of the most challenging issues in Android security, i.e.,

detection and enforcement of compositional security policies to prevent such possible ex-

ploits. What is required is a system-level analysis capability that not only identifies the

vulnerabilities and capabilities in individual apps, but also determines how those individual

vulnerabilities and capabilities could affect one another when the corresponding apps are

installed together. In the next sections, we first provide an overview of Separ and then

delve into more details about its approach to address these issues.
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Figure 5.3: A potential malicious application— its signature automatically generated by
Separ—leverages vulnerabilities in other already installed benign applications to perform
actions (like sending device location through text messages) that are beyond its individual
privileges. As the Android access control model is per app, it cannot check security posture
of the entire system. Separ generates and enforces compositional policies that prevent such
an exploit.

5.3 Approach Overview

This section overviews our approach to automatically synthesize and enforce system-specific

security policies for such vulnerabilities that occur due to the interaction of apps comprising

a system. As depicted in Figure 5.4, Separ consists of three main components: (1) The

Android model extractor (AME) that uses static analysis techniques to automatically elicit

formal specifications of the apps comprising a system; (2) The analysis and synthesis engine

(ASE) that uses lightweight formal analysis techniques [7] to find vulnerabilities in the

extracted app models, and generates specifications of possible exploits, and in turn, policies

for preventing their manifestation; (3) The Android policy enforcer (APE) that enforces

automatically generated, system-wide policies on Android applications.

The AME component takes as input a set of Android application package archives, called

APK files. APKs are dalvik bytecode packages used to distribute and install Android ap-

plications. To generate the app specifications, AME first examines the application manifest

file to determine its architectural information. It then utilizes different static analysis tech-

niques, i.e., control flow and data flow analyses, to extract other essential information from

136



the application bytecode into an analyzable specification language.

The ASE component, in addition to extracted app specifications, relies on two other kinds of

specifications: a formal foundation of the application framework and the axiomatized inter-

app vulnerability signatures. The Android framework specification represents the foundation

of Android apps. Our formalization of these concepts includes a set of rules to lay this

foundation (e.g., application, component, messages, etc.), how they behave, and how they

interact with each other. It can be considered as an abstract, yet precise, specification of how

the framework behaves. We regard vulnerability signatures as predicates that model Android

inter-app vulnerabilities in relational logic, representing their essential characteristics as

exhibited when the vulnerability is exploited. All the specifications are uniformly captured

in the Alloy language [7]. Alloy is a formal specification language based on relational logic,

amenable to fully automated yet bounded analysis.

Separ is designed as a plugin-based software that provides extension points for analyzing

apps against different types of vulnerabilities. In order to analyze each app, we distill each

known inter-app vulnerability into a corresponding formally-specified signature to capture

its essential characteristics, as manifested when the vulnerability is exploited. Our current

Separ prototype supports inter-component vulnerabilities, such as Activity/Service launch,

Intent hijack, privilege escalation, and information leakage [115, 143, 233]. Its plugin-based

architecture supports the necessary extensions that can be provided by users at anytime to

enrich the environment.

Given these specifications, the ASE component analyzes them as a whole for instances of vul-

nerabilities in the extracted app specifications, and using formally-precise scenario-generating

tools, such as Alloy Analyzer [7] and Aluminum [363], it attempts to generate possible secu-

rity exploit scenarios for a given combination of apps. Specifically, we go beyond the detection

of vulnerabilities by asking: what security attacks are possible given a set of vulnerable apps?
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Figure 5.4: Approach Overview of Separ.

Having computed system-wide policies to prevent the postulated attacks, Separ parses and

transforms them from models generated in relational logic to a set of configurations directly

amenable to efficient policy enforcement. Our policy enforcer (APE) then monitors each

vulnerable app at runtime to dynamically intercept event messages, check them against

generated policies, and possibly inhibits their executions if violating any such policies. As

such, to the best of our knowledge, Separ is the first approach capable of detecting and

protecting Android systems against zero-day inter-app attacks.

In the following three sections, we describe the details of each component in turn.

5.4 AME: Android Model Extractor

The AME module, that individually analyzes each app to extract a model of its behavior,

is built upon state-of-the-art static analysis techniques for the Android framework. This

section describes the extraction process, with an emphasis on the important improvements

on prior work.
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Architecture Extraction. To obtain an app model, AME first examines the app manifest

file to capture the high-level architectural information, including the components comprising

the app, permissions that the app requires, and the enforced permissions that the other

apps must have in order to interact with the app components. AME also identifies public

interfaces exposed by each application, which are essentially entry points defined in the

manifest file through Intent Filters of components.

Intent Extraction. The next step of model extraction involves an inter-procedural data

flow analysis [107], to track the Intents and Intent Filters that are declared in code, rather

than the manifest file, as well as their properties. Each Intent belongs to one particular

component that sends it, may have one recipient component and may include an action,

data and a set of categories. The action field specifies the general action to be performed

in the recipient component; the data field represents additional information about the data

to be processed by the action; and the categories filed specifies the kind of component that

should handle the Intent. An Intent can also include extra data. Similar to Intents, each

Intent Filter has a non-empty set of actions and two sets of data and categories. Note that

Intent Filters for components of type Service and Activity must be declared in their manifest;

for Broadcast Receivers, though, either in the manifest or at runtime.

To resolve the values associated with the retrieved attributes (e.g., the Intent action) AME

uses string constant propagation [145], which provides a suitable solution since, by con-

vention, Android apps use constant strings to define these values. In case a property is

disambiguated to more than one value (e.g., due to a conditional assignment), AME gener-

ates a separate entity for each of these values, as they contribute different exposure surfaces

or event messages in case of Intent Filters and Intents, respectively. AME handles aliasing

through performing on-demand alias analysis [492]. More specifically, for each attribute that

is assigned to a heap variable, the backward analysis finds its aliases and updates the set of

its captured values accordingly.

139



Algorithm 5.1: Update Passive Intent Target
Input: Intents: Set of all identified Intents
Output: Target components for passive Intents

1 for p in Intents do
2 if p.isPassiveIntent then
3 for i in Intents do
4 if i.hasRequestResult & i.target = p.sender then
5 p.addTarget(i.sender)
6 end

7 end

8 end

9 end

There are some special cases in implicit invocations of inter-component entry points, where

the caller method triggers a two-way communication between components. Examples include

bindService and startActivityForResult. A component, for instance, can use

startActivityForResult to start another component, which itself implicitly calls the

first component with a new Intent embodying the results once finishes running. However,

the returning implicit Intent, which we call passive Intent, includes no information (e.g.,

action and category) specifying its target component, making it difficult for static analyzers

to identify the receiver in this second implicit invocation. Algorithm 5.1 outlines identifying

target components for passive Intents. The logic of the algorithm is as follows. For each

passive Intent, p, look up Intents that both request for results and their target components

match senders of p. Insert the senders of such Intents into the target set of p.

Path Extraction. AME analyzes the app using a static taint analysis to track sensitive data

flow tuples < Source, Sink >, where Source represents a sensitive data (e.g., the device ID)

and Sink represents a method that may leak data, such as sending text messages. To achieve

a high precision in data flow analysis, our approach is flow-, field-, and context-sensitive [67],

meaning that our analysis distinguishes a variable’s values between different program points,

distinguishes between different fields of a heap object, and that in analysis of method calls is

sensitive to their calling contexts, respectively. In the interest of scalability, Separ’s analysis,

140



however, is not path-sensitive. The results (See Section 5.7) though indicate no significant

imprecision caused by path-insensitivity in the context of Android vulnerability analysis.

AME uses a set of most frequently used source and sink Android API methods from the

literature [394], identified through the use of machine-learning techniques. To further de-

tect those paths traversing through different components, we adapted this set by identifying

source and sink methods corresponding to inter-component communication. The identified

sensitive data flows paths are later used in the ASE module to detect data leaks vulnerabil-

ities, and thereby to generate respective policies preventing their potential exploits.

Permission Extraction. To ensure the permission policies are preserved during an inter-

component communication, one should compare the granted permissions of the caller com-

ponent against the enforced permissions at the callee component side. Therefore, the permis-

sions actually used by each component should be determined. While we already identified

the coarse-grained permissions specified in the manifest file, AME analyzes permission checks

throughout the code to identify those controlling access to particular aspects of a component

(e.g., recall hasPermission method of Figure 5.2). In doing so, it relies on API permission

maps available in the literature, and in particular the PScout permission map [69], one of

the most recently updated and comprehensive permission maps available for the Android

framework. API permission maps specify mappings between Android API calls/Intents and

the permissions required to perform those calls.

A node could be directly tagged as permission-required node, or transitively tagged by

tracking the call chains. To find the transitive permission tag, AME performs backward

reachability analysis starting from the permission-required node. The tagged permission are

propagated from all children to their parent nodes, until reaching to the root nodes. In case

an entry-point node of a component is tagged by a permission, it will be added to the list of

exposed permissions of that component.
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5.5 ASE: Analysis and Synthesis Engine

We now show that our ideas for automated synthesis of exploit specifications can be reduced

to practice. The insight that enabled such synthesis was that we could interpret the synthesis

problem as the dual of formal verification. Given a system specification S, a model M, and a

property P, formal verification asserts whether M satisfies the property P under S. Whereas

the synthesis challenge is given a system specification S and a property P, generate a model

M satisfying property P under system S. M is an instance model of S that satisfies P.

This observation enables leveraging verification techniques to solve synthesis problems. As

shown in Figure 5.5, we can view the bundle of app specifications, Sa, and the framework

specification, Sf , collectively as system S and a compositional security issue as property P,

and model them as a set of constraints. The problem then becomes to generate a candidate

set of violation scenarios, M, that satisfies the space of constraints: M |= Sf ∧ Sa ∧ P.

Our approach is thus based on a reduction of the synthesis problem into a constraint-solving

problem represented in relational logic (i.e., Alloy). Alloy is a formal modeling language

optimized for automated analysis, with a comprehensible syntax that stems from notations

ubiquitous in object orientation, and semantics based on the first-order relational logic [7].

Figure 5.5: Automated synthesis of possible exploit specifications.
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The formulation of the synthesis problem in Alloy consists of three parts: (1) a fixed set

of signatures and facts describing the Android application fundamentals (e.g., application,

component, Intent, etc.) and the constraints that every application must obey. Technically

speaking, this module can be considered as a meta-model for Android applications; (2) a

separate Alloy module for each app modeling various parts of an Android app extracted

from its APK file. The automatically extracted model for each app relies on the Android

framework specification module (the first item above); and (3) a set of signatures used to

reify inter-component vulnerabilities in Android, such as privilege escalation.

Alloy is an appropriate language for our modeling and synthesis purposes for several rea-

sons: (1) its simple set theoretic language, backed with logical and relational operators, was

sufficiently expressive for formal declarative specification of both applications and properties

to be checked; (2) its ability to automatically analyze specifications is useful as an automa-

tion mechanism, enabling automatic synthesis of violation scenarios as satisfying solutions;

finally, (3) the formal analyzers available for Alloy (e.g., [363]) translate our high-level

model specifications into a SAT formula that can be solved by off-the-shelf SAT solvers, and

thereby enable utilizing state-of-the-art constraint solvers for our model synthesis. The rest

of this section first provides a brief overview of Alloy, and then details different parts of

implementing the synthesis problem.

Alloy Overview. Alloy is a declarative language based on the first-order relational logic

with transitive closure [7]. The inclusion of transitive closure extends its expressiveness

beyond first-order logic. Essential data types, that collectively define the vocabulary of a

system, are specified in Alloy by their type signatures (sig). Signatures represent basic types

of elements, and the relationships between them are captured by the the declarations of

fields within the definition of each signature. Consider the following Alloy model. It defines

two Alloy signatures: Application and Component. The cmps relation is defined over

these two signatures.
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s i g App l i c a t i o n {
cmps : Component

}
s i g Component{}

Analysis of specifications written in Alloy is completely automated, based on transformation

of Alloy’s relational logic into a satisfiability problem. Off-the-shelf SAT solvers are then

used to exhaustively search for either satisfying models or counterexamples to assertions.

To make the state space finite, certain scopes need to be specified that limit the number of

instances of each type signature. The following specification asks for instances that contain

at least one Component, and specifies a scope that bounds the search for instances with at

most two objects for each top-level type (Application and Component in this example).

pred mode l I n s t ance { some Component }
run mode l I n s t ance f o r 2

When executed, the Alloy Analyzer produces model instances, two of which are shown in

Fig. 5.6. The model instance of Fig. 5.6a includes one application and two components,

one of them belongs to no application. Fig. 5.6b shows another model instance with two

applications, each one having one component.

Facts (fact) are formulas that take no arguments, and define constraints that every instance

of a model must satisfy, thus restricting the instance space of the model. The following

fact paragraph, for example, states that each Component should belong to exactly one

Application. Re-executing the Alloy Analyzer produces a new set of model instances,

where while Fig. 5.6b is still a valid instance, model of Fig. 5.6a is eliminated.

f a c t {
a l l c : Component | one c . ˜ cmps

}

The other essential constructs of the Alloy language include: Predicates, Functions and

Assertions. Predicates (pred) are named logical formulas used in defining parameterized and

reusable constraints that are always evaluated to be either true or false. Functions (fun) are
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Figure 5.6: Two model instances of the above Alloy specification.

parameterized expressions. A function similar to a predicate can be invoked by instantiating

its parameter, but what it returns is either a true/false or a relational value instead. An

assertion (assert) is a formula required to be proved. It can be used to check a certain

property of a model.

The Alloy language comes with a set of logical and relational operators. The dot (.) and

tilde (∼) operators denote a relational join of two relations and the transpose operation

over a binary relation, respectively. The transitive closure (ˆ) of a relation is the smallest

enclosing relation that is transitive. The reflexive-transitive closure (* ) of a relation is the

smallest enclosing relation that is both transitive and reflexive.

We will introduce additional details of the Alloy language as necessary to present our policy

synthesis approach. For further information about Alloy, we refer the interested reader to [7].

Formal Model of Android Framework. Formal modeling of the Android framework was

the subject of earlier work [80]. To make this chapter self-contained, this subsection briefly

reviews the model. Figure 5.7 shows (part of) the Alloy code describing the meta-model for

Android application models. Our model is based on the official Android documentation [26].

Android is a large and complex operating system, and modeling it in its entirety would be in-

feasible. Thus, we focused on the parts of Android that are relevant to the inter-component

communication and their potential security challenges. For example, note the signatures

Component and Intent. Signatures defined as abstract represent types of elements that
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1 ab s t r a c t s i g Component{
2 app : one App l i c a t i o n ,
3 i n t e n t F i l t e r s : s e t I n t e n t F i l t e r ,
4 p e rm i s s i o n s : s e t Permi s s i on ,
5 paths : s e t Deta i l e dPa th
6 }
7 ab s t r a c t s i g I n t e n t F i l t e r {
8 a c t i o n s : some Act ion ,
9 dataType : s e t DataType ,

10 dataScheme : s e t DataScheme ,
11 c a t e g o r i e s : s e t Category
12 }
13 f a c t IFandComponent{
14 a l l i : I n t e n t F i l t e r | one i . ˜ i n t e n t F i l t e r s }
15 f a c t No IF f o rP r o v i d e r s {
16 no i : I n t e n t F i l t e r | i . ˜ i n t e n t F i l t e r s i n Pro v i d e r }
17 ab s t r a c t s i g I n t e n t {
18 s ende r : one Component ,
19 r e c e i v e r : l one Component ,
20 a c t i o n : l one Act ion ,
21 c a t e g o r i e s : s e t Category ,
22 dataType : l one DataType ,
23 dataScheme : l one DataScheme ,
24 e x t r a : s e t Resource
25 }

Figure 5.7: Excerpts from the meta-model for Android application models in Alloy.

cannot have an instance object without explicitly extending them. A component belongs to

exactly one application, and may have any number of IntentFilters—each one describ-

ing a different interface (capability) of the component—and a set of permissions required to

access the component. The paths field then indicates information flows between permission

domains in the context of this component. We define the source and destination of a path

based on canonical permission-required resources identified by Holavanalli et al. for Android

applications [251]. Examples of such resources are NETWORK, IMEI, and SDCARD. Thir-

teen permission-required resources are identified as source, and five resources as destination,

of a sensitive data flow path. The ICC mechanism augments both source and destination

sets. Note that to eliminate private components from inter-app analysis, Separ considers

the component’s exported attribute. In fact, a component can receive Intents from other

applications, or is public, if its exported attribute is set or contains at least one Intent fil-

ter. Such elimination of private components from inter-app analysis also contributes to the

scalability of the approach (i.e., less components to be analyzed).
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1 \\( a ) App1 model
2 open a n d r o i dD e c l a r a t i o n
3 . . .
4 one s i g Lo c a t i o nF i n d e r extends S e r v i c e {}{
5 app i n App1
6 no i n t e n t F i l t e r s
7 paths = pa thLoca t i o nF i nd e r 1
8 p e rm i s s i o n s = ACCESS FINE LOCATION
9 }

10 one s i g pa thLoca t i o nF i nd e r 1 extends Path {}{
11 s ou r c e = LOCATION
12 s i n k = ICC
13 }
14 one s i g I n t e n t 1 extends I n t e n t {}{
15 s ende r = Loc a t i o nF i n d e r
16 no r e c e i v e r
17 a c t i o n=showLoc
18 c a t e g o r i e s= DEFAULT
19 no dataType
20 no dataScheme
21 e x t r a= LOCATION
22 }
23 \\( b ) App2 model
24 one s i g MessageSender extends S e r v i c e {}{
25 app i n App2
26 i n t e n t F i l t e r = I n t e n t F i l t e r 1
27 paths = pathMessageSender1
28 no p e rm i s s i o n s
29 }
30 one s i g pathMessageSender1 extends Path {}{
31 s ou r c e = ICC
32 s i n k = SMS
33 }

Figure 5.8: Excerpts from generated specifications for (a) App1 (Figure 5.1) and (b) App2
(Figure 5.2).

The fact IFandComponent specifies that each IntentFilter belongs to exactly one

Component, and the fact NoIFforProviders specifies that out of four core compo-

nent types, only three of them can define IntentFilters; no IntentFilter can be defined for

Content Provider components.

An Intent belongs to one particular component sending it, and may have one recipient

component. Each Intent may also include an action, data (type and scheme) and a

set of categories.2 These elements are used to determine to which component an implicit

Intent—one that does not specify any recipient component—should be delivered. Each of

2The multiplicity keyword some in Alloy denotes that the declared IntentFilter.actions relation
contains at least one element; the keyword set tells Alloy that categories map each IntentFilter
object to zero or more Category objects, and the keyword lone indicates that this Intent.component
is optional, and an Intent may have one or no declared recipient component.
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these elements corresponds to a test, in which the Intent’s element is matched against that

of the IntentFilter. An IntentFilter may have more actions, data, and categories than the

Intent, but it cannot contain less. The extra field indicates the types of resources carried

by the Intent.

Formal Model of Apps. Figure 5.8 partially shows the Alloy specifications for the apps

shown in Figures 5.1 and 5.2. As already mentioned (See Section 5.4), these app speci-

fications are automatically extracted by the AME component from each Android applica-

tion. Each app specification starts by importing the androidDeclaration module (See Fig-

ure 5.7). Among other things, the LocationFinder component contains a sensitive path

(pathLocationFinder1), that represents a data-flow from where the sensitive GPS data

is retrieved, to an Intent event message. The extra field of the Intent in the generated Alloy

model (line 21) is accordingly set. The path field of the MessageSender in the generated

Alloy model (lines 27, 30–33) reflects another data-flow path, started from an IntentFilter

and reaches to a node, which uses the data in the body of a text message. Note that this

component does not enforce any access permission neither in the manifest file nor in the

code (line 28).

Formal Model of Vulnerabilities. To provide a basis for precise analysis of app bundles

against inter-app vulnerabilities and further to automatically generate possible scenarios

of their occurrence given particular conditions of each bundle, we designed specific Alloy

signatures. Specifically, each vulnerability model captures a specific type of inter-component

communication security threat, according to those identified by Chin et al. [143] and Bugiel

et al. [115]. The security property check is then formulated as a problem of finding a valid

trace that satisfies the vulnerability signature specifications. If the Alloy Analyzer finds a

solution to this problem, the property is violated; the returned solution encodes an exact

scenario (states of all elements, such as components and Intents) leading to the violation. As

a concrete example, we illustrate the semantics of one of these vulnerabilities in the following.

148



1 s i g Gene ra t edSe r v i c eLaunch {
2 d i s j launchedCmp ,malCmp : one Component ,
3 ma l I n t e n t : I n t e n t }{
4 ma l I n t e n t . s ende r = malCmp
5 launchedCmp i n s e t E x p l i c i t I n t e n t [ ma l I n t e n t ]
6 no launchedCmp . app & malCmp . app
7 launchedCmp . app i n d e v i c e . apps
8 not (malCmp . app i n d e v i c e . apps )
9 some launchedCmp . paths && launchedCmp . paths . s ou r c e = ICC

10 some ma l I n t e n t . e x t r a
11 malCmp i n A c t i v i t y
12 }

Figure 5.9: Alloy specifications of Service Launch vulnerability in Android.

The others are evaluated similarly.

Figure 5.9 presents the GeneratedServiceLaunch signature along with its signature

fact that specifies the elements involved in, and the semantics of, a service launch exploit,

respectively. In short, a malicious component (malCmp) can launch a component by sending

an Intent (malIntent) to an exported component (launchedCmp) that is not expecting

Intents from that component. According to line 9, the launchedCmp component has a

path from the exported interface to a permission-required resource. It, thus, may leak

information or perform unauthorized tasks, depending on the functionalities exposed by the

victim component.

Generating possible exploit scenarios. We run the modules defined above with a com-

mand that tries to satisfy the vulnerabilities signature facts. Note that Alloy analysis must

be done within a given scope, which specifies an upper bound for, or an exact, number of

instances per element signature. In our case, the exact scope of each element, such as Appli-

cation and Activity, required to instantiate each vulnerability is automatically derived from

the specification.

If an instance is found, Separ reports it along with the information useful in finding the

root cause of the violation, from which fine-grained security policies are then derived for

the given system. Given our running example, the analyzer automatically generates the
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following scenario, among others:

The diagram is accurate for the result that the analyzer computed, but we have edited it

to omit some details for readability. It essentially states the scenario represented in Fig-

ure 5.3, in which a postulated malicious component, here the generated App0/Service0

component, can send the device location data captured from a vulnerable Intent, Intent1

(See Figure 5.8, lines 14–22), to the desirable phone number via an explicit Intent,

Service0/Intent0, sent to the App2/MessageSender component that is vulnerable to

service launch. Here the analysis has found that it is possible to devise a malicious capability

that can leverage the vulnerabilities in the apps installed on the device for nefarious purposes.

Given this, Separ formulates a policy, as described next, that prevents certain Intent-based

interactions from occurring to prevent the exploitation of vulnerabilities, thereby achieving

proactive defense if such a malicious capability were to be installed on the device.

The next section describes how we can prevent occurrence of such vulnerability exploits

through generation and enforcement of respective policies.
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5.6 APE: Android Policy Enforcer

In the implementation of APE, we faced three possible alternatives: (1) modify the Android

OS to enforce the policies, (2) modify an app through injection of policy enforcement logic

into the app’s implementation by instrumenting the APK file, and (3) dynamic memory

instrumentation of the app’s process. We chose the third approach, as it allows Separ to be

used on an unmodified version of Android, thereby making it widely applicable and practical

for use by many.

Similar to a conventional access control model [428], our approach is comprised of two el-

ements: policy decision point (PDP)—the entity which evaluates access requests against

a policy, and policy enforcement point (PEP)—the entity which intercepts the request to

a resource, makes a decision request to the PDP, and acts on the received decision. The

protected resources in our research are mainly Android APIs that can result in ICC calls.

Our Android policy enforcer relies on the Xposed [44] framework for modifying the behavior

of Android apps at runtime, without making any changes in the apps’ APK files. It provides

mechanisms to “hook” method calls. A hook is a method that is called before or after a

certain method, making it possible to control pre/post method call activities, by modifying

a method’s parameters, its return values, or even entirely skipping the call to the method.

The PDP is realized as an independent Android app that stores the synthesized policies for

preventing or allowing ICC access. Our policies are in the form of event-condition-action

(ECA) rules. The PEP in our case corresponds to an Xposed module to dynamically in-

tercept event messages. More specifically, each ICC method in an app’s APK file (e.g.,

startService(Intent)) is hooked, such that whenever it is invoked, it is first assessed to

see whether the operation should proceed (e.g., Intent to be delivered to its destination)

by calling the PDP. The major advantages of using run-time process instrumentation over

modifying individual apps are scalability and framework generalization. Additionally, in-
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strumentation of APK files changes the signature of apps, which might prevent their proper

execution.

PEP hooks these operations and uses PDP to check whether they are allowed to run or

not. Whenever an application is about to run a sensitive operation, it is checked against

the synthesized policies. The respective application is then allowed to perform the given

operation as long as it conforms to such policies. Otherwise, the PDP prompts the user for

consent along with the information that would help the user in making a decision, including

the description of security threat as well as the name and parameters of the intercepted

event. Should the user refuse, the application skips the given operation and continues with

running the subsequent one. As ICC mechanisms in Android are essentially performed by

asynchronous API calls, inhibiting them implies that no response for the event is ever re-

ceived, without causing unexpected crashes. Of course, preventing ICC calls would naturally

force the app to operate in a degraded mode.

Continuing with our running example, Separ generates the following policy, where the con-

ditions in the generated ECA rule correspond to the properties of the malicious Intent in

the synthesized vulnerability model instance.

{ even t : ICC r e c e i v ed ,
c o n d i t i o n : [{ I n t e n t . e x t r a : LOCATION} ,

{ I n t e n t . r e c e i v e r : MessageSender } ] ,
a c t i o n : u se r p rompt

}

It states that every attempt of sending device LOCATION data through the MessageSender

component must be manually approved by the user. Observe that each app, such as App2

can, and in this case would, be guarded against more than one policy at the same time.

Indeed, App1 and App2 would also be guarded with policies generated regarding Intent

hijacking and Service Launch, respectively.
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5.7 Evaluation

This section presents the experimental evaluation of Separ. We have implemented Separ’s

static analysis capability on top of the Soot [495] framework. We used Flowdroid for intra-

component taint analysis [67], and extended it to improve precision of analysis especially

to support complicated ICC methods (See Section 5.4). The prototype implementation of

Separ only requires the APK files—not the original source code—which is important, of

course, for running it over non-open source apps. The translation of captured app models

into the Alloy language is implemented using FreeMarker template engine [14]. The core

components of our analysis and synthesis model are embedded in a relational logic language,

i.e., Alloy [7]. As a back-end analysis engine, Separ relies on Aluminum [363], a recently de-

veloped principled scenario explorer that generates only minimal scenarios for specifications

axiomatized in Alloy. Lastly, our policy enforcer (See APE module) leverages the Xposed

framework [44] for preventing event messages violating synthesized policies.

We used the Separ apparatus for carrying out the experiments. Our evaluation addresses

the following research questions:

RQ1. What is the overall accuracy of Separ in detecting ICC (i.e., both inter-component

and inter-application) vulnerabilities compared to other state-of-the-art techniques?

RQ2. How well does Separ perform in practice? Can it find security exploits and synthesize

their corresponding protection policies in real-world applications?

RQ3. What is the performance of Separ’s analysis realized atop static analyzers and SAT

solving technologies?

RQ4. What is the performance of Separ’s policy enforcement?
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5.7.1 Results for RQ1 (Accuracy)

To evaluate the effectiveness and accuracy of our analysis technique and compare it against

the other static analysis tools, we used the DroidBench [11] and ICC-Bench [17] suites of

benchmarks, two sets of Android applications containing ICC based privacy leaks for which

all vulnerabilities are known in advance—establishing a ground truth. These test cases com-

prise the most frequently used ICC methods found in Google Play apps. The benchmark

apps also include unreachable, yet vulnerable components; reported vulnerabilities that in-

volve such unreachable components are thus considered as false warnings. Using the apps in

this benchmark, which is developed by other research groups, we have attempted to elimi-

nate internal threats to the validity of our results. Further, using the same benchmark apps

as prior research allows us to compare our results against them.

We compared Separ with existing tools targeted at ICC vulnerability detection, namely

DidFail [294] and AmanDroid [514]. We also tried to run IccTA [308], another tool intended

to identify inter-app vulnerabilities, but faced technical difficulties. The tool terminated with

error while capturing ICC links. This issue has also been reported by others [18]. Though

we have been in contact with the authors, we have not been unable to fix it so far.

Table 5.1 summarizes the results of our experiments for evaluating the accuracy of Separ in

detecting ICC vulnerabilities compared to other state-of-the-art techniques. Separ succeeds

in detecting all 23 known vulnerabilities in DroidBench benchmarks, and 7 vulnerabilities

out of 9 in ICC-Bench suite. It correctly finds both cases of privacy leak in bindService4

and startActivityForResults4 . It also correctly ignores two cases where there are no leaks,

since the code harboring those vulnerabilities is not reachable, i.e., startActivity{4,5}. The

only missed vulnerabilities are the ones that are caused by dynamic registration of Broadcast

Receivers, which is not handled by Separ’s model extractor.

In addition to missing the vulnerabilities in the bound services, AmanDroid is unable to

154



Table 5.1: Comparison between Separ, DidFail, and AmanDroid. TP, FP and FN are
represented by symbols 2�, 4, 2, respectively. (X#) indicates the number # of detected
instances for the corresponding symbol X.

Test Case DidFail AmanDroid SEPAR

D
ro

id
B

en
ch

2

ICC bindService1 42 2 2�
ICC bindService2 2 2 2�
ICC bindService3 2 2 2�
ICC bindService4 4(22) (22) (2�2)

ICC sendBroadcast1 2� 2� 2�
ICC startActivity1 2 2� 2�
ICC startActivity2 2 2� 2�
ICC startActivity3 2 2� 2�
ICC startActivity4 4
ICC startActivity5 (42)

ICC startActivityForResult1 2 2� 2�
ICC startActivityForResult2 2 2 2�
ICC startActivityForResult3 2 24 2�
ICC startActivityForResult4 (22) 2�42 (2�2)

ICC startService1 42 2� 2�
ICC startService2 42 2 2�
ICC delete1 2 2 2�
ICC insert1 2 2 2�
ICC query1 2 2 2�
ICC update1 2 2 2�
IAC startActivity1 2�4 2 2�
IAC startService1 2� 2 2�
IAC sendBroadcast1 2� 2 2�

IC
C

-B
en

ch

Explicit Src Sink 2 2� 2�
Implicit Action 2� 2� 2�
Implicit Category 2� 2� 2�
Implicit Data1 2� 2� 2�
Implicit Data2 2� 2� 2�
Implicit Mix1 2� 2� 2�
Implicit Mix2 2� 2� 2�
DynRegisteredReceiver1 2 2� 2
DynRegisteredReceiver2 2 2 2

Precision 55% 86% 100%
Recall 37% 48% 97%
F-measure 44% 63% 98%

examine Content Providers for security analysis. DidFail does even worse. Based on the

results, DidFail found only the vulnerabilities caused by implicit Intents, missing the vul-

nerabilities that are due to explicit Intents, such as information leak. The results show that

Separ outperforms the other two tools in terms of both precision and recall.
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5.7.2 Results for RQ2 (Separ and Real-World Apps)

To evaluate the implications of our tool in practice, we collected 4,000 apps from the following

four different sources:

(1) Google Play [15]: This repository serves as the official Android app store. Our Google

play collection consists of 600 randomly selected and 1,000 most popular free apps in the mar-

ket. (2) F-Droid [13]: This is a software repository that contains free and open source An-

droid apps. Our collection includes 1,100 apps from this Android market. (3) Malgenome

[586]: This repository contains malware samples that cover the majority of existing Android

malware families. Our collection includes all (about 1,200) apps in this repository. (4)

Bazaar [6]: This website is a third-party Android market. We collected 100 popular apps

from this repository, distinguished from apps downloaded from Google Play and F-Droid.

We partitioned the subject systems into 80 non-overlapping bundles, each comprised of 50

apps, simulating a collection of apps installed on an end-user device. The bundles enabled

us to perform several independent experiments. Out of 4,000 apps, Separ identified 97

apps vulnerable to Intent hijack, 124 apps to Activity/Service launch, 128 apps to inter-

component sensitive information leakage, and 36 apps to privilege escalation. We then

manually inspected the Separ’s results to assess its utility in practice. In the following, we

describe some of our findings. To avoid leaking previously unknown vulnerabilities, we only

disclose a subset of those that we have had the opportunity to bring to the app developers’

attention.

Activity/Service Launch. Barcoder is a barcode scanner app that scans bills using the

phone’s camera, and enables users to pay them through an SMS service. It also stores the

user’s bank account information, later used in paying the bills. Given details of a bill as

payload of an input Intent, the InquiryActivity component of this app pays it through SMS

service. This component exposes an unprotected Intent Filter that can be exploited by a
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malicious app for making an unauthorized payment.

Intent Hijack. Hesabdar is an accounting app for personal use and money transaction

that, among other things, manages account transactions and provides a temporal report of

the transaction history. One of its components handles user account information and sends

the information as payload of an implicit Intent to another component. When a component

sends an implicit Intent, there is no guarantee that it will be received by the intended

recipient. A malicious application can intercept an implicit Intent simply by declaring an

Intent Filter with all of the actions, data, and categories listed in the Intent, thus stealing

sensitive account information by retrieving the data from the Intent.

Information Leakage. OwnCloud provides cloud-based file synchronization services to the

user. By creating an account on the back-end server, user can sync selected files on the device

and access synced files to browse, manage, and share. Our study indicates that OwnCloud

app is vulnerable to leak sensitive information to other apps. One of its components obtains

the account information and through a chain of Intent message passing, eventually logs the

account information in an unprotected area of the memory card, which can be read by any

other app on the device.

Privilege Escalation. Ermete SMS is a text messaging app with WRITE SMS permis-

sion. Upon receiving an Intent, its ComposeActivity component extracts the payload of the

given Intent, and sends it via text message to a number also specified in the payload, with-

out checking the permission of the sender. This vulnerable component, thus, provides the

WRITE SMS permission to all other apps that may not have it.
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Figure 5.10: Scatter plot representing analysis time for model extraction of Android apps.

5.7.3 Results for RQ3 (Performance and Timing)

The next evaluation criteria are the performance benchmarks of static model extraction and

formal analysis and synthesis activities. We used a PC with an Intel Core i7 2.4 GHz CPU

processor and 4 GB of main memory, and leveraged Sat4J as the SAT solver during the

experiments.

Figure 5.10 presents the time taken by Separ to extract app specifications for 4,000 real-

world apps. This measurement is done on the data-sets collected from 4 repositories: Google

Play, F-Droid, Malgenome, and Bazaar. The scatter plot shows both the analysis time and

the app size. According to the results, our approach statically analyzes 95% of apps in less

than two minutes. As our approach for model extraction analyzes each app independently,

the total static analysis time scales linearly with the size of the apps.

Table 5.2: Experiments performance statistics.

Components Intents
Intent Time (sec)
Filters Construction Analysis

313 322 148 260 57
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Table 5.2 shows the average time involved in compositional analysis and synthesis of policies

for a set of apps. The first three columns represent the average number of Components,

Intents, and Intent filters within each analyzed bundle. The next two columns represent the

time spent on transforming the Alloy models into 3-SAT clauses, and in SAT solving to find

the space of solutions for each bundle. The timing results show that on average Separ is able

to analyze bundles of apps containing hundreds of components in the order of a few minutes

(on an ordinary laptop), confirming that the proposed technology based on a lightweight

formal analyzer is feasible.

5.7.4 Results for RQ4 (Policy Enforcement)

The last evaluation criterion is the performance benchmark of Separ’s policy enforcement.

To measure the runtime overhead required for APE (i.e., policy enforcement), we have tested

a set of benchmark applications. Our benchmark applications repeatedly perform several

ICC operations, such as the startService method. We have handled uncontrollable factors

in our experiments by repeating the experiments 33 times, the minimum number of repeti-

tions needed to accurately measure the average execution time overhead at 95% confidence

level. Overall, the execution time overhead incurred by APE for policy enforcement is

11.80% ± 1.76%, making the effect on user experience negligible. Note that using the run-

time process instrumentation (See Section 5.6), our infrastructure only introduces overhead

with the ICC calls, and does not have any overhead in terms of the non-ICC calls. Thus, in

practice, the overhead introduced by our approach is significantly less than 11.80%.

159



5.8 Conclusion

This chapter presents a novel approach for automatic synthesis and enforcement of security

policies, allowing the end-users to safeguard the apps installed on their device from inter-

app vulnerabilities. The approach, realized in a tool, called Separ, combines static program

analysis with lightweight formal methods to automatically infer security-relevant properties

from a bundle of apps. It then uses a constraint solver to synthesize possible security exploits,

from which fine-grain security policies are derived and automatically enforced to protect

a given device. The results from experiments in the context of thousands of real-world

apps corroborates Separ’s ability in finding previously unknown vulnerable apps as well as

preventing their exploitation.
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Chapter 6

Incorporating Time in Permission

Analysis and Enforcement of Android

The detection and prevention approaches described in Chapters 4 and 5, namely Covert

and Separ, ignore temporal aspects of an attack during the analysis and enforcement. This

chapter presents an improvement on those techniques by incorporating the notion of time.

6.1 Introduction

Popular mobile operating systems, such as Android, apply a permission-based model to

patrol resources that each application is allowed to access. In this model, critical system and

application resources are protected by an explicit permission, which then must be obtained

by any application that would like to access the resources. Yet, in the past few years since the

inception of Android, a number of flaws have been identified in its permission mechanism that

can lead to serious security and privacy breaches [188]. A large body of research, thus, has

been devoted to address detection and prevention of permission-induced attacks in Android
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(§ Chapter 2).

The state-of-the-art approaches, however, fail to consider the temporal aspects of permission-

induced attacks during the analysis and enforcement, thereby suffer from shortcomings that

aggravate their effectiveness. Detection of several permission-induced attacks, such as those

exploiting the TOCTOU (Time of Check to Time of Use) vulnerability in Android [463, 208],

requires careful consideration of the order of events. Hence, existing detection techniques,

which ignore the element of time in their analysis, are prone to miss important security

breaches. Additionally, due to the highly dynamic state of an Android system, the identified

security vulnerabilities may only be exploitable at specific time intervals, e.g., when some

specific permissions are granted. Hence, the existing conservative prevention techniques,

which regardless of the system state enforce security rules permanently, tend to produce

plenty of false alarms. As a result, users can be unnecessarily disrupted, even in the absence

of material security threats, and prevented from taking full advantage of the apps on their

device.

Finally, the proposed approaches are mostly realized through modification of either the

Android framework [114, 238, 379, 511, 252] or the implemenation logic of apps [75, 396,

535, 138]. But, such modifications are not necessarily expected, nor properly tested by the

application developers, resulting in all sorts of undesirable side effects, such as app crashes

and unexpected behaviors. To address this state of affairs, a pragmatic approach for detection

and prevention should explicitly consider the temporal aspects of attack during analysis and

enforcement. Moreover, the realization of the approach should be naturally compatible with

the implementation practices in Android.

This chapter contributes a novel approach and accompanying tool suite, called Terminator,

short for Temporal Permission Analysis and enforcement framework for Android. Unlike

all prior techniques, Terminator incorporates the notion of time as a first class entity

in both detection and prevention of permission-induced attacks. Our approach has the
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potential to greatly improve our ability to thwart permission-induced attacks by introducing

the concept of temporal permissions, i.e., the temporary granting of permissions to apps.

Specifically, constructed atop temporal logic, Terminator leverages temporal permissions

to (1) formulate dynamic aspects of the system over time and reason about the security

properties thereof as the system transitions from one state to another (risk detection), and

(2) regulate app permissions at runtime based on the current state of the system (risk

prevention).

Terminator provides a safe, reliable, yet non-disruptive approach to protect mobile users

against permission misuses. Upon receiving a permission request from an app, Terminator

evaluates the security posture of the system with respect to the current state of the granted-

permission configuration as well as potential threats conservatively identified via the state-

of-the-art static analysis tools. If granting the requested permission does not lead to a real

security threat given the current state of the system, Terminator leases (i.e., temporarily

grants) that permission to the requester. The leased permission is then automatically revoked

as soon as a change in the system status is observed that may lead to realization of an

identified security threat. Terminator uses TLA+ model checker (TLC) [553] as an analysis

engine for temporal permissions. To prevent permission-induced attacks, Terminator relies

on the Android’s dynamic permission mechanism without needing to make any modification

to the Android framework or the implementation logic of apps.

Our experiments indicate that Terminator is up to 68% more successful in preventing

permission-induced attacks, while issuing significantly less (56-100%) false alarms. It also

causes less disruption in the availability of permission-protected app functionality due to

restrictive permission configurations.

To summarize, this chapter makes the following contributions:

• Theory : To the best of our knowledge, this is the first attempt at leveraging temporal logic
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and incorporating the notion of time in modeling and analyzing the security properties

of Android;

• Tool : A fully automated framework, Terminator, that realizes the idea of temporal

permissions for Android, which we have made publicly available [42];

• Experiments : Empirical evaluation of the approach on real-world Android apps demon-

strating its efficacy.

The remainder of this chapter is organized as follows. Section 6.2 motivates our research

through various examples of permission-induced security attacks. Section 6.3 formally spec-

ifies those attacks and introduces our approach to effectively thwart them. Section 6.4

provides details of our approach and its implementation. Section 6.5 presents the exper-

imental evaluation of the research. The chapter concludes with an outline of the related

research and future work.

6.2 Permission-Induced Attacks

To motivate the research and demonstrate the need for temporal permissions, we describe

four types of permission-induced security attacks in Android, identified in prior research [188].

Permission-induced attacks are security breaches enabled by Android permissions misuse.

This section elaborates on the attack scenarios summarized in Figure 6.1. We will later show

how temporal permissions help thwart these attack scenarios with minimum disruption.

6.2.1 Privilege Escalation

Privilege escalation occurs when an application with less privilege is not restricted from

accessing components of a more privileged application [115]. In the case of the particular
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Figure 6.1: Examples of permission-induced security attacks that could be thwarted using
temporal permission. In each example, the top of the figure shows the elements involved in
the attack, and the bottom shows a possible attack scenario over time. The permission can
be leased, i.e., temporarily granted, during the “safe” time slots. In all of the scenarios, the
malicious communications are distinguished by dashed lines.

example shown in Figure 6.1(a), Mal App can indirectly reach the permission-protected in-

terface of the Privileged App, by exploiting the vulnerability of the Victim App — that is, an

unprotected exposed interface, shown to be quite common in the app markets [143]. The

collusion attack [437], carried out by multiple malicious apps through combining a set of

permissions to perform unauthorized actions, is also categorized under this group of attacks.

The state-of-the-art techniques for preventing inter-app security attacks (§ Chapter 2) con-

servatively assume that this vulnerability is exploitable, as soon as the apps are installed

on the device. However, a more careful look at the timeline of the attack scenario, shown

in Figure 6.1(a), would reveal that the presented security vulnerability is only exploitable

during the “unsafe” time slot, where the following two conditions hold at the same time: (1)

the malware and victim apps are both active, i.e., running in foreground or background, and
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(2) permission P is granted to Victim App. If those applications are installed but not active,

the vulnerability cannot be exploited. On the other hand, if permission P is not granted to

the victim app, the permission-protected interface of the other app is not accessible.

6.2.2 Unsafe PendingIntent

In Android, PendingIntent is a wrapper around Intent that enables performing the Intent’s

action in future, even if the original app that sent the Intent is not active anymore. For

this purpose, Android transfers the permission and identity (UID) of the sender app to the

target app that receives the PendingIntent. As such, careless use of PendingIntent can lead

to severe security consequences. Examples include the privilege leakage vulnerability in the

Android Settings application (CVE-2014-8609) [22].

For this reason, Android’s developer guidelines strongly discourage using blank base Pending-

Intents: “the base Intent you supply should have the component name explicitly set to one of

your own components, to ensure it is ultimately sent there and nowhere else [35].” Despite

that, many app developers fail to follow such security principle in action.

Figure 6.1(b) shows an example of using unsafe PendingIntent, exploited by Mal App to

illegally access permission-protected interface provided by Privileged App. This example

is similar to the privilege escalation attack, illustrated in Figure 6.1(a), except that the

conditions for exploitability are more relaxed in two ways: first, the Victim App does not

need to be necessarily active, and second, its permission P may be revoked prior to malware

executing the wrapped Intent.
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6.2.3 Identical Custom Permission

Besides the predefined built-in permissions, such as SMS, LOCATION, etc., Android apps

can define their own custom permissions and request those permissions from other apps.

However, the custom permission model suffers from a security vulnerability rooted in a

design flaw: “If two apps define the same custom permission, whichever app is installed first

is the one whose definition is used” [78].

A malicious app can exploit the custom permission vulnerability to illegally access the in-

terface of another app, protected by that custom permission. A sample attack scenario is

shown in Figure 6.1(c). In this example, Victim and Mal apps have both defined the same

custom permission, i.e., the names of permissions P and P ′, defined by the <permission>

element in the manifest are identical. Since the malicious app is installed prior to the vic-

tim app, permission P ′, defined in the manifest of the Mal App at the Normal level, is the

one recognized by the Android framework. Consequently, Mal App can access the interface

defined by the victim app, which is intended to be only accessible to those requesting the

custom permission P , such as Benign App. The custom permission breach can happen even

though the permissions with the same name have different protection levels.1 Essentially,

the malware can define a permission with normal protection level, rather than dangerous

or signature protection level, to evade user attention and interaction.2

6.2.4 Passive Data Leak

A passive data leak occurs when an app does not properly protect its internal database that

contains sensitive data [587]. A malware can exploit this vulnerability by retrieving the stored

data, without having the permission needed for directly accessing such sensitive information.

1The protection level indicates the trustworthiness of an application that may be granted this permission.
2The system automatically grants normal permission to a requesting application at installation, without

asking for the user’s explicit approval.
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Thereafter, the malicious app can transfer the sensitive data to an untrustworthy location.

Figure 6.1(d) depicts an example of passive data leakage. In this attack scenario, Victim

App with an access to Sensitive Data due to obtaining source permission (e.g., permission

for accessing phone identifier), stores this information in its internal database, which is not

properly protected. As a result, Mal App can retrieve the sensitive data and send it to an

untrustworthy location, if it has been granted with a sink permission (e.g., SMS permission).

From the attack scenarios shown in Figure 6.1, we can see that the notion of time is critical

in the precise description of all attacks. In other words, a precise analysis should keep track

of the security posture of the system as it moves from one state to another over time. Hence,

to formally describe the attack scenarios we need to formulate the system properties in terms

of time. For this purpose, we leverage temporal logic, as described in the next section.

6.3 Temporal Permission

In this section, we describe a formal model of the Android system with a focus on its security

properties such as permission status. Using this model, we then define a set of safety formulas

corresponding to the permission-induced security attacks, described in the previous section.

Finally, we demonstrate that control of the permissions granted to apps is sufficient for

effectively thwarting all such attacks.

6.3.1 Modeling the Android System

We model the Android system as a Kripke Structure, a variation of Transition System that

mathematically models dynamic systems [150]. Nodes represent the reachable states of

the system, and edges represent state transitions. Each node is also labeled with a set of
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/** Determines whether app is installed on the device */
Installed(app)
/** Determines whether app is running, either in the foreground or background */
Active(app)
/** Determines whether permission is declared by app */
Declared(app, permission)
/** Determines whether permission is requested by app */
Requested(app, permission)
/** Determines whether permission is (requested by and) granted to app at runtime */
Granted(app, permission)
/** Determines whether app defines an exposed interface reaches to permission-required capability

*/
Exposed(app, permission)
/** Determines whether app sends a pendingIntent with blank base Intent (w/o explicit target)

containing permission-required data payload */
BlankPI(app, permission)
/** Determines whether app retrieves permission-protected data (e.g., IMEI, location, etc)*/
Retrieve(app, permission, data)
/** Determines whether app sends data through permission-protected channels (e.g., SMS, Internet,

etc.) */
Send(app, permission, data)
/** Determines whether data is stored by the app in an unprotected database*/
StoreUnprotected(app, data)

Figure 6.2: Atomic Propositions (AP) defined for modeling the security properties of Android
system.

properties that hold in the corresponding state.

More formally, we model the system as a 4-tuple M = (S, I, R, L), where S is a set of

states, I ⊆ S is the set of initial states, R ⊆ S × S is a total transition relation, and L is

the labeling function that assigns to each state the subset of properties that are valid in

the state. To define the labeling function, we first need to define atomic propositions, or

AP , which is a set of boolean expressions that specify the properties of the system S. For

instance, Granted(appa, permp) states that the permission p is granted to the app a. We use

atomic propositions to define the labeling function as follows: L : S × AP → {true, false}.

In other words, for each system state s ∈ S, the labeling function, L, determines whether

the atomic proposition ap ∈ AP holds at that state or not.

Modeling the Android operating system in its entirety with all its compound structures would

be infeasible. We thus concentrate on the parts that are particularly relevant to the permis-

sion mechanism—how permissions are granted and maintained, and how they constrain the

behavior of an application. Figure 6.2 provides the set of atomic propositions, defined as
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S0
~Active(MalApp)
~Active(VicApp)
~Granted(VicApp,PrmP)

S1
~Active(MalApp)
Active(VicApp)
~Granted(VicApp,PrmP)

start VicApp

stop VicApp

grant 
permP

revoke 
permP

start VicApp
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grant 
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S2
Active(MalApp)
Active(VicApp)
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S3
Active(MalApp)
Active(VicApp)
Granted(VicApp,PrmP)

grant 
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start MalApp

stop MalApp

S4
~Active(MalApp)
Active(VicApp)
Granted(VicApp,PrmP)

S5
~Active(MalApp)
~Active(VicApp)
Granted(VicApp,PrmP)

Figure 6.3: A subset of Kripke structure for a hypothetical Android system

parameterized predicates. For instance, Granted(app, permission) has two arguments, the

first one is an app and the second one is a permission requested by that app.

As a concrete example, Figure 6.3 shows a small subset of the Kripke structure of a hypo-

thetical Android system with six states: the initial state s0 ∈ I along with five other states,

s1−5 ∈ S. Also, two kinds of actions triggering state transitions r ∈ R, are shown here,

namely start/stop actions that alter the system configuration apropos of the Active propo-

sition and grant/revoke actions that alter the system configuration apropos of the Granted

proposition.

Interacting with the user and other environmental actors, Android system moves from one

state to another in the Kripke structure over time. As a result, under specific sequence of

actions, the system can move to an unsafe state—a state that violates the security of the

system. For instance, in Figure 6.3, S3 represents an unsafe state, corresponding to the red

time slot of the privilege escalation attack scenario shown in Figure 6.1(a). S3 is unsafe since

a privilege escalation attack is possible when the system moves to this state.

6.3.2 Formulating Safety Rules

We specify safety rules in terms of conditions that need to hold throughout the states of

the system. For this purpose, we leverage linear-time temporal logic (LTL). Temporal logics

170



enable specifying a system’s behavior as it evolves over time. Indeed, in temporal logics,

the truth of a statement is not fixed in the semantics, rather relies on the point in time

when it is considered. Temporal logics, thus, besides the usual logical operators, such as

and, or, not, and implies, also contain temporal operators, such as eventually, always, and

until. For instance, “SMS permission can eventually be granted to the Messenger app”,

or “SMS permission should not be granted to the Messenger app until the Malware app

is terminated”, are two examples of such statements that can be expressed using temporal

logic. In LTL, time is represented by a sequence of discrete time steps.

Privilege Escalation: The first formula, SafetyRulePE, specifies the conditions needed

to hold in order to prevent the privilege escalation attack (Recall Section 6.2.1).

SafetyRulePE |=

∀ appvic, appmal ∈ Apps, p ∈ Permissions :

V ulPE(appvic, appmal, p)⇒

�¬(Granted(appvic, p) ∧Active(appmal))

(6.1)

The precondition of rule 6.1 checks for the privilege escalation vulnerability (V ulPE), which

is formulated as follows:

V ulPE(app1, app2, perm) :=

Requested(app1, perm) ∧ ¬Requested(app2, perm)

∧ Exposed(app1, perm)

According to the above expression, for the given two apps, app1 and app2, and the Android

permission perm, the hosting Android device is vulnerable to the privilege escalation attack,

if app1, granted permission perm, exposes an unprotected interface to a capability protected

by perm, while perm is not requested by the other app.
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SafetyRulePE states that the system is safe against the privilege escalation attack, if none

of the system’s apps expose the aforementioned vulnerability, or otherwise the unsafe per-

mission of the vulnerable app should remain as “not granted” as long as malicious app is

active. Note the usage of temporal operator �, read henceforth3, in the safety rule specified

in formula 6.1, which states that the conditional consequent should hold in all future states.

Unsafe PendingIntent: The second formula, SafetyRuleUPI , specifies the conditions

needed to hold in order to prevent the attacks exploiting an unsafe PendingIntent (Recall

Section 6.2.2).

SafetyRuleUPI |=

∀ appvic, appmal ∈ Apps, p ∈ Permissions :

V ulUPI(appvic, appmal, p) ∧Granted(appvic, p)⇒

¬♦Active(appmal)

(6.2)

The precondition of rule 6.2 checks for the unsafe PendingIntent vulnerability (V ulUPI),

which is formulated as follows:

V ulUPI(app1, app2, perm) :=

Requested(app1, perm) ∧ ¬Requested(app2, perm)

∧ BlankPI(app1, perm)

Unlike the privilege escalation exploits, PendingIntent exploits do not require the breached

permission to be granted to the vulnerable app prior to the attack. This is essentially because

the required permission is already transferred to the mal app through the PendingIntent.

Hence, the temporal operator ♦, read eventually4, is used in the conditional consequent.

According to formula 6.2, the system is safe against exploiting unsafe pendingIntent, if there

is no such vulnerability or the vulnerable app is not granted with the breached permission.

3� Φ means Φ is true at all future states
4 ♦ Φ means Φ is true in some future state
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Otherwise, the system is unsafe as soon as the mal app is activated.

Identical Custom Permission: The third formula, SafetyRuleICP , specifies the condi-

tions that need to hold to prevent the attacks exploiting the identical custom permission

vulnerability (Recall Section 6.2.3).

SafetyRuleICP |=

∀appvic, appmal ∈ Apps, p ∈ Permissions :

V ulICP (appvic, appmal, p) ∧ Installed(appmal)⇒

�¬(Granted(appmal, p) ∧ Installed(appvic))

(6.3)

The precondition of rule 6.3 checks for the unsafe identical custom permission vulnerability

(V ulICP ), which is formulated as follows:

V ulICP (app1, app2, perm) :=

Declared(app1, perm) ∧Declared(app2, perm)

Recall from Section 6.2.3 that the order of installation matters in the case of identical

custom permission. To formulate this chronological order, henceforth temporal operator

(�) is used. According to rule 6.3, if (a potentially malicious) application with a declared

custom permission p has been already installed on the device, no other app declaring the

same permission is allowed to be installed, as long as that permission is granted to the first

app.

Passive Data Leak: The last formula, SafetyRulePDL specifies the conditions needed to

hold in order to prevent the leakage of sensitive data stored in an unprotected app database
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(Recall Section 6.2.4).

SafetyRulePDL |=

∀ appvic, appmal ∈ Apps, p1, p2 ∈ Permissions :

V ulPDL(appvic, appmal, p1, p2) ∧Granted(appvic, p1)⇒

¬♦Granted(appmal, p2)

(6.4)

Passive data leak vulnerability, formally defined below (V ulPDL), occurs when a sensitive

(i.e.,permission-protected) data is sent out of the device by another app, via a (typically)

permission-protected channel:

V ulPDL(appsrc, appsnk, psrc, psnk) := ∃ data ∈ PhoneData :

Requested(appsrc, psrc) ∧Retrieve(appsrc, psrc, data)

∧ StoreUnprotected(appsrc, data)

∧Requested(appsnk, psnk) ∧ Send(appsnk, psnk, data)

According to rule 6.4, the system is safe against the passive data leak, if either there is not

such a vulnerability or the vulnerable app has never been granted the permission to access

sensitive data. Otherwise, the system is unsafe as soon as the malicious app is granted the

permission, allowing the app to send data out of the device.

6.3.3 Leasing Temporal Permissions

To keep the Android device safe against the attack scenarios described in Section 6.2, one

should guarantee that the corresponding safety rules hold at all times. A careful revisit

of the safety rules (Rules 6.1–6.4) reveals that the ¬Granted(app, permission) proposition
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is incorporated in all formulas.5 Therefore, permanently revoking specific permissions can

guarantee the safety of the system. This approach, however, is too conservative as it revokes

app permission even when the other criteria needed for exploitation of security vulnerability

is not satisfied. In other words, since ¬Granted proposition is qualified in terms of time, it

is not necessary to satisfy it over all system states. Instead, the app permission should only

be revoked during specific unsafe states, and can be granted in the rest of system states.

Based on this intuition, we propose a defense mechanism against permission-induced attacks,

called Terminator. Upon receiving a permission request from an app, Terminator leases

(i.e., temporarily grants) that permission to the requester, only if granting the requested

permission does not violate any safety rule. The leased permission is automatically revoked

as soon as a change in the system status could lead to the violation of the safety rules.

To appreciate the advantage of temporal permissions, consider the Victim App in Fig-

ure 6.1(a) that requires the permission P to accomplish its main functionality (e.g.,

Location permission in a navigator app). Permanently revoking of the permission P by

the existing approaches makes this app practically useless. However, a careful investigation

of the attack scenario makes it clear that the permission P should only be revoked during

the “unsafe” time slot. In other words, leasing permission P during the “safe” time slots

cannot pose a security risk, yet enables the user to take the full advantage of this app. As a

result, an analysis and enforcement approach based on temporal permissions, provides less

disruption in the normal execution flow of apps.

Another significant advantage of Terminator, attributed to its permission-based approach,

is the high coverage of permission-induced attacks that it can thwart. The existing en-

forcement techniques only consider certain types of breaches, thereby fail to protect those

attacks carried out differently. For instance, according to our survey (§ Chapter 3), the ma-

5In the safety rule 6.2, V ulUPI() ∧Granted()⇒ ¬♦Active() is logically equivalent to
¬V ulUPI() ∨ ¬Granted() ∨ ¬♦Active().
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jority of Android security research approaches only consider Intent-based communications

to identify inter-component security vulnerabilities, while there are other potentially vulner-

able communication methods, such as data-sharing or remote procedure call, which could be

exploited by malicious apps. Through meticulous regulation of the common element in all

such permission-induced attacks, i.e, permissions, Terminator is able to effectively thwart

all of them, regardless of the specific channels exploited by the attackers.

The third distinguishing characteristic of Terminator is its reliability. By leveraging the

dynamic permissions in Android, our approach avoids any unintended side effects, as it is

naturally compatible with the development constraints imposed by the latest versions of

Android. Specifically, with the introduction of dynamic permission mechanisms in the latest

versions of Android, an app should continue to work properly even if the user does not

grant some of the permissions requested by the app [43]. The app in such a case, of course,

performs in a downgraded mode, i.e., with some functionalities disabled. Here, we leverage

the same feature to revoke an unsafe permission without risking app failure.

6.4 TERMINATOR

In the previous section, we introduced the idea of using temporal permissions to provide

an effective, yet non-disruptive, defense against permission-induced attacks. This section

describes how we realized this idea using Android’s dynamic permission mechanism.

6.4.1 Approach Overview

Figure 6.4 depicts a high-level overview of Terminator, comprised of two phases: Analysis,

and Enforcement. The analysis phase runs once for a set of apps and identifies the potential

security risks threatening the Android System (risk detection). The enforcement phase runs
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Figure 6.4: Overview of Terminator framework

continuously and prevents the security threats to occur at run-time (risk prevention). The

enforcement components are deployed as an Android app embedded in the device, while the

analysis components are deployed externally.

To identify the potential security threats, Terminator relies on the state-of-the-art static

analysis tools [311], represented as Analysis Toolbox in Figure 6.4. Recall from Section 6.3.3

that the safety rule formulas include the specification of security vulnerabilities. In Termi-

nator, Analysis Toolbox is responsible for analysis of the installed apps and detecting any

instance of the atomic propositions (listed in Figure 6.2) constituting the security vulnera-

bilities of the given SafetyRules.

As discussed in the beginning of this Chapter, it is overly conservative to assume that

identified security risks could be realized in all states of the Android system. To accurately

identify the exact conditions under which the identified risks can be realized, Terminator

relies on a temporal Model Checker, and tracks down any counterexample violating the safety

rules with respect to the state transitions of the system. The analysis results are then stored

in the Unsafe Traces database.

Two components are involved in the enforcement of safety rules: State Monitor and Permis-

sion Adapter. State Monitor keeps track of the system states, particularly those affecting
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the security properties of the system, and attempts to match the current state of the system

against the Unsafe Traces provided by Model Checker. Upon detecting the possibility of

a security attack, Permission Adapter adopts appropriate countermeasures to prevent the

attack from occurring. For this purpose, Permission Adapter refrains to lease the requested

permissions enabling the attack, or revokes the previously leased permissions. Once the

system moves to a safe state, the adapter re-grants the previously revoked permissions.

In the next two sections, we provide a more detailed description of the components involved

in the analysis and enforcement phases.

6.4.2 Analysis

The set of security risks identified by the Analysis Toolbox are only realizable in specific

system states. The analysis phase of Terminator involves identifying those state transitions

of the Android system that lead to realization of the security risks.

Recall from Section 6.3 that we modeled an Android system as a transition system M =

(S, I, R, L) and formulated the safety conditions of the system as a set of temporal rules, i.e.,

SafetyRules. Given an Android system M , and a temporal safety rule r ∈ SafetyRules,

Terminator is intended to ensure M |= r. For this purpose, the Model Checker attempts

to find any violations, in terms of counterexamples, of the temporal rules.

To realize the Model Checker component, Terminator uses TLC [553], which is intended

to check the specifications written in TLA+. TLA, or Temporal Logic of Actions, and its

extension TLA+, are originally designed to provide a simple and practical language for high-

level specifications of concurrent and distributed systems [299]. TLA specifies the behavior

of a system as a sequence of states, where each state is an assignment of values to variables.

To model the state transitions, TLA defines next-state relation describing how variables are
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changed in each step. For this purpose, it uses the primed variable to represent the value of

the variable in the next state.

For instance, consider the following TLA+ formula, defined in Terminator to model the

state transition of the Android system that occurs due to granting the permission perm to

an app:

Grant(app, perm) ,

∧ perm ∈ RequestedPerms[app]

∧ permStat[〈app, perm〉] = “Revoked”

∧ permStat′ = [permStat EXCEPT ![〈app, perm〉] = “Granted”

∧ unchanged appStat

(6.5)

In this TLA+ formula, two variables are used to model the state of the system: permStat

representing the current state of the permission configuration for each app, and appStat

specifying the state of each individual app. Types of those two variables are formally defined

via the following type invariant assertion:

TypeInvariant ,

∧ appStat ∈ [Apps→ {“Running(Active)”, “Terminated”}]

∧ permStat ∈ [(Apps× Perms)→ {“Granted”, “Revoked”}

(6.6)

Formula 6.5 defines the Grant action as an operator with two arguments, app and perm.

The first two lines of the formula specify the state conditions enabling the Grant action: (1)

perm should be among the requested permissions of the app, and (2) perm should not be

previously granted to the app. If both conditions are satisfied in a state, the system can

move from that state to the next state described in the third line of the formula.

Using the action formulas, such as formula 6.5, the Next state of the system is defined as
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the disjunction of all possible next-state actions:

Next(app, perm) ,

∃ app ∈ Apps : Run(app) ∨ Terminate(app)∨

∃ perm ∈ Perms : Grant(app, perm) ∨Revoke(app, perm) ∨ . . .

(6.7)

Note that in this formula only four next-state actions, including Grant action defined

in formula 6.5, are shown. To see the full list of TLA+ next-state actions defined for

Terminator, refer to our online documentation [42].

Finally, the specification of Android system is formulated as follows:

Spec , Init ∧�[Next]〈appStat,permStat〉 (6.8)

In this TLA+ formula, Init represents the initial state of the system (not shown here),

where all apps are inactive and all permissions are revoked.

According to the specification formula, there are two possibilities for the next state of a sys-

tem state: (1) either one of the actions incorporated in the Next formula (Formula 6.7) will

take place, or (2) the state variables, namely appStat and permStat, will leave unchanged.6

In addition to modeling the behavior of an Android system using the above formulas, Model

Checker should reason about the security properties of the system. More specifically, Model

Checker should identify any sequence of actions (i.e., state transitions) that leads to the

violation of safety rules. For this purpose, the following theorem is defined as the system

invariant needed to be checked:

theorem Spec⇒ TypeInvariant ∧
∧

rule∈SafetyRules

(6.9)

According to theorem 6.9, given the specification of an Android system (Spec), all system

6In TLA+, those steps leaving state variables unchanged are called stuttering steps
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behaviors should satisfy the safety rules, such as Rules 6.1–6.4 defined in Section 6.3.

In this formula, TypeInvariant is also added to the theorem to ensure that the model checker

only explores the valid states of the system, as specified by definition 6.6.

Having the specification of Android system and safety rules in TLA+, TLC model checkers

verifies formula 6.9. For this purpose, TLC explores reachable states, looking for any unsat-

isfying safety rules. In case of finding a violation, it reports the minimal-length trace from

an initial state that leads to an unsafe state. The unsafe traces are then stored in the Unsafe

Traces database in the Android device.

6.4.3 Enforcement

State Monitor keeps track of the Android system states, looking for violating traces that

match any of the traces stored in the database. The monitor component is realized as an

Android app that uses Xposed module for collection of runtime data [44]. The Xposed

module instruments the root process of Android, without making any changes in the apps’

APK files. The implemented module intercepts those events corresponding to TLA+ action

operators defined in Section 6.4.2. Examples of monitored events include but not limited

to: granting/revoking of a permission via a permission request dialog, granting/revoking of

a permission via system settings, and running or terminating an app.

If the State Monitor finds a match, it marks the matching unsafe trace in the database,

which triggers the Permission Adapter component. The goal of this component is to regulate

the permission configuration of apps such that the system remains in a safe state. Since the

identified security risks are all permission-induced, it is sufficient to revoke the corresponding

risk-enabling permissions to thwart the attack.

In its effort to thwart an attack, Permission Adapter may encounter a situation in which
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there are multiple candidate permissions for revocation. For instance, consider the inter-

app data leak, where a sensitive data protected by the source permission in App1 is leaked

through a sensitive channel protected by the sink permission in App2. In this case, permis-

sion Adapter has two choices, since revoking either of the source or sink permissions would

prevent the leak form happening. To provide an effective yet non-disruptive defense against

permission-induced attacks, Permission Adapter applies the following method to select the

best permission.

It first calculates two scores for each candidate permission:

Risk score that reflects the number of attacks enabled by granting the permission. A

permission with high involvement in the identified security threats would have a higher

Risk Score. The risk score is calculated based on the analysis results of Model Checker.

Usage score that indicates the usage frequency of the app requesting the permission. If

the permission is requested by an app that is highly used by the user, that permission would

receive a high usage score. Unlike the risk score, the usage score is based on user behavior

and calculated by the State Monitor component using the Android’s USAGE STATS SERVICE

APIs.

Afterwards, Permission Adapter selects the permission with the highest Revoke Score, which

is calculated as a function parameterized by both the Risk Score and the reverse of the

Usage Score, i.e., F(RiskScore, UsageScore−1). In other words, to prevent a security risk,

Permission Adapter revokes permissions with higher security risks that are requested by

less-frequently-used apps.

Since Terminator is not aware of the user’s context, in certain situations the user may

disagree with the way in which it prioritizes permissions for revocation. This might happen,

for example, when the user anticipates using a rarely used app. Our implementation allows

the user to override the Terminator’s decision by adding exception rules. Such rules exclude

specific app permissions from being revoked, even if they violate the safety rules.
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6.5 Evaluation

Our evaluation of Terminator addresses the following research questions:

RQ1. Coverage: How does Terminator compare against alternative approaches in prevent-

ing the variety of permission-induced attacks?

RQ2. Disruption: How effective is Terminator in reducing the unnecessary disruptions due

to unavailability of permission-protected app functionality?

RQ3. Applicability & Reliability : What percentage of Android apps are compatible with

Terminator? Does the temporal enforcement of Terminator cause any unexpected

behaviors?

RQ4. Performance: What are the performance characteristics for each phase of Termina-

tor?

6.5.1 RQ1: Coverage

For a thorough evaluation, we compared the coverage of Terminator with the other state-

of-the-art approaches, enumerated in Table 6.1 under the “Alternative Approaches” column.

We considered two criteria in selecting other approaches for our comparative analysis. First,

the approach should support both detection and prevention of security attacks.7 Second, the

approach should provide a publicly available tool suite. In accordance with the above criteria,

we selected three alternative approaches intended to prevent permission-induced security

attacks, namely Separ [83], Sealant [303], and DELDroid [238]. Separ enforces fine-

grained security policies, synthesized by a SAT-based constraint solver, to prevent capability

7Approaches such as IccTA [308], Jitana [494], Covert [80] DialDroid [111], etc. are excluded in our
study as they only perform detection, not prevention.
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Table 6.1: Ability of Terminator in preventing permission-induced attacks in comparison
with alternative approaches.

# Permission-Induced Data Set Involved Termi- Alternative Approaches
Attack Type (Subtype) Permissions -nator [83] [238] [303]

1 Custom Permission DD STORAGE, SMS � � � �
2 Privilege Escalation DB LOCATION, STORAGE � � � �
3 Passive Content Leak (CP) DD STORAGE, SMS � � � �
4 Passive Content Leak (CP) DD SMS � � � �
5 Passive Content Leak (CP) DD STORAGE, SMS � � � �
6 Privilege Escalation DB READ PHONE STATE, STORAGE � � � �
7 Custom Permission DD STORAGE, SMS � � � �
8 Privilege Escalation (AH) DD STORAGE, SMS � � � �
9 Privilege Escalation (DCL) DD STORAGE, SMS � � � �
10 Custom Permission DD SMS � � � �
11 Passive Content Leak (CP) DD STORAGE, SMS � � � �
12 Privilege Escalation (PR) SP WAKE LOCK � � � �
13 Privilege Escalation (PR) DD SET WALLPAPER � � � �
14 Custom Permission DD STORAGE, SMS � � � �
15 Privilege Escalation SL SMS � � � �
16 Passive Content Leak (CP) DD STORAGE, SMS � � � �
17 Privilege Escalation (BT) SP WAKE LOCK � � � �
18 Privilege Escalation SL LOCATION � � � �
19 Privilege Escalation (SH) DD SMS � � � �
20 Privilege Escalation (PR) DD LOCATION, SMS � � � �
21 Privilege Escalation SL CONTACTS � � � �
22 Custom Permission DD STORAGE, SMS � � � �
23 Privilege Escalation (PR) DD LOCATION, SMS � � � �
24 Privilege Escalation (MAL) DD SMS � � � �
25 Privilege Escalation DB LOCATION, STORAGE � � � �
26 Privilege Escalation SL LOCATION � � � �
27 Privilege Escalation (PR) DD SMS � � � �
28 Privilege Escalation DB READ PHONE STATE, STORAGE � � � �
29 Passive Content Leak (CP) DD SMS � � � �
30 Privilege Escalation DB READ PHONE STATE, STORAGE � � � �
31 Privilege Escalation (PR) DD SMS � � � �
32 Privilege Escalation (PR) DD LOCATION � � � �
33 Privilege Escalation (DCL) DD STORAGE, LOCATION � � � �
34 Passive Content Leak (CP) DD STORAGE, SMS � � � �
35 Privilege Escalation (AH) DD STORAGE � � � �
36 Custom Permission DD STORAGE, SMS � � � �
37 Privilege Escalation DB READ PHONE STATE, SMS � � � �
38 Privilege Escalation (AH) DD STORAGE � � � �
39 Privilege Escalation DB ACCESS FINE LOCATION � � � �
40 Privilege Escalation DB LOCATION, STORAGE � � � �
41 Custom Permission DD SMS � � � �

Total thwarted attacks 41 13 27 16
Coverage (true-positive rate) 100% 31.7% 65.9% 39.0%

�(�): attack scenario is (not) prevented by the approach, �: the approach crashed during the analysis
Attack Subtypes: PR: Permission Re-Delegation, AH: Activity Hijack, SH: Service Hijack, BT: Broadcast Theft,
MAL: Malicious Activity Lunch, DCL: Dynamic Class Loading, Content Provider (CP)
Data-sets: DD: DELDroid [238], SL:Sealant[303], SP:Separ[83], DB: DroidBench [67]

leaks. Sealant extends Android framework to provide an interceptor that blocks potentially

malicious intents. Finally, DELDroid uses a multiple-domain matrix to eliminate the security

vulnerabilities violating the least-privilege property of the system.

To eliminate bias in favor of Terminator, we built a collection of subject apps consisting

of the apps used in the evaluation of the three mentioned prior approaches as well as a

reputable benchmark collection, namely DroidBench [67]. The resulting dataset consisted of

a collection of 255 subject apps with known security issues. Out of this collection of apps,
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we selected those that target Android 6.0 (API level 23) or newer versions. Older versions

of the Android framework provide just a static permission model and do not allow users to

dynamically grant or revoke permissions at run-time. We then ended up with a total of 69

apps suitable for our experiments.

To evaluate the extent Terminator can prevent security attacks, we executed the attack sce-

narios from our dataset on an Android phone running Terminator. Recall from Section 6.4,

Terminator relies on static analysis tools to identify the potential security threats. In our

experiments, we used a combination of two static analysis tools, namely FlowDroid [67] and

IC3 [370], that have also been used in the construction of three prior approaches to which

we compare.

Table 6.1 shows the result of assessing the effectiveness of Terminator compared to the state-

of-the-art techniques. The first three columns of Table 6.1 show the attack scenarios, their

source dataset, and the permissions involved in the attack scenarios, respectively. The other

columns indicate whether each of the four approaches assessed was successful in preventing

the attack (�) or not (�, �).

According to the results, Terminator is able to prevent all the attack scenarios with no false

negatives. The success rate of the other techniques in preventing the permission-induced

attacks ranges from 31.7% to 65.9%. A detailed look at Table 6.1 indicates that most of the

missing attacks are those whose detection requires temporal analysis. For instance, consider

the attack scenario #36, where a malicious application has defined a custom permission

identical to the permission defined by a vulnerable app to protect its internal database. As

a result, the malware can illegally access sensitive information stored in the vulnerable app.

This vulnerability, however, is only exploitable if the malware is installed before the victim

app. Thereby, all prior non-temporal approaches fail to detect such attacks.

To tackle this issue, a conservative approach might prevent the aforementioned attack by
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permanently revoking database access of the victim app. This approach, however, would

cause unnecessary disruptions, particularity when the vulnerability is not exploitable, i.e.,

the victim app is installed before malware in this case. In the next research question (RQ2),

we investigate the consequences of permanently revoking the permissions of vulnerable apps

through additional experiments.

6.5.2 RQ2: Disruption

For this research question, we focus on alternative permission-based enforcement techniques.

Generally speaking, permission-based security enforcement can be applied at install-time

or run-time [188]. An install-time approach prevents the installation of vulnerable apps,

while a run-time approach revokes the permissions upon identification of an attack scenario.

Run-time approaches can further be either permanent, whereby the permission decisions

are final, or temporal, as in the case of Terminator, whereby the permission decisions

are adjusted over time. Since the prior tools implementing the competing techniques are

either not available, as is the case with AppFence [252] and AppGuard [75], or outdated

and inapplicable, as is the case with Kirin [183], we implemented both install-time and

permanent-run-time enforcement approaches described in the prior work to compare against

Terminator’s enforcement strategy.

To evaluate the level of disruption due to unavailability of permission-protected app function-

ality, we needed access to legitimate use-cases for apps in our dataset. Attack scenarios used

in the evaluation of RQ1 are not representative of the apps’ functional use-cases; thereby,

they are not suitable for evaluating the level of disruption caused by the revocation of app

permissions. To that end, we followed a semi-systematic approach to extract functional use-

cases for the vulnerable apps in our dataset. We first downloaded the description of subject

apps from the app markets (Google Play or F-Droid). We then asked a group of graduate
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Table 6.2: Efficacy of permission-based techniques in reducing the unnecessary disruptions.

Vulnerable Apps #Use- #Allowed Scenarios
cases Run-time Install-timeTemporal Permanent

de.*.geobookmark 3 3 0 0
com.*.multismssender 8 8 4 0
com.*.calendar 14 14 6 0
com.*.smsscheduler  9 9 5 0
org.*.trackbook 9 9 2 0
com.*.simpledeadline 13 13 9 0
com.getback gps 10 10 6 0
com.*.camera 12 12 0 0
com.*.gallery 4 4 3 0
com.*.manager 11 11 5 0
com.*.anki 18 18 0 0
com.*.screennotification 3 3 2 0
com.*.notes 2 2 1 0
cz.*.forcastie 7 7 4 0
com.*.loginexample 2 2 1 0
com.*.sms 3 3 1 0
com.*.opps wrong tab 8 8 7 0
code.*.sendsmstest 3 3 1 0
org.*.myexpenses 24 24 8 0
com.*.ukweather 4 4 0 0
com.*.client 8 8 7 0
fr.*.ommons 11 11 9 0

Total allowance 186 81 0
Disruption (false-positive rate) 0% 56.45% 100%

students to construct, if possible, functional use-cases for each sentence or bullet in the app

description. Additionally, we used available system tests for open-source subject apps as

another source for identifying the legitimate use-cases. In total, we were able to derive 186

legitimate use-cases for subject apps in this research question. The full set of use-cases and

subject apps are publicly available on the project website [42].

To measure the disruptions caused by the two run-time approaches, we first executed the

attack scenarios from Table 6.1 to instigate an enforcement decision, i.e., force the approach

to adjust the permission configuration. Subsequently, we ran the legitimate use-cases in-

volving the apps in the attack to determine if the use-cases can be executed successfully

or not. Table 6.2 summarizes the results of comparing different enforcement strategies for

permission-based approaches. The first column shows the subject apps. The second column

shows the number of legitimate use-cases for the subject apps. The last three columns show

the number of use-cases allowed by each approach. The results from this analysis confirm
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that the run-time-temporal approach adopted in Terminator outperforms other enforce-

ment techniques in terms of unnecessary disruption, i.e., false-positive rate. The install-time

enforcement approach performs worst (100% false positive), as it does not allow the instal-

lation of a vulnerable app. The run-time-permanent approach (with 56% false positive) on

the other hand, allows installation, yet revokes unsafe permissions permanently. Therefore,

some of the legitimate permission-protected use-cases can never execute after revocation,

even in the absence of a security threat.

For example, the security analysis performed by Terminator identified GetbackGPS app

(com.getback gps in Table 6.2) as being vulnerable to privilege escalation attack—attack

scenario #20 in Table 6.1, whereby its sensitive location information can be leaked. This

vulnerability is only exploitable if two conditions are satisfied simultaneously: (1) a malware

app with access to a sink channel (e.g., SMS) is installed and running on the phone, and

(2) the malware has been granted the sink permission. Since the app is vulnerable, the

install-time approach simply does not allow its installation to avoid any chance of leaking

user’s location information. The run-time-permanent approach on the other hand, allows

the installation of GetbackGPS, yet permanently revokes its LOCATION permission to remove

the vulnerability. Our run-time-temporal enforcement approach, however, leases Location

permission to GetbackGPS, as long as the above conditions are not satisfied, during which

all of the legitimate use-cases of the app are available.

6.5.3 RQ3: Applicability & Reliability

6.5.3.1 Applicability

Recall from Section 6.4.3, Terminator relies on the dynamic permission mechanism, sup-

ported by Android 6 and newer versions of the framework, to regulate app permissions at

run-time. However, not all the apps available on the Android marketplace are compati-
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Table 6.3: Percentage of Android-6-compatible apps in Google Play
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ble with the new versions of Android. To investigate the extent to which Terminator is

applicable to Android apps, we measured percentage of the apps on the official Android

marketplace, i.e., Google Play, that target API level 23 (Android 6) and above.

To that end, we randomly collected 48,795 apps from different app categories, and distin-

guished Android-6-compatible apps by examining the targetSdkVersion tag specified in

their manifest file. To avoid any bias in the results, we did not use any particular criteria,

such as high popularity or high ranking, in selection of the apps to be analyzed. Table 6.3

demonstrates percentage of the apps targeting API level 23 and above among the apps col-

lected from 15 different app categories of the Google Play repository8. According to the

results, on average 89.8% of the Google Play apps support dynamic permissions.

To further investigate the support for dynamic permissions among popular apps, we also

collected top 100 popular apps on Google Play. As shown in the last column of Table 6.3, all

of the top 100 apps on Google Play support dynamic permissions, thereby are compatible

with Terminator. These results indicate that a large majority of the apps on the Android

official marketplace can benefit from Terminator for run-time security enforcement.

6.5.3.2 Reliability

Although the majority of collected apps support Android 6 and above, it is possible that

they do not properly handle dynamic permissions. Failing to adjust the functionality of an

app to dynamic permissions can lead to unexpected behaviors, e.g., app crashes if the user

8Due to space constraint, we merged similar categories into a representative one shown in Table 6.3
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decides to revoke a permission. Hence, we also need to investigate the reliability of adopting

an approach like Terminator, which revokes permissions at run-time.

To investigate reliability of Terminator, we recorded Logcat outputs during the execution

of both the attack scenarios and canonical use-cases for subject apps discussed in RQ1 and

RQ2. We later explored collected logs, searching for any crash messages due to improper

handling of dynamic permissions.9 Out of the 69 subject apps in our dataset, we found

one app, SMS Scheduler (marked with  in Table 6.2), that crashes due to the permission

revocation.

From this data—low percentage (around 1.5%) of apps crashing when revoking their per-

missions and high percentage (around 89.8%) of app compatibility with recent versions of

Android—we conclude that Terminator can reliably be applied to a large majority of An-

droid apps available on the market.

The permission-aware testing approach, presented in the next Chapter (Chapter 7), help

identify those apps that crash when revoking their permission.

6.5.4 RQ4: Performance

To examine the performance characteristics of Terminator, we measured the execution time

taken for each phase of Terminator, i.e., analysis and enforcement . We performed our

experiments on a PC with an Intel Core i7 2.4 GHz CPU processor and 16 GB of main

memory for the analysis phase, and a Nexus 5x phone operated by the Android framework

version 6 for the enforcement phase.

TLC is configurable in two operating modes, simulation and model-checking. In the simula-

tion mode, TLC verifies the system behavior up to a fixed number of system states. In the

9In case of improper handling of dynamic permissions, a SecurityException is thrown by Android frame-
work, including the information of missing permission.
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model-checking mode, on the other hand, there is no limit for the number of states to be

explored. Applying an upper bound over the state exploration may lead to the possibility

of missing attacks concealed within states not explored. We configured TLC to operate in

the simulation mode to guarantee the termination of the analysis phase. This guarantee

is required for Terminator given that the reachable states of our model for the Android

system is infinite. In our experiments, Terminator was able to identify all of the attack

scenarios (see Table 6.1). For these attack scenarios, TLC took at most 7 seconds to find

the attack through the exploration of over 707,000 states.

To determine the performance of the enforcement phase, we calculated the overhead of run-

ning Monitor and Adapter components of Terminator during the execution of 227 (41 attack

scenarios and 186 canonical use-cases) scenarios exercised in RQ1 and RQ2. We repeated

the execution of each scenario 5 times to ensure 95% confidence interval for the reported

values. According to our experiments, the run-time overhead of Terminator enforcement

phase is 714±33 milliseconds on average for each use-case. Given that the average execution

time for each use-case is 12 seconds, this overhead is negligble, as it is less than the threshold

users can perceive slowness in an app, according to offical Android documentation [32]. Note

that the analysis phase is performed once per system configuration, while the enforcement

component runs continuously as the user interacts with the apps.

6.6 Conclusion

In this chapter, I presented a permission analysis and enforcement framework that, in con-

trast to the prior work, considers the temporal aspects of permission-induced attacks for their

detection and prevention. The framework, called Terminator, is realized in two phases. In

the analysis phase, it uses a temporal logic model checker to identify the security risks with

respect to dynamic states of the system. In the enforcement phase, it relies on Android’s
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dynamic permission mechanism to prevent the identified security threats from materializing

by regulating the permission configuration of the system.

The evaluation results indicate that Terminator is able to provide an effective, yet non-

disruptive, defense against permission-induced attacks. The results also show that our ap-

proach, which is implemented without modification of Android framework or implementation

logic of apps, is highly reliable and compatible with the great majority of Android apps avail-

able on the marketplace.
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Chapter 7

Permission-Aware Testing of Android

As discussed in Section 6.5 of Chapter 6, revoking permissions, as a countermeasure for

thwarting permission-induced attacks, could result in other sorts of defects, if the target

app suffers from dynamic-permission compatibility issue. To identify this sort of permission-

induced defects that occur either by the end-users via permission manager user interface, or

by automatic enforcement tools such as Terminator, an efficient permission-aware testing

approach for Android apps is presented in this chapter.

7.1 Introduction

Access control is one of the key pillars of software security [300]. Many access control models

exist for selectively restricting access to a software system’s security-sensitive resources and

capabilities. Among such models, permission-based access control has gained prominenace

in recent years, partly due to its wide adoption in several popular platforms [89], including

Android.

In Andriod, permissions are granted to apps. The Android runtime environment prevents
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an app lacking the proper permissions from accessing both sensitive system resources (e.g.,

sensors) as well as other protected applications. Initially, Android employed a static per-

mission system, meaning that the users were prompted to consent to all the permissions

requested by an app prior to its installation, and the granted permissions could not be re-

voked afterwards. To provide the users more control over their device, in 2015, starting with

API level 23, Android switched to a dynamic permission system, allowing users to change

the permissions granted to an app at run-time [27].

The introduction of a dynamic permission system, however, poses an important challenge for

testing Android apps. A test executed on an app may pass under one combination of granted

permissions, yet fail under a different combination. As recommended by Android’s best

practices:“Beginning with Android 6.0 (API level 23), users grant and revoke app permissions

at run-time, instead of doing so when they install the app. As a result, you’ll have to test

your app under a wider range of conditions.” [27].

At the state-of-the-art, properly testing an Android app with respect to its permission-

protected behavior entails re-execution of each test on all possible combination of permissions

requested by an app, as there are no tools available to assist the developers with determining

the interplay between tests and permissions. Such an exhaustive approach is time consuming,

and often impractical, particularly in the case of regression testing, where the execution of an

entire test suite needs to be repeated for an exponential number of permission combinations.

To mitigate this challenge, we have developed PATDroid, short for Permission-Aware GUI

Testing of AnDroid. The insight guiding our research is that a given test may not interact

with all the permissions requested by an app, meaning that some permissions, regardless of

whether they are granted or revoked, may not affect the app’s behavior under a particular

test. By excluding the permissions that do not interact with tests, we can achieve a significant

reduction in testing effort, yet achieve a comparable coverage and fault detection capability

as exhaustive testing.
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PATDroid leverages a hybrid program analysis approach to determine the interactions be-

tween an app’s GUI tests and its permissions. It first dynamically pinpoints the entry-points

of the app exercised by each test case. It then statically examines the parts of code that are

reachable from the identified entry points to find the permission-protected code fragments.

Afterwards, it statically determines the app inputs (i.e., GUI widgets) that control the exe-

cution of permission-protected code fragments. Finally, it statically identifies usages of the

app inputs in the test scripts. Employing a sufficiently precise, yet scalable technique, PAT-

Droid is able to effectively determine which tests should be executed under what permission

combinations for an app.

Our experiments indicate that PATDroid is able to reduce both number of tests and their

execution time by 71% on average, while maintaining a similar coverage as exhaustive exe-

cution of tests on all permission combinations. In addition, using PATDroid, we were able

to identify several defects in real-world apps, as confirmed by their developers, that can

only be exposed under certain permission settings, further demonstrating the usefulness of

PATDroid in practice.

The chapter makes the following contributions:

• Theory : To the best of our knowledge, the first approach that considers the depen-

dencies between a program, its test suite, and access control model for the reduction

of testing effort;

• Tool : A fully automated environment that realizes the approach for Android pro-

grams, and made available publicly [34];

• Experiments : Empirical evaluation of the approach on a large number of real-world

android apps demonstrating its efficacy.

The remainder of this chapter is organized as follows. Section 7.2 introduces an illustra-
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Figure 7.1: Screenshots of Suntimes app (a) Initially, asking user for the “Location” permission; (b)

Main activity with available menu options, where the first option, i.e., location setting, is selected

by the user; (c) Adding a new location to the app using GPS data

tive example to motivate the research. Section 7.3 provides an overview of PATDroid, while

more details are presented in Sections 7.4-7.7. Section 7.8 provides the implementation infor-

mation associated with the tool realizes our approach. Section 7.9 presents the experimental

evaluation of the research.

7.2 Illustrative Example

We use a simplified version of an Android app, called Suntimes, to motivate the research

and illustrate our approach. Suntimes calculates and displays sunrise, sunset, and twilight

times for a particular location. It is developed to target Android version 6. Sample screen

shots of this app are captured in Figure 7.1.
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1 @Test //Test#1
2 public void testSunTimesNavigation() {
3 onView(withId(R.id.info_note_flipper)).perform(click());
4 onView(withId(R.id.info_note_flipper)).perform(click());
5 onView(withId(R.id.info_time_nextbtn)).perform(click());
6 onView(withId(R.id.info_time_prevbtn)).perform(click());
7 // Check the navigation between suntimes is correct ...
8 }
9 @Test //Test#2

10 public void testSettingLocationToUserDefined() {
11 onView(withId(R.id.action_location_add)).perform(click());
12 onView(withId(R.id.appwidget_location_edit)).perform(click());
13 onView(withId(R.id.appwidget_location_getfix)).perform(click())
14 onView(withId(R.id.appwidget_location_name)).perform(replaceText("My Location"));
15 onView(withId(R.id.appwidget_location_save)).perform(click());
16 onView(withId(android.R.id.button1)).perform(click());
17 // Check the newly added location is shown properly ...
18 }
19 @Test //Test#3
20 public void testExportLocations() {
21 openContextualActionModeOverflowMenu();
22 onView(withId(R.id.action_settings)).perform(click());
23 onData(withKey(configLabel_places)).perform(click());
24 onData(withKey(configLabel_places_export)).perform(click());
25 // Check the locations are saved correctly ...
26 }

Figure 7.2: A subset of Espresso [29] tests embedded in the THA to verify the behavior of Suntimes

app. The test assertions are not shown here

Since the app requires access to GPS data, it asks for Location permission once launched for

the first time (Figure 7.1a). If a user grants the Location permission, the app periodically

calculates and updates sunrise, sunset, and twilight times based on the current user location.

Alternatively, the user can update her current location on demand from the option menu

(Figure 7.1b), either by manually providing specific latitude and longitude, or using GPS

to obtain location data (Figure 7.1c). However, Suntimes crashes when a user, who has

previously denied the requested location permission, tries to update the current location

using GPS, as the app at that point is neither granted the required permission (i.e., Location)

to accomplish this task, nor it asks for it again.

To validate its behavior, Suntimes comes with a GUI test suite, a subset of which is shown

in Figure 7.2. In contrast to unit tests, these tests run on a hardware device or emulator and

commonly referred to as instrumented tests [28]. Regardless of the testing framework (e.g.,

Espresso [29], Robotium [38]), instrumented tests are compiled and packed as a separate apk
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file and installed together with the apk of the main app. To distinguish these two software

artifacts throughout this chapter, we call the apk containing the test suit and testing libraries

as Test Harness App (THA), and the apk of the main app as App Under Test (AUT).

In the test cases shown in Figure 7.2, testSunTimesNavigation (Test

#1) verifies the smooth navigation between different suntimes and dates,

testSettingLocationToUserDefined (Test #2) validates adding a new user-defined

location based on GPS data, and testExportLocations (Test #3) ensures the correctness

of exporting retrieved location information to storage. Since Android version 6, it is

recommended to test an app with various combinations of granted and revoked permissions

to ensure correct behavior of the app under different conditions [27]. For example,

testSettingLocationToUserDefined can reveal the aforementioned crash only when

the developer has revoked the Location permission before running the test.

As another example, consider Test #3 of Figure 7.2, which requires Location and Storage

permissions to save user’s location. Depending on the permissions granted to Suntimes,

Test #3 can exhibit different behaviors:

1) Both required permissions are already granted and Suntimes is able to successfully

save the user’s location on the external storage.

2) Only the Location permission is already granted. Hence, Suntimes asks for the Storage

permission. In case of denial, Suntimes saves the location information in the app’s

internal storage, which does not require Storage permission.

3) Only the Storage permission is already granted. Hence, Suntimes asks for the Location

permission. In case of denial, the app takes no action.

4) Neither of the required permissions have been previously granted. Hence, Suntimes

asks for both of them. In case of denial, the app takes no action.
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In any case, if the user denies any of the requested permissions, Suntimes should not crash.

The problem of testing an app’s behavior under different permission settings becomes more

complicated as the number of permissions defined in the app configuration file, a.k.a. Man-

ifest, increases. One approach is to randomly grant and revoke permissions and run the

test suite. Though simple, this approach fails to thoroughly test the app’s behavior and is

prone to miss important defects. Alternatively, a developer could manually review the test

scripts and source code of an app to determine which tests should be executed under what

app permissions. Such an approach, however, is quite cumbersome, especially considering

that every time the app’s source code changes, the developer needs to manually establish

the relationships between the app’s tests and its permissions.

Another approach is to exhaustively run the test suite under all possible combinations of

requested permissions. In this approach, if an application requires p permissions, each test

should be executed 2p times, since each permission takes two values of {granted, revoked}.1

For instance, Suntimes requests four permissions in its manifest file (i.e., Location, Storage,

Alarm, and Internet). Considering the three tests in Figure 7.2, exhaustive approach runs

each test 24 = 16 times. For only the 3 test shown in Figure 7.2, we would need a total of

3× 16 = 48 test runs. Clearly, such an approach does not scale as the number of requested

permissions and the size of test suite increase.

The insight guiding our research is that exhaustive execution of tests for all permission

combinations is overly conservative. For instance, we found that Test #2 requires only

Location permission, as the code executed by this test does not require access to capabilities

guarded by other permissions. As a result, this test can only be executed twice—with and

without the Location permission—rather than the 16 times required under the exhaustive

1In Android, only the dangerous permissions are configurable at run-time, while normal permissions are
automatically granted at installation time. Without loss of generality, we consider all the permissions can
be granted/revoked at run-time. for the evaluation however, we distinguish between dangerous and normal
permissions.
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scenario.

7.3 Approach Overview

As mentioned in the previous section, in all popular Android testing frameworks

(e.g., [29], [38]), a test suite is compiled and packed to produce the Test Harness App

(THA), which is installed together with the App Under Test (AUT). Given a pair of THA

and AUT, PATDroid identifies the minimum number of permission combinations for AUT

that should be tested for each of the test cases embedded in THA. Figure 7.3 depicts an

overview of PATDroid, consisting of four major components.

PATDroid first identifies those parts of AUT that could be exercised by the test cases

embedded in THA. However, this is a challenging task as the test suite and test subject are

realized in the form of two separate software artifacts (apk files). Moreover, THA is composed

of instrumented test cases that require more involved analysis compared to, for example,

unit tests. In contrast to unit tests that have no Android framework dependencies and

directly invoke AUT’s methods, instrumented tests run on a hardware device or emulator,

and indirectly trigger a sequence of actions via GUI events.2 The triggered GUI events

2Instrumented tests can also trigger other events, such as sending Intents. Those events, however, are
outside the scope of this research, which focuses on GUI testing.
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1 @Override
2 public boolean onOptionsItemSelected(MenuItem item){
3 switch (item.getItemId()){
4 case R.id.action_alarm:
5 scheduleAlarm();
6 return true;
7 case R.id.action_settings:
8 showSettings();
9 return true;

10 case R.id.action_location_add:
11 configLocation();
12 return true;
13 case R.id.action_location_refresh:
14 refreshLocation();
15 return false;
16 case R.id.action_timezone:
17 configTimeZone();
18 return true;
19 // other options
20 default:
21 return super.onOptionsItemSelected(item);
22 }
23 }

Figure 7.4: An entry-point of Suntimes app that handles the event corresponding to the
selection of menu items shown in Figure 7.1b (A subset of options are shown here)

are handled initially by the testing framework, then Android run-time environment, and

eventually delegated to certain methods in AUT, called entry-points. Due to such implicit

dependency, static analysis cannot resolve the parts of the AUT executed by THA.

To mitigate the difficulties of resolving the relationships between AUT and THA statically,

PATDroid leverages a hybrid (static and dynamic) approach that traces the dependencies

between AUT and THA at two levels of granularity. First, at the method level, dynamic

analysis identifies the entry-point methods of AUT that are exercised as a result of running

the tests embedded in THA (represented as the set TE in Figure 7.3). Second, at the sub-

method level, static analysis components narrow the entry-points discovered by dynamic

analysis down to the blocks executable by a particular test case. The selected blocks of the

entry-point methods are the targets for further static analysis.

To appreciate the need for restricting the scope of analysis, recall Suntimes app and the

test suite shown in Figure 7.2. The second test (testSettingLocationToUserDefined)

triggers an event by selecting the Location option from the main menu (line 11), which is
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eventually handled by an entry-point method shown in Figure 7.4. This method is among

the entry-point methods identified by dynamic analyzer for Test #2. However, inspecting

onOptionsItemSelected method more carefully, it is clear that only the third case of the

switch statement (i.e., lines 10-12 in Figure 7.4) is executable by Test #2, since other cases

are intended to handle the other options never triggered by this test. Including the entire

method, instead of focusing on lines 10-12, in the search for relevant permissions would

increase the false-positive rate of our analysis.

The above example demonstrates that the execution flow of the GUI event handlers is con-

trolled by the widgets triggering those events. Hence, a precise analysis should also take

the GUI widgets affecting the control-flow of the app into account, otherwise it would over-

approximate the code segments that could be exercised by each test. To that end, THA

Analyzer determines the widgets used in each test case (represented as the set TW in Fig-

ure 7.3), While AUT Analyzer determines the permissions needed for executing each block

of code in AUT, if any, along with the widgets affecting the reachability of those blocks

(represented as the set EWP in Figure 7.3).

Finally, Interaction Detector integrates the outputs of the static and dynamic components

and generates the relevant permissions for each test case (represented as the map TP in

Figure 7.3). The following sections describe the four components of PATDroid in more

details.

7.4 Dynamic Analysis

Unlike the conventional Java program with a single main method, Android apps comprise

several methods that are implicitly called by the framework, usually referred to as entry-

points. Entry-points are responsible for handling various events, including GUI events (e.g.,
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{
<test:testSettingLocationToUserDefined,
entryPoint:"SunActivity:boolean onOptionsItemSelected(Menu)">,
<test:testSettingLocationToUserDefined,
entryPoint:"LocationConfigDialog$3$1:void onClick(View)">,
<test:testSettingLocationToUserDefined,
entryPoint:"LocationConfigDialog:void onResume()">,
}

Figure 7.5: A subset of Suntimes app’s entry-points exercised by Test #2 of Figure 7.2

onOptionsItemSelected shown in Figure 7.4 that handles the selection of a menu option),

as well as changing the status of the application, a.k.a. life-cycle events (e.g., onResume to

activate a paused app).

As a result of running a test, an app’s entry-points are invoked by the Android frame-

work. These are identified by the Dynamic App Analyzer component. For this purpose,

PATDroid first automatically instruments the given AUT and injects loggers at the be-

ginning of every possible entry-point of the app, which are distinguishable by the virtue of

implementing specific interfaces of the Android framework (e.g., onOptionsItemSelected,

onResume, etc.). For a comprehensive list of Android’s entry-point interfaces, we have relied

on the results of prior research [67, 308, 328, 251].

PATDroid subsequently runs the entire test suite on the instrumented app with an arbitrary

permission setting. Since the invocation of entry-points are independent of the permission

settings, our approach effectively finds the THA-dependent entry-points in the AUT. Unlike

the test script, the code covered inside the entry-points depends on the permission settings

during the test execution. Thus, we use static analysis technique, described in Section 7.6,

to further explore the logic inside the entry-point methods.

Finally, the log obtained through the instrumentation of app’s entry-points is processed to

capture the executed entry-points for each test case. The generated output of this phase,

called TE, is a set of tuples 〈test, entryPoint〉, where the first element is the test identifier

and the second element is an exposed entry-point during the test execution. Figure 7.5
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provides a subset of generated output for Test #2 of Figure 7.2.

7.5 Static Analysis of Test Harness App

As briefly discussed in Section 7.3, PATDroid traces the dependencies between AUT and

THA at two levels of granularity. At a high-level of granularity, the dependencies at the

method-level are identified by dynamic analysis, as described in the previous section. At a

low-level of granularity, within the entry-point methods, the dependencies are refined through

static analysis.

To statically trace the dependencies between AUT and THA, PATDroid resolves the app

inputs, namely GUI widgets, that are the target of actions performed by test scripts. In

the running example, action location add is a widget identifier used in both THA and

AUT artifacts (lines 11 and 10 in Figures 7.2 and 7.4, respectively). For this purpose,

PATDroid’s static analysis component extracts the widget information from both AUT and

THA. The extracted information should uniquely identify the widget throughout the entire

app’s implementation, and thus, usually includes a widget identifier or a key. While this

section focuses on extracting widgets from THA, Section 7.6.2 describes how our approach

applies to AUT.

Each Android testing framework (e.g., Espresso [29], Robotium [38], etc.) encodes the wid-

get interactions in its own unique way, based on the framework’s APIs and patterns. To

generalize the problem of finding the used widgets and make our approach test-framework-

agnostic, we define this problem as a general data-flow analysis. Accordingly, our goal is

to find the flow of data within the test programs, from certain sources to sinks. For this

purpose, data sources are defined as the set of testing framework APIs for retrieving a widget

by a specific property, e.g., finding widgets based on ID using ViewMatcher.withId(int)
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{
<test:testSettingLocationToUserDefined,
widget:action_location_add(2131624168)>,
<test:testSettingLocationToUserDefined,
widget:appwidget_location_getfix(2131624120)>
}

Figure 7.6: A subset of widgets extracted from Test #2 of Figure 7.2

and Solo.findViewById(String) APIs in Espresso and Robotium frameworks, respec-

tively. Similarly, data sinks are defined as the set of testing framework APIs for perform-

ing an action on the widgets, e.g., a click action defined by ViewActions.click() and

Solo.clickOnButton() APIs.

Defining the problem in this way allows us to perform the static analysis independent of

the testing framework. To support a new testing framework, it is only needed to provide

the list of framework’s APIs for retrieving and performing actions on widgets. A slightly

faster, yet less precise approach to find the widgets is to only look for widget retrieval APIs

(i.e., source set only) and simply return the extracted information. This approach, however,

can increase the false-positive rate, since some widgets might be retrieved for purposes other

than performing an action (e.g., making an assertion). For this reason, we opted for a precise

analysis.

To solve the data-flow problem, we employed an Android-compatible data-flow analysis

framework, FlowDroid [67], but with a significant modification that allows us to perform

the analysis on a THA. By default, FlowDroid is intended to analyze apps that comply

with the conventional structure expected by the Android framework, e.g., to be composed of

Android components. In contrast to AUT, THA does not follow such conventional structure

and thus, is not supported by FlowDroid. Therefore, we replaced FlowDroid’s default entry-

point creator with a customized creator specifically tailored for THA analysis. For each

THA, PATDroid creates a dummy main method, which is responsible for preparing the test

environment encoded in @Before methods, and then invoking the @Test methods embedded

in THA. Recall the use of such annotations in the test script example shown in Figure 7.2.
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Figure 7.7: A sub-graph of inter-procedural control-flow graph for Suntimes app. The collapsed

parts of the sub-graph are denoted by “. . . ”. The method call in node (=line) 11 of the control-flow-

graph for SuntimesActivity.onOptionsItemSelected() method eventually leads to calling

an Android framework API that requires Location permission (i.e.,getLastKnownLocation).

Since this permission is used under the branch with widget id location add, it is inferred

that Location is a relevant permission for a GUI test that exercises this entry-point method

(onOptionsItemSelected) by performing an action on location add widget

Solving the data-flow problem, THA Analyzer generates the output, TW, which is a set of

tuples 〈test, widget〉, where the first element is the test identifier and the second element is

a widget that is the target of an action performed by the test. Figure 7.6 provides a subset

of the analysis output generated for Test #2 of Figure 7.2.

7.6 Static Analysis of App Under Test

Running under an arbitrary permission settings, Dynamic App Analyzer partially explores

the AUT code executable by each test. Subsequently, PATDroid leverages AUT Analyzer

to statically examine all parts of the code that could be exercised by each test.

As depicted in Figure 7.3, the AUT Analyzer receives the AUT and TE as input and gener-

ates EWP as output. The generated output is a set of tuples, each containing three elements

〈entryPoint, widget, permission〉, indicating an entry-point method invoked during the ex-

ecution of a test, a widget that can affect the reachability of permission-protected code
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within that entry-point, and the corresponding permission. AUT Analyzer ’s main procedure

is summarized in Algorithm 7.1.

Algorithm 7.1: AUT Analysis
Input: AUT: App under test, TE: Tests to entry-points set

Output: EWP: {〈entryPoint ,widget , perm〉}
1 EWP ← ∅
// I Permission Analysis - see Section 7.6.1

2 permSummaries ← PermissionAnalysis(AUT, TE)
// I Widget Analysis - see Section 7.6.2

3 widgetSummaries ← WidgetAnalysis(AUT )
4 foreach entryPoint ∈ TE do
5 foreach stmt ∈ entryPoint .statements do
6 if stmt .type is Method Invocation then
7 perms ← permSummaries[stmt .targetMethod ]
8 foreach perm ∈ perms do
9 widgets ← widgetSummaries[stmt ]

10 if widget = ∅ then
11 EWP ← EWP ∪ 〈entryPoint ,∅, perm〉
12 else
13 foreach widget ∈ widgets do
14 if 〈entryPoint ,widget , perm〉 /∈ EWP then
15 EWP ← EWP ∪ 〈entryPoint ,widget , perm〉
16 end

17 end

18 end

19 end

The analysis procedure performs several steps to generate the output. Initially, Permis-

sionAnalysis sub-procedure (line 2) identifies the required permissions for executing each

statement, if any, for all of the app’s entry-point methods exercised by the test suite. The

details of this sub-procedure are described in Section 7.6.1. Subsequently, WidgetAnalysis

procedure is invoked in line 3 to determine the statements that are controlled by each widget,

the details of which are described in Section 7.6.2.

For each entry-point method (line 4) and each statement within it (line 5), the algorithm

determines whether it is a method invocation statement (line 6) that is permission protected

(lines 7–8). These could be either Android API calls or user-defined methods. For each

permission-protected method invocation statement, all the widgets that control the execution
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of this statement are retrieved (line 9). Finally, the algorithm adds tuples consisting of

method, widget, and permission information to set EWP, unless they already exist in this

set (lines 14–15). If a permission-protected statement is not controlled by any widget, the

widget element is set to Null in the corresponding generated tuple (lines 10–11).

7.6.1 Permission Analysis

For each method defined in a given AUT, Permission Analysis procedure captures all per-

missions required for executing that method, called Permission Summaries (PS), through

performing an inter-procedural fixed-point analysis, summarized in Algorithm 7.2.

In the first step, Permission Analysis constructs a call graph (CG) of the entire applica-

tion (line 2). However, due to the event-driven structure of the Android platform, the

traditional CG generation methods do not connect the call sites corresponding to implicit

invocations. The challenges of generating call graph for Android apps are widely discussed

in the prior research and several techniques are suggested for this purpose [67, 370], which

are employed by PATDroid. Figure 7.7 depicts a subset of the call graph for the Sun-

times app. In this graph, the implicit calls are denoted by dashed lines. For instance, the

method GetFixHelper.getFix() starts an AsyncTask, namely GetFixTask, by invoking

the execute() interface. Consequently, the method doInBackground() of the task class

is invoked indirectly by the Android framework.

Permission Analysis iterates over all Android framework APIs that are called throughout

the given app (lines 3–7) and adds the required permission for the API to the permission

summaries (PS ) of the methods where that API is called.3 We have relied on permission-

API mappings produced in the prior work [69, 71] to determine the required permission for

Android APIs.

3In addition to the Android framework APIs, certain Intents and queris on Content Providers need
specific permissions. For brevity, however, only the iteration over the APIs is shown in Algorithm 7.2.
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Algorithm 7.2: Permission Analysis
Input: AUT: App under test, TE: Tests to entry-points set

Output: PS: Permission Summaries
1 PS ← ∅
// PS is a map with method signature as its key and the corresponding set

of required permissions as its value

2 CG← constructCG(AUT )
3 foreach API ∈ AUT.AndroidAPICalls do
4 method ← caller(API )
5 perm ← perm(API )
6 PS[method ]← perm

7 end
8 repeat
9 foreach method ∈ BFS.next(CG ,TE ) do

10 callerMethods ← G.edgesTo(method)
11 foreach callerMethod ∈ callerMethods do
12 perms ← PS[method ]
13 PS[callerMethod ]← PS[callerMethod ] ∪ perms

14 end

15 end

16 until PS reaches a fixed-point ;

Finally, Permission Analysis traverses the constructed call graph (CG) using breadth-first

search (BFS) method (lines 9–15). Starting from the given entry-point methods (EE),

it propagates the permission in the graph. In each iteration, the algorithm updates the

permission summaries (PS) of all methods calling the current method, by augmenting their

PS with the PS of the callee method (line 13). This procedure is repeated until a fixed point

is reached for the permission summaries (line 16), meaning that PS does not change in

further iterations. In Figure 7.7, the permission summaries are shown at the top-left corner

of each call-graph node.

7.6.2 Widget Analysis

Recall the entry-point method presented in Figure 7.4. To handle a selected menu option, this

method (onOptionsItemSelected) invokes several other methods, each one under a case

corresponding to the menu option. For instance, Set Alarm (third option in Figure 7.1b) is
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handled by the first case statement shown in Figure 7.4, where scheduleAlarm() method is

called consequently (line 5). Therefore, if a GUI test only clicks on Set Alarm option, it does

not execute the methods called in other cases, and thereby the summarized permissions for

other methods (e.g., showSetting(), configLocation(), etc.) are irrelevant to this test.

To exclude the irrelevant permissions, we need to determine which widgets affect the control-

flow of which program statements, particularly the statements that invoke methods with non-

empty permission summaries. Widget Analysis procedure, summarized in Algorithm 7.3,

provides this capability.

Algorithm 7.3: Widget Analysis
Input: AUT: App under test
Output: WS: Widget Summaries

1 WS ← ∅
2 gen, in, out← ∅
// WS, gen, in, and out are maps with program statement as its key and set

of related widgets as its value.

3 ICFGT ← constructTrimmedICFG(AUT )
4 foreach stmt ∈ AUT.methods.statements do
5 if stmt .type is IF & stmt .condition.type is Widget then
6 gen[stmt .target ]← stmt .condition

7 else if stmt .type is SWITCH & stmt .condition.type is Widget then
8 foreach case ∈ stmt .cases do
9 gen[case.target ]← case.condition

10 end

11 end
12 repeat
13 foreach stmt ∈ BFS.next(ICFGT ) do
14 foreach stmt ′ ∈ pred(stmt) do
15 in[stmt ]← in[stmt ] ∪ out [stmt ′]
16 end
17 foreach stmt ′ ∈ succ(stmt) do
18 out[stmt ′]← in[stmt ] ∪ gen[stmt ]
19 end

20 end
21 WS ← out

22 until WS reaches a fixed-point;

For a given method, Widget Analysis procedure performs a branch-sensitive, partial, inter-

procedural data-flow analysis and generates the Widget Summaries (WS) as the output. For
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{
<entryPoint:"SuntimesActivity:boolean onOptionsItemSelected(MenuItem)",
widget: action_location_add(2131624168),
permission: LOCATION>
}

Figure 7.8: A subset of EWP generated for Suntimes app

this purpose, a trimmed version of inter-procedural control-flow graph (ICFG) is constructed

first (line 3). An ICFG is a collection of control-flow graphs connected to each other at all

call sites. Our analysis, however, targets app widgets exclusively and thus, only the call

sites that pass a widget object are included in the trimmed ICFG, denoted as ICFGT .

Performing the analysis over ICFGT , instead of ICFG, significantly improves the scalability

of our approach, yet keeps the precision acceptable.

Afterwards, the gen set is populated through iterating over every statement of each method

(lines 4–11). We are only interested in the conditional statements that affect the control-flow

of the program, namely IF (lines 5–6) and SWITCH (lines 7–10) statements, with the widget

as the condition. For instance, the switch statement in Figure 7.4 could be a target of our

analysis, as it is (1) a conditional statement controlling the flow of the program, and (2) a

widget, i.e., MenuItem, is used as the statement’s condition.

Finally, the algorithm traverses the ICFGT in a breadth-first search manner and prop-

agates the widget information through the graph. By doing this, at each statement we

have the information of all widgets that can affect the control-flow of the program from

the beginning to that statement. For example, as highlighted in the control-flow graph of

onOptionsItemSelected method depicted in Figure 7.7, with location add as the se-

lected menu option, the control-flow of the program will reach to lines 11 and 12. Hence,

location add is added to the widget summaries of the statements at nodes 11 and 12. The

widget analysis terminates upon reaching a fixed point for the widget summaries (WS).

It is essential to note the difference between the precision and scope of two sub-procedures
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described in Sections 7.6.1 and 7.6.2, namely Permission Analysis and Widget Analysis. Due

to flow and branch sensitivity, Widget Analysis is more costly than Permission Analysis. On

the other hand, while Permission Analysis is performed on every method in the app through

traversing its call graph, the scope of Widget Analysis is limited to a few entry-point methods

exercised by running the tests. This distinction lets PATDroid keep the app analysis precise

and yet, scalable.

Combining the outputs of Permission Analysis and Widget Analysis sub-procedures, the

main procedure (Algorithm 7.1) generates the final output of AUT Analyzer component,

i.e., EWP. A subset of generated EWP for Suntimes app is provided in Figure 7.8.

7.7 Building Permission Combinations

As shown in Figure 7.3, Interaction Detector generates the final output, TP, which is a map

from tests to the set of relevant permissions. It does so by correlating the outputs of the

other components, namely TE, TW, and EWP, as follows.

Interaction Detector procedure, summarized in Algorithm 7.4, iterates over the three input

sets (TE, TW, EWP), and matches the tuple members of these sets based on the shared

elements, i.e., entryPoint, test, and widget.4 The only exception occurs when no widget is

found for an EWP (i.e., no widget is used to control access to permission-protected code in an

entry-point), in which case it is conservatively assumed that the entire entry-point method

could be executed by a single test and hence, the algorithm does not attempt to match

EWP.widget and TW.widget (line 5). Based on the matched tuples, relevant permissions

for a test are added to the output, TP (line 9). Finally, an empty set is assigned to those

tests that have no relevant permissions (lines 14–17). The generated output, TP , for the

test set of Suntimes app is provided in Figure 7.9.

4Matching elements are distinguished by the same colors in Figures 7.5, 7.6, 7.8, and 7.9.
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Algorithm 7.4: Interaction Detector

Input: TE= {〈test , entryPoint〉}, TW= {〈test ,widget〉},
EWP= {〈entryPoint ,widget , permission〉}, THA:Test harness app
Output: TP, A map with tests as the key and the set of relevant permissions as the value.

1 TP ← ∅
2 testWithPerm ← ∅
3 foreach ewp ∈ EWP do
4 foreach tw ∈ TW do
5 if ewp.widget = ∅ Or ewp.widget = tw .widget then
6 foreach te ∈ TE do
7 if ewp.entryPoint = te.entryPoint then
8 if te.test = tw .test then
9 TP [te.test ]← TP [te.test ] ∪ ewp.perm

10 testWithPerm ← testWithPerm ∪ te.test

11 end

12 end

13 end
14 foreach test ∈ THA.tests do
15 if test /∈ testWithPerm then
16 TP [test ]← ∅
17 end

The output of this algorithm enables efficient permission-aware testing of the given app.

In total, for an app consisting of T tests and P permissions, the number of test-runs by

PATDroid are calculated as follows:

T∑
t=1

2|TP [t].perms|

where TP [t].perms denotes the relevant permissions for test t identified by PATDroid. As

our experiments will show, this number turns out to be significantly smaller than |T | × 2|P |

tests required for execution under the exhaustive approach.

[
testSunTimesNavigation:{},
testSettingLocationToUserDefined:{LOCATION},
testExportLocations:{LOCATION, STORAGE}
]

Figure 7.9: Relevant permissions for a subset of the tests listed in Figure 7.2
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7.8 Implementation

PATDroid is realized with over 2,500 lines of Java code and 800 lines of Python script.

It also relies on a few third-party libraries, most notably Soot [495] for static analysis of

Android apps, IC3 [370] to resolve ICC communications, and Xposed [44] for run-time

instrumentation of the root Android process.

PATDroid runs in two modes: (1) Developers mode, and (2) Testers mode. The first mode

is applicable when the source code of subject apps (AUT) and their GUI tests (THA) are

available. The second mode can be used when only apk files (AUT) are available. PATDroid

currently supports the major Android’s GUI test frameworks, namely Espresso, Robotium,

and Monkey.

The artifacts associated with PATDroid, including the executable tool and its user manual

are available for download from PATDroid’s web page [34].

7.9 Evaluation

Our evaluation of PATDroid addresses the following questions:

RQ1. Efficiency : How does PATDroid compare against alternative approaches with respect

to test-run size and test-execution time?

RQ2. Coverage: How does PATDroid compare against alternative approaches with respect

to code coverage?

RQ3. Effectiveness : Is PATDroid able to reveal defects in real-world apps, particularly

those that are only exposed under certain permission settings?

RQ4. Performance: How does PATDroid scale in relation to the size of app?
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Table 7.1: A subset (those with available source code) of subject apps.

App
Size # of permissions test-suite

(KLOC) all dangerous size
A2DP Volume [24] 9.1 17 9 17
AlwaysOn [25] 15.9 18 6 16
Budget Watch [30] 8.0 3 2 12
Dumbphone Assistant [31] 1.4 3 3 7
Notes [33] 5.7 3 2 29
RadioBeacon [36] 31.4 10 6 17
Riot [37] 55.2 15 6 20
SMS Scheduler [39] 1.5 4 2 6
Suntimes [40] 22.4 4 3 13
SysLog [41] 12.1 4 2 13

7.9.1 Experiment Setup

To evaluate our approach on realistic subjects, we crawled Google Play and GitHub reposi-

tories and searched for Android apps with the following criteria:

(i) Should target Android API level ≥ 23; otherwise, the app does not support run-time

permission modification, and thereby does not suffer from the problems that are the

focus of our work.

(ii) Should define at least two dangerous permissions in the manifest file, because other

types of permissions are not adjustable at run-time and solving the problem with less

than two adjustable permissions is trivial.

In accordance with the above criteria, we collected 110 apps: (1) 100 popular apps from

Google Play, and (2) 10 open-source apps from Github (listed in Table 7.1), since investi-

gating RQ2, i.e., measuring code coverage, requires the availability of source code.

For the open-source apps, we manually created or extended the existing GUI tests using

Espresso [29] or Robotium [38] frameworks to achieve at least appriximately 50% statement

coverage. For Google Play apps we used Monkey [4] to generate black-box GUI tests.
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We have compared PATDroid against three alternative strategies, as follows:

Exhaustive—exhaustively includes all permission combinations.

Pairwise—generated according to pairwise technique [366]; that is, for any two permissions,

all possible pairs of permission settings (i.e., granted, revoked) should be in the output set.

All-and-None—includes two combinations, one with all permissions granted, the other

with all permissions revoked.

None of the existing test suite reduction tools support Android framework, nor consider its

access control model, therefore, are not included in our evaluation.

7.9.2 Efficiency

To answer RQ1, we compare the test-run size and test-execution time of PATDroid with

exhaustive, pairwise and all-and-none, as shown in Tables 7.2 and 7.3. Test-run size indicates

the cumulative number of tests required to run for each technique. This number is calculated

by the formulas shown in Table 7.2, under the corresponding columns. In addition, the table

shows the percentage of decrease or increase for each reported metric in comparison to

PATDroid.

The results in Table 7.2 and 7.3 confirm that PATDroid can significantly reduce the number

of test-runs and test-execution time. On average, PATDroid requires 71.35% and 41.78%

fewer test executions than exhaustive and pairwise, respectively. Similarly, on average, PAT-

Droid takes 71.07% and 39.07% less execution time than exhaustive and pairwise, respec-

tively. In comparison to all-and-none, however, the results are mixed, where in some cases

PATDroid achieves a higher reduction (e.g., Budget Watch), while in other cases PATDroid

achieves a lower reduction (e.g., RadioBeacon). Although all-and-none achieves a higher re-

duction in some cases, the next section shows that it does not maintain the same coverage

as other approaches.
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Table 7.2: Test size reduction achieved by PATDroid compared to other approaches. +, - indicate

that the reduction achieved by the the alternative approach is greater, or less than PATDroid,

respectively.

App
Test-run size (% of difference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None∑|T |
t=1 2|TP [t].perms| |T | × 2|P | 2× |T |

A2DP Volume 59 8,704(-99.32%) 136(-56.62%) 34(+73.53%)
Always On 29 1,024(-97.17%) 96(-69.79%) 32(-9.38%)
Budget Watch 15 48(-68.75%) 48(-68.75%) 24(-37.50%)
Dumbphone Assist 56 56(0%) 28(+100.00%) 14(+300.00%)
Notes 35 116(-69.83%) 116(-69.83%) 58(-39.66%)
RadioBeacon 66 1,088(-93.93%) 102(-35.29%) 34(+94.12%)
Riot 48 1,280(-96.25%) 120(-60.00%) 40(+20.00%)
SMS Scheduler 7 24(-70.83%) 24(-70.83%) 12(-41.67%)
Suntimes 32 104(-69.23%) 52(-38.46%) 26(+23.08%)
SysLog 27 52(-48.08%) 52(-48.08%) 26(+3.85%)

In the presented formulas used for calculating the size of the test-runs, T is the set of tests, P is the
set of app’s permission, and TP [t].perms is the set of relevant permissions for the test t generated
by PATDroid.

Table 7.3: Test time reduction achieved by PATDroid compared to other approaches. +, - indi-

cate that the reduction achieved by the the alternative approach is greater, or less than PATDroid,

respectively.

App
Testing time in sec. (% of difference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None

A2DP Volume 314 39,591(-99.21%) 619(-49.32%) 155(+102.74%)
Always On 208 7,133(-97.09%) 669(-68.92%) 223(-6.75%)
Budget Watch 67 221(-69.47%) 221(-69.47%) 110(-38.94%)
Dumbphone Assist 447 447(0%) 224(+100.00%) 112(+300.00%)
Notes 162 531(-69.50%) 531(-69.50%) 266(-38.99%)
RadioBeacon 462 6,200(-92.55%) 581(-20.50%) 194(+138.50%)
Riot 398 10,379(-96.16%) 973(-59.05%) 324(+22.84%)
SMS Scheduler 34 110(-69.11%) 110(-69.11%) 55(-38.23%)
Suntimes 317 931(-65.92%) 465(-31.84%) 233(+36.32%)
SysLog 144 299(-51.77%) 299(-51.77%) 149(-3.54%)
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δ e

δ p

Figure 7.10: Test execution time based on the number of permissions. δe and δp represent
the reduction in test execution time, achieved by PATDroid, compared to exhaustive and
pairwise approaches, respectively

Figure 7.10 plots the test-execution time for all of the 110 subject apps. As illustrated in the

figure, test-execution time grows exponentially with respect to the number of permissions in

exhaustive approach. Therefore, the reduction rates compared to exhaustive approach are

higher in apps with more permissions. For example, the reduction in the case of A2DP Vol

app with 9 permissions is above 99%, while the reduction in the case of Budget Watch app

with 2 permissions is close to 70%.

7.9.3 Coverage

To answer RQ2, we compare the statement and branch coverage achieved by PATDroid

against that of achieved by the alternative techniques. As shown in Tables 7.4 and 7.5,

PATDroid achieves the same exact coverage as exhaustive in all subject apps. The fact that

PATDroid achieves the same coverage as exhaustive is particularly important, as it shows

that PATDroid does not produce many false negatives, i.e., failing to execute a test with a

relevant permission combination for an app.5

5In our experiments, PATDroid did not produce any false negatives, but in principle it could, due to
limitations of static analysis upon which PATDroid relies.
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Table 7.4: Statement coverage achieved by PATDroid compared to other approaches. +, - indi-

cate that the coverage of the alternative approach is greater, or less than PATDroid, respectively.

App
Statement Coverage (% of difference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None

A2DP Volume 49.55% 49.55%(0%) 49.55%(0%) 47.18%(-5%)
Always On 45.31% 45.31%(0%) 10.54%(-77%) 45.31%(0%)
Budget Watch 72.24% 72.24%(0%) 72.24%(0%) 56.52%(-22%)
Dumbphone Assist 64.90% 64.90%(0%) 7.56%(-88%) 64.90%(0%)
Notes 77.89% 77.89%(0%) 77.89%(0%) 62.24%(-20%)
RadioBeacon 49.22% 49.22%(0%) 49.22%(0%) 43.24%(-12%)
Riot 50.40% 50.40%(0%) 46.49%(-8%) 46.92%(-7%)
SMS Scheduler 65.25% 65.25%(0%) 65.25%(0%) 65.25%(0%)
Suntimes 50.23% 50.23%(0%) 50.23%(0%) 44.14%(-12%)
SysLog 71.33% 71.33%(0%) 71.33%(0%) 65.66%(-8%)

Table 7.5: Branch coverage achieved by PATDroid compared to other approaches. +, - indicate

that the coverage of the alternative approach is greater, or less than PATDroid, respectively.

App
Branch Coverage (% of difference compared to PATDroid)

PATDroid Exhaustive Pairwise All&None

A2DP Volume 23.87% 23.87%(0%) 23.87%(0%) 21.61%(-9%)
Always On 25.58% 25.58%(0%) 1.69%(-93%) 25.58%(0%)
Budget Watch 51.04% 51.04%(0%) 51.04%(0%) 37.35%(-27%)
Dumbphone Assist 43.10% 43.10%(0%) 11.21%(-74%) 43.10%(0%)
Notes 61.30% 61.30%(0%) 61.30%(0%) 48.54%(-21%)
RadioBeacon 25.76% 25.76%(0%) 25.76%(0%) 22.41%(-13%)
Riot 42.28% 42.28%(0%) 40.24%(-5%) 39.81%(-6%)
SMS Scheduler 45.32% 45.32%(0%) 45.32%(0%) 45.32%(0%)
Suntimes 32.95% 32.95%(0%) 32.95%(0%) 27.23%(-17%)
SysLog 48.75% 48.75%(0%) 48.75%(0%) 42.19%(-13%)
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Moreover, on average, PATDroid achieves 14% and 10% higher coverage than pairwise

and all-and-none techniques, respectively. It is worth noting that while in 7 apps pairwise

achieves the same coverage as PATDroid, in 3 apps it achieves significantly lower coverage. A

closer look at the apps where PATDroid outperformed pairwise showed that these situations

occur when certain capabilities provided by an app depend on more than two permissions.

For instance, AlwaysOn app asks for four permissions, and if any of those permissions are

not granted, the app’s functionally is significantly downgraded. Since the pairwise technique

does not include a combination with all four permissions granted, it achieves 77% lower

statement coverage and 93% lower branch coverage than PATDroid.

In summary, the results of RQ1 and RQ2 confirm that PATDroid is able to significantly

reduce the number of tests without trading-off code coverage.

7.9.4 Effectiveness

To answer RQ3, we investigate the power of our approach in identifying permission-related

defects in real-world apps. To that end, we carefully analyzed Android log, and the output of

the tests executed under the permission combinations generated by PATDroid. Particularly,

we were interested in crashes or unexpected behaviors that could only be verified by running

the tests under certain permission combinations.

Running PATDroid on the set of 110 apps, we found 14 apps (i.e., 13%) with defects

that are due to inappropriate handling of dynamic permissions. We reported the identified

defects for the open-source apps to their developers through GitHub issue tracker, along

with information to reproduce the faults and suggestions for fixing the defects. Table 7.6

provides a summary of the reported defects and the current status of each issue for the apps

that provide a public issue tracker. As of the date of writing this dissertation, most of the

defects are verified and fixed by the app developers.
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Table 7.6: A subset (those with public issue tracker) of defects in real-world Android apps identified

for the first time by PATDroid.

App Reported issue link Defect Type Status
Open Food https://goo.gl/4eIm3E Crash Fixed
Budget Watch https://goo.gl/8XBvkf Unexpected Behavior Fixed
A2DP Volume https://goo.gl/9sfS09 Unexpected Behavior Fixed
RadioBeacon https://goo.gl/80Mb5j Crash Verified
Riot https://goo.gl/MNEdkx Unexpected Behavior Fixed
OpenNoteScanner https://goo.gl/yKNiRZ Crash Reported

Note that exhaustive and pairwise approaches are also able to identify the reported defects,

except they take significantly longer time to execute as shown in Section 7.9.2. all-and-none

on the other hand, is not able to reveal these issues. For instance, in Open Note Scanner app,

which asks required permissions initially, revoking the Storage permission while granting

Camera permission would make the application crash. Such behavior is not reproducible

using all-and-none technique. Furthermore, exhaustive approach was not able to find a

defect that PATDroid missed, further demonstrating the efficacy of PATDroid in revealing

permission-related defects.

7.9.5 Performance

To answer RQ4, we measured the performance of running PATDroid over the subject apps.

The experiments are run on a PC with an Intel Core i7 2.4 GHz CPU processor and 16 GB of

main memory. According to the experimental results, the average time spent on identifying

the relevant permissions is 356 seconds, which is negligible compared to the time saved due

to reducing the test-run size (See Section 7.9.2).

Figure 7.11 shows the performance measurements of running PATDroid. The analysis times

for each phase of PATDroid, i.e., static and dynamic analyses, are plotted separately in the

figure. On average, static and dynamic analyses take 97 and 259 seconds, respectively.
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Figure 7.11: Performance measurements of PATDroid

According to the figure, the static analysis time increases as the app size increases, while

there is no correlation between the dynamic analysis time and the app size. Dynamic analysis

time depends on the logic and workload of the subject app. For instance, the size of the data

that an app downloads from the Internet can affect the execution time of the app’s system

tests.

7.10 Conclusion

Recent introduction of a dynamic permission system in Android has made it necessary to test

the behavior of Android apps under a variety of permission settings. Without an automated

solution to reason about which tests should be executed under what permission combinations,

the developers have to either manually make such determinations or exhaustively re-run

each test under an exponential number of permission combinations. Both approaches are

impractical, time-consuming, and cumbersome.

To overcome this problem and help developers efficiently test Android apps under various

permission settings, this chapter presented PATDroid. Through a hybrid program analysis

of Android app and its test suite, PATDroid is able to identify relevant permissions for
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each test case. By excluding the irrelevant permissions, PATDroid is able to significantly

reduce the number of test runs and execution time of tests without trading-off coverage and

fault detection ability of tests. The experimental results show that PATDroid can achieve

71% reduction in execution time of tests compared to the exhaustive approach, without any

degradation in code coverage. Moreover, using PATDroid, we were able to identify several

previously unknown permission-related defects in real-world apps.
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Chapter 8

Conclusion

In this dissertation I presented a set of permission-aware analysis techniques for efficient

detection and prevention of permission-induced issues—the defects enabled by Android per-

mission misuse. More specifically, I focused on two types of permission-induced issues,

those that breach the security of the system, and those that disrupt the functional behavior

of the apps, particularly under dynamic permission mechanism. To that end, I designed,

implemented, and evaluated four approaches, namely Covert, Separ, Terminator, and

PATDroid.

Covert and Separ use combination of program analysis and formal methods to detect and

prevent security vulnerabilities, particularly those that occur due to unsafe interaction of

multiple apps. The third proposed technique, Terminator, extends these two approaches

by incorporating the notion of time during the analysis and enforcement, which leads to

significant improvement on detection and prevention of security breaches. Finally, PAT-

Droid provides an efficient permission-aware testing technique for Android apps, which can

be used, among the other applications, to identify potential compatibility issues in the apps,

whose permissions are revoked by Terminator. All conducted experiments corroborate the
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effectiveness and efficiency of Covert, Separ, Terminator, and PATDroid and their ability

to identify and eliminate the defects rooted in permission misuse of Android apps.

In the remainder of this chapter I conclude my dissertation by enumerating the contributions

of my work and avenues for future work.

8.1 Research Contributions

The following is the concrete list of contributions in this research:

• A taxonomy and qualitative comparison of Android security research: I

proposed a taxonomy for the papers published in 2008–2016 on Android security and,

using that taxonomy, provided a qualitative comparison of the research. Comparing

over 330 research papers, the conducted survey is the most comprehensive study in

this line of research that revealed patterns, trends, and gaps in the existing literature,

and underlined key challenges and opportunities that will shape the focus of future

research efforts.

• A formal model of Android framework: I constructed a formal specification,

as a reusable Alloy module, representing the behavior of Android framework and the

apps. Also, by incorporating the notion of time, I extended the proposed model to

reason about Android system’s behavior as it evolves over time. The temporal model

is developed as a TLA+ module that supports temporal logic analysis.

• A formal model of permission-induced attacks: I provided a formal definition

(in both Alloy and TLA+ languages) of permission-induced attacks, collected through

an extensive study of various sources, including but not limited to research papers,

security reports, and Android documentations. Such attack model is not only useful
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in precise identification of security vulnerabilities implemented in this research, e.g.,

Covert and Terminator, but also can be extended and re-used by the future research.

• A model extractor for Android apps: Several static analysis algorithms and

methods are designed and developed in this research to extract different aspect of

Android apps. In the development of these algorithms, I tackled the challenges of

implementing static analysis techniques for Android apps, as discussed in Chapter 2.

In addition to using the provided algorithms in this dissertation, they also contributed

to the other researches I involved in, such as architecture recovery [77, 439], energy

profiling [263, 264] and testing of Android apps [349].

• A policy enforcement mechanism for Android framework: I developed two

policy enforcement mechanisms that apply the security rules at two levels: (1) event

messaging (Separ approach), and (2) permission enforcement (Terminator approach).

Both approaches are realized through instrumentation of the root process of Android,

i.e., without making any changes to the apps’ APK or Android framework.

• Fundamental contribution to combinatorial testing: I proposed a novel ap-

proach that considers the dependencies between a program, its test suite, and access

control model for the reduction of testing efforts. Although this approach is applied

for testing Android apps (PATDroid approach), but its theoretical contribution is

applicable to any software with a permission-based access-control model.

• Large-scale empirical evaluation: I extensively evaluated the effectiveness and effi-

ciency of the proposed approaches by large-scale empirical evaluations over thousands

of real-world Android apps, from various app repositories. Through conducting the

experiments, I revealed several functional and non-functional (particularly security)

defects in real-world apps and helped their developers fix those issues.

• Tool implementation: Finally, I developed working implementations of Covert,
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Separ, Terminator, and PATDroid. To help other researchers re-use and expand the

proposed approaches and build more advanced techniques on top of them, I made all

research artifacts and tools publicly available, via the following web addresses:

– Covert and Separ: https://seal.ics.uci.edu/projects/covert

The reseach has a tool demo paper [416] and a demo video [23].

– PATDroid: https://seal.ics.uci.edu/projects/patdroid

This research has received ACM artifact badge.

– Terminator: https://sites.google.com/view/terminator18

8.2 Future Work

In this dissertation, I attempted to cover a number of research gaps (RGs) identified through

the systematic literature review described in Chapter 2, including the development of hybrid

approaches that leverage combination of program analysis with formal methods (RG1), for

compositional analysis of inter-app security vulnerabilities (RG2) that go beyond Intents

(RG4). As an avenue for the future research, I propose investigating the other research gaps,

which are not addressed yet.

In addition, in the remainder of this chapter, I propose some other areas for the future

research that are highlighted in Figure 8.1. This figure extends the research roadmap, pre-

sented in Figure 1.1 (Chapter 1), by adding the areas for the future research.

Working on automatic exploit generation for permission-induced vulnerabilities could be an

extension of my work on identification of such vulnerabilities. Employing static analysis

techniques, all detection approaches presented in this dissertation, and similar approaches,

are prone to generating false alarms. Hence, investigating the exploitability of identified

vulnerabilities can reduce false positive and help security analysis focus on real, exploitable
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Figure 8.1: Dissertation Roadmap, including the avenues for future work.

security issues.

Android app testing is another theme of this dissertation, which is used for identification of

permission-induced compatibility issues. As another area for the future research, I suggest

extending the proposed combinatorial testing technique to include other configurable param-

eters in Android that can affect the behavior of programs, such as the settings for network

and battery usage.

Finally, since the theoretical contribution of permission-aware analysis of Android is appli-

cable to any software with a permission-based access-control model, one can investigate the

applicability of the approaches, presented in this dissertation, to other platforms that use

permission-based security model.
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[195] R. Fedler, M. Kulicke, and J. Schütte. Native code execution control for attack mitiga-
tion on android. In SPSM’13, Proceedings of the 2013 ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, Co-located with CCS 2013, November 8,
2013, Berlin, Germany, SPSM’13, pages 15–20. ACM, 2013.

[196] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab. A review on feature
selection in mobile malware detection. Digital Investigation, 13:22–37, 2015.

[197] S. Feldman, D. Stadther, and B. Wang. Manilyzer: Automated Android Malware
Detection through Manifest Analysis. In 11th IEEE International Conference on Mo-
bile Ad Hoc and Sensor Systems, MASS 2014, Philadelphia, PA, USA, October 28-30,
2014, MASS’14, pages 767–772. IEEE Computer Society, 2014.

[198] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demys-
tified. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, CCS ’11, pages
627–638, Chicago, IL, 2011. ACM.

246



[199] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to Ask for
Permission. In 7th USENIX Workshop on Hot Topics in Security, HotSec’12, Bellevue,
WA, USA, August 7, 2012, HotSec’12. USENIX Association, 2012.

[200] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of mobile malware
in the wild. In SPSM’11, Proceedings of the 1st ACM Workshop Security and Privacy
in Smartphones and Mobile Devices, Co-located with CCS 2011, October 17, 2011,
Chicago, IL, USA, pages 3–14. ACM, 2011.

[201] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android permissions:
user attention, comprehension, and behavior. In Symposium On Usable Privacy and
Security, SOUPS ’12, Washington, DC, USA - July 11 - 13, 2012, SOUPS’12, page 3.
ACM, 2012.

[202] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk. Permission re-delegation:
Attacks and defenses. In 20th USENIX Security Symposium, San Francisco, CA, USA,
August 8-12, 2011, Proceedings, San Francisco, CA, 2011.

[203] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection of
android malware. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16
- 22, 2014, Hong Kong, China, Nov. 2014.

[204] P. Ferrara, O. Tripp, and M. Pistoia. MorphDroid: Fine-grained Privacy Verification.
In Proceedings of the 31st Annual Computer Security Applications Conference, Los
Angeles, CA, USA, December 7-11, 2015, ACSAC’15, pages 371–380. ACM, 2015.

[205] D. Feth and A. Pretschner. Flexible Data-Driven Security for Android. In Sixth Inter-
national Conference on Software Security and Reliability, SERE 2012, Gaithersburg,
Maryland, USA, 20-22 June 2012, SERE’12, pages 41–50. IEEE, 2012.

[206] W. Ford and M. S. Baum. Secure electronic commerce: building the infrastructure for
digital signatures and encryption. Prentice Hall PTR, 2000.

[207] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. Modeling and enhancing android’s
permission system. In 17th European Symposium on Research in Computer Security,
Lecture Notes in Computer Science, pages 1–18, Pisa, Italy, Sept. 2012. Springer Berlin
Heidelberg.

[208] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey. Modeling and enhancing android’s
permission system. In European Symposium on Research in Computer Security, pages
1–18. Springer, 2012.

[209] Y. Fratantonio, A. Bianchi, W. K. Robertson, M. Egele, C. Kruegel, E. Kirda, and
G. Vigna. On the Security and Engineering Implications of Finer-Grained Access Con-
trols for Android Developers and Users. In Detection of Intrusions and Malware, and
Vulnerability Assessment - 12th International Conference, DIMVA 2015, Milan, Italy,
July 9-10, 2015, Proceedings, volume 9148 of DIMVA’15, pages 282–303. Springer,
2015.

247



[210] F. C. Freiling, M. Protsenko, and Y. Zhuang. An Empirical Evaluation of Software
Obfuscation Techniques Applied to Android APKs. In International Conference on
Security and Privacy in Communication Networks - 10th International ICST Con-
ference, SecureComm 2014, Beijing, China, September 24-26, 2014, Revised Selected
Papers, Part II, volume 153 of SecureComm’14, pages 315–328. Springer, 2014.

[211] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCanDroid: Automated security cer-
tification of android applications. Technical Report Technical Report CS-TR-4991,
Department of Computer Science, University of Maryland, College Park, 2009.

[212] J. Gajrani, J. Sarswat, M. Tripathi, V. Laxmi, M. S. Gaur, and M. Conti. A robust
dynamic analysis system preventing SandBox detection by Android malware. In Pro-
ceedings of the 8th International Conference on Security of Information and Networks,
SIN 2015, Sochi, Russian Federation, September 8-10, 2015, SIN’15, pages 290–295.
ACM, 2015.

[213] D. Gallingani, R. Gjomemo, V. N. Venkatakrishnan, and S. Zanero. Static detection
and automatic exploitation of intent message vulnerabilities in Android applications.
In BlackHat, Las Vegas, US, 2014, BlackHat’14, 2014.

[214] R. Gallo, P. Hongo, R. Dahab, L. C. Navarro, H. Kawakami, K. Galvão, G. Junqueira,
and L. Ribeiro. Security and system architecture: comparison of Android customiza-
tions. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, New York, NY, USA, June 22-26, 2015, WISEC’15, pages 12:1–12:6.
ACM, 2015.

[215] Gartner Inc. Gartner reveals top predictions for IT organizations and users for 2012
and beyond. http://www.gartner.com/newsroom/id/1862714, 2011.

[216] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection of android
malware using embedded call graphs. In AISec’13, Proceedings of the 2013 ACM
Workshop on Artificial Intelligence and Security, Co-located with CCS 2013, Berlin,
Germany, November 4, 2013, AISEC’13, pages 45–54. ACM, 2013.

[217] C. S. Gates, J. Chen, N. Li, and R. W. Proctor. Effective Risk Communication for
Android Apps. IEEE Trans. Dependable Sec. Comput., 11(3):252–265, 2014.

[218] C. S. Gates, N. Li, H. Peng, B. P. Sarma, Y. Qi, R. Potharaju, C. Nita-Rotaru, and
I. Molloy. Generating Summary Risk Scores for Mobile Applications. IEEE Trans.
Dependable Sec. Comput., 11(3):238–251, 2014.

[219] D. Geneiatakis, I. N. Fovino, I. Kounelis, and P. Stirparo. A Permission verification
approach for android mobile applications. Computers & Security, 49:192–205, 2015.

[220] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and Fixing Origin-Based Access
Control in Hybrid Web/Mobile Application Frameworks. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2014, NDSS’14. The Internet Society, 2014.

248

http://www.gartner.com/newsroom/id/1862714


[221] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero. PuppetDroid: A User-
Centric UI Exerciser for Automatic Dynamic Analysis of Similar Android Applications.
arXiv:1402.4826 [cs], Feb. 2014.

[222] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: Automatically de-
tecting potential privacy leaks in android applications on a large scale. In Proceedings
of the 5th International Conference on Trust and Trustworthy Computing, TRUST’12,
pages 291–307, Vienna, Austria, 2012. Springer-Verlag.

[223] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung. Vision: automated security validation
of mobile apps at app markets. In Proceedings of the second international workshop
on Mobile cloud computing and services, 2011, pages 21–26. ACM, 2011.

[224] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing. In
Proceedings of the Network and Distributed System Security Symposium, NDSS 2008,
San Diego, California, USA, 10th February - 13th February 2008, volume 8, pages
151–166, 2008.

[225] H. Gonzalez, A. A. Kadir, N. Stakhanova, A. J. Alzahrani, and A. A. Ghorbani.
Exploring reverse engineering symptoms in Android apps. In Proceedings of the Eighth
European Workshop on System Security, EuroSec 2015, Bordeaux, France, April 21,
2015, EuroSec’15, pages 7:1–7:7. ACM, 2015.

[226] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani. DroidKin: Lightweight Detection
of Android Apps Similarity. In International Conference on Security and Privacy in
Communication Networks - 10th International ICST Conference, SecureComm 2014,
Beijing, China, September 24-26, 2014, Revised Selected Papers, Part I, volume 152
of SecureComm’14, pages 436–453. Springer, 2014.

[227] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard. Information-
Flow Analysis of Android Applications in DroidSafe. In 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2014, San Diego, CA, 2015.

[228] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against app
descriptions. In 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, ICSE 2014, pages 1025–1035, Hyderabad,
India, 2014. ACM.

[229] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. R. Cavalli. Detecting Control
Flow in Smarphones: Combining Static and Dynamic Analyses. In Cyberspace Safety
and Security, CSS’12, pages 33–47, 2012.

[230] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. R. Cavalli. Protection against
Code Obfuscation Attacks Based on Control Dependencies in Android Systems. In
IEEE Eighth International Conference on Software Security and Reliability, SERE
2014, San Francisco, CA, USA, June 30 - July 2, 2014 - Companion Volume, SERE’14,
pages 149–157. IEEE, 2014.

249



[231] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and accurate
zero-day android malware detection. In The 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys’12, Ambleside, United Kingdom - June
25 - 29, 2012, pages 281–294, Washington, DC, 2012. ACM.

[232] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of mobile
in-app advertisements. In Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WISEC 2012, Tucson, AZ, USA, April
16-18, 2012, WISEC ’12, pages 101–112, Tucson, AZ, 2012. ACM.

[233] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability
leaks in stock android smartphones. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012,
San Diego, CA, 2012.

[234] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing and detecting
resource leaks in Android applications. In 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA,
November 11-15, 2013, ASE’13, pages 389–398. IEEE, 2013.

[235] H.-S. Ham and M.-J. Choi. Analysis of android malware detection performance using
machine learning classifiers. In ICT Convergence (ICTC), 2013 International Confer-
ence on, 2013, pages 490–495. IEEE, 2013.

[236] Y. J. Ham, D. Moon, H.-W. Lee, J. D. Lim, and J. N. Kim. Android mobile application
system call event pattern analysis for determination of malicious attack. International
Journal of Security and Its Applications, 8(1):231–246, 2014.

[237] K. Hamandi, A. Chehab, I. H. Elhajj, and A. I. Kayssi. Android SMS Malware: Vul-
nerability and Mitigation. In 27th International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2013, Barcelona, Spain, March 25-
28, 2013, AINA’13, pages 1004–1009. IEEE Computer Society, 2013.

[238] M. Hammad, H. Bagheri, and S. Malek. Determination and enforcement of least-
privilege architecture in android. In 2017 IEEE International Conference on Software
Architecture, ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, pages 59–68, 2017.

[239] H. Han, R. Li, J. Hu, and M. Qiu. Context Awareness through Reasoning on Private
Analysis for Android Application. In IEEE 2nd International Conference on Cyber
Security and Cloud Computing, CSCloud 2015, New York, NY, USA, November 3-5,
2015, CSCloud’15, pages 148–156. IEEE, 2015.

[240] Z. Han, L. Cheng, Y. Zhang, S. Zeng, Y. Deng, and X. Sun. Systematic Analysis and
Detection of Misconfiguration Vulnerabilities in Android Smartphones. In 13th IEEE
International Conference on Trust, Security and Privacy in Computing and Communi-
cations, TrustCom 2014, Beijing, China, September 24-26, 2014, TrustCom’14, pages
432–439. IEEE Computer Society, 2014.

250



[241] S. Hanna, L. Huang, E. X. Wu, S. Li, C. Chen, and D. Song. Juxtapp: A Scalable
System for Detecting Code Reuse among Android Applications. In Detection of In-
trusions and Malware, and Vulnerability Assessment - 9th International Conference,
DIMVA 2012, Heraklion, Crete, Greece, July 26-27, 2012, Revised Selected Papers,
volume 7591 of DIMVA’12, pages 62–81. Springer, 2012.

[242] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. SIF: a selective instrumentation
framework for mobile applications. In The 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys’13, Taipei, Taiwan, June 25-28,
2013, MobiSys’13, pages 167–180. ACM, 2013.

[243] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan. PUMA: programmable
UI-automation for large-scale dynamic analysis of mobile apps. In The 12th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys’14,
Bretton Woods, NH, USA, June 16-19, 2014, MobiSys’14, pages 204–217. ACM, 2014.

[244] M. Harbach, M. Hettig, S. Weber, and M. Smith. Using personal examples to improve
risk communication for security & privacy decisions. In CHI Conference on Human
Factors in Computing Systems, CHI’14, Toronto, ON, Canada - April 26 - May 01,
2014, pages 2647–2656. ACM, 2014.

[245] N. Hardy. The confused deputy:(or why capabilities might have been invented). ACM
SIGOPS Operating Systems Review, 22(4):36–38, 1988.

[246] M. Haris, H. Haddadi, and P. Hui. Privacy Leakage in Mobile Computing: Tools,
Methods, and Characteristics. arXiv:1410.4978 [cs], Oct. 2014. arXiv: 1410.4978.

[247] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi. ASM: A Programmable Interface
for Extending Android Security. In Proceedings of the 23rd USENIX Security Sympo-
sium, San Diego, CA, USA, August 20-22, 2014, SEC’14, pages 1005–1019. USENIX
Association, 2014.

[248] T.-H. Ho, D. J. Dean, X. Gu, and W. Enck. PREC: practical root exploit containment
for android devices. In Fourth ACM Conference on Data and Application Security and
Privacy, CODASPY’14, San Antonio, TX, USA - March 03 - 05, 2014, CODASPY’14,
pages 187–198. ACM, 2014.

[249] J. Hoffmann, S. Neumann, and T. Holz. Mobile malware detection based on energy
fingerprints—a dead end? In Research in Attacks, Intrusions, and Defenses, pages
348–368. Springer, 2013.

[250] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth. Slicing droids: program
slicing for smali code. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, SAC’13, pages 1844–
1851. ACM, 2013.

[251] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen, S. Ko, and
L. Ziarek. Flow permissions for android. In 2013 28th IEEE/ACM International

251



Conference on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA,
November 11-15, 2013, pages 652–657, Nov. 2013.

[252] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the droids
you’re looking for: Retrofitting android to protect data from imperious applications. In
Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, CCS ’11, pages 639–652,
Chicago, IL, 2011. ACM.

[253] W. Hu, D. Octeau, P. D. McDaniel, and P. Liu. Duet: library integrity verification for
android applications. In 7th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, WiSec’14, Oxford, United Kingdom, July 23-25, 2014, WISEC’14,
pages 141–152. ACM, 2014.

[254] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han. MIGDroid: Detecting
APP-Repackaging Android malware via method invocation graph. In 23rd Interna-
tional Conference on Computer Communication and Networks, ICCCN 2014, Shang-
hai, China, August 4-7, 2014, ICCCN’14, pages 1–7. IEEE, 2014.

[255] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu. Performance evaluation on permission-based
detection for android malware. Advances in Intelligent Systems and Applications,
2:111–120, 2013.

[256] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu. Towards Discovering and
Understanding Unexpected Hazards in Tailoring Antivirus Software for Android. In
Proceedings of the 10th ACM Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’15, Singapore, April 14-17, 2015, ASIACCS ’15, pages
7–18, New York, NY, USA, 2015. ACM.

[257] H. Huang, S. Zhu, K. Chen, and P. Liu. From System Services Freezing to System
Server Shutdown in Android: All You Need Is a Loop in an App. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015, CCS’15, pages 1236–1247. ACM, 2015.

[258] H. Huang, S. Zhu, P. Liu, and D. Wu. A Framework for Evaluating Mobile App
Repackaging Detection Algorithms. In Trust and Trustworthy Computing - 6th In-
ternational Conference, TRUST 2013, London, UK, June 17-19, 2013. Proceedings,
volume 7904 of TRUST’13, pages 169–186. Springer, 2013.

[259] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. SUPOR: precise
and scalable sensitive user input detection for android apps. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015, pages
977–992. USENIX Association, 2015.

[260] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. AsDroid: detecting stealthy
behaviors in android applications by user interface and program behavior contradiction.
In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, pages 1036–1046, Hyderabad, India, 2014.

252



[261] P. Institute. Big data analytics in cyber defense. Feb. 2013.

[262] T. Isohara, K. Takemori, and A. Kubota. Kernel-based Behavior Analysis for Android
Malware Detection. In Seventh International Conference on Computational Intelligence
and Security, CIS 2011, Sanya, Hainan, China, December 3-4, 2011, CIS’11, pages
1011–1015. IEEE Computer Society, 2011.

[263] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek. Energy-aware test-suite min-
imization for android apps. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,
pages 425–436, 2016.

[264] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. Ecodroid: An
approach for energy-based ranking of android apps. In 4th IEEE/ACM International
Workshop on Green and Sustainable Software, GREENS 2015, Florence, Italy, May
18, 2015, pages 8–14, 2015.

[265] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

[266] J. Jang, H. Ji, J. Hong, J. Jung, D. Kim, and S. K. Jung. Protecting Android appli-
cations with steganography-based software watermarking. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, Coimbra, Portugal, March
18-22, 2013, SAC’13, pages 1657–1658. ACM, 2013.

[267] C. Jeon, W. Kim, B. Kim, and Y. Cho. Enhancing security enforcement on unmodified
Android. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, Coimbra, Portugal, March 18-22, 2013, SAC’13, pages 1655–1656. ACM,
2013.

[268] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, and T. Mill-
stein. Dr. android and mr. hide: Fine-grained permissions in android applications.
In SPSM’12, Proceedings of the Workshop on Security and Privacy in Smartphones
and Mobile Devices, Co-located with CCS 2012, October 19, 2012, Raleigh, NC, USA,
SPSM ’12, pages 3–14, New York, NY, USA, 2012. ACM.

[269] J. Jeong, D. Seo, C. Lee, J. Kwon, H. Lee, and J. Milburn. MysteryChecker: Un-
predictable attestation to detect repackaged malicious applications in Android. In 9th
International Conference on Malicious and Unwanted Software: The Americas MAL-
WARE 2014, Fajardo, PR, USA, October 28-30, 2014, MALWARE’14, pages 50–57.
IEEE, 2014.

[270] Y. Jeong, H.-t. Lee, S. Cho, S. Han, and M. Park. A kernel-based monitoring approach
for analyzing malicious behavior on Android. In Symposium on Applied Computing,
SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, SAC’14, pages 1737–
1738. ACM, 2014.

253



[271] L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima, S. Kiyomoto,
and Y. Miyake. Run-Time Enforcement of Information-Flow Properties on Android.
In Computer Security - ESORICS 2013 - 18th European Symposium on Research in
Computer Security, Egham, UK, September 9-13, 2013. Proceedings, volume 8134 of
ESORICS’13, pages 775–792. Springer, 2013.

[272] H. Jiao, X. Li, L. Zhang, G. Xu, and Z. Feng. Hybrid Detection Using Permission
Analysis for Android Malware. In International Conference on Security and Privacy in
Communication Networks - 10th International ICST Conference, SecureComm 2014,
Beijing, China, September 24-26, 2014, Revised Selected Papers, Part I, volume 152
of SecureComm’14, pages 541–545. Springer, 2014.

[273] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng. A Rapid and Scalable Method for
Android Application Repackaging Detection. In Information Security Practice and
Experience - 11th International Conference, ISPEC 2015, Beijing, China, May 5-8,
2015. Proceedings, volume 9065 of ISPEC’15, pages 349–364. Springer, 2015.

[274] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code Injection Attacks
on HTML5-based Mobile Apps: Characterization, Detection and Mitigation. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, CCS’14, pages 66–77. ACM, 2014.

[275] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Riskmon: Continuous and automated risk
assessment of mobile applications. In Fourth ACM Conference on Data and Application
Security and Privacy, CODASPY’14, San Antonio, TX, USA - March 03 - 05, 2014,
pages 99–110. ACM, 2014.

[276] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Towards Automated Risk Assessment and
Mitigation of Mobile Applications. IEEE Trans. Dependable Sec. Comput., 12(5):571–
584, 2015.

[277] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu. Morpheus: automatically generating heuristics
to detect Android emulators. In Proceedings of the 30th Annual Computer Security
Applications Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014,
ACSAC’14, pages 216–225. ACM, 2014.

[278] M. M. John, P. Vinod, and K. A. Dhanya. Hartley’s test ranked opcodes for Android
malware analysis. In Proceedings of the 8th International Conference on Security of In-
formation and Networks, SIN 2015, Sochi, Russian Federation, September 8-10, 2015,
ICSIN’15, pages 304–311. ACM, 2015.

[279] R. Johnson, M. Elsabagh, A. Stavrou, and V. Sritapan. Targeted DoS on android: how
to disable android in 10 seconds or less. In 10th International Conference on Malicious
and Unwanted Software, MALWARE 2015, Fajardo, PR, USA, October 20-22, 2015,
MALWARE’15, pages 136–143. IEEE, 2015.

[280] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou. Analysis of Android Applications’
Permissions. In Sixth International Conference on Software Security and Reliability,

254



SERE 2012, Gaithersburg, Maryland, USA, 20-22 June 2012 - Companion Volume,
SERE’12, pages 45–46. IEEE, 2012.

[281] C. Jung, D. Feth, and C. Seise. Context-Aware Policy Enforcement for Android. In
IEEE 7th International Conference on Software Security and Reliability, SERE 2013,
Gaithersburg, MD, USA, June 18-20, 2013, SERE’13, pages 40–49. IEEE, 2013.

[282] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani. Android Botnets: What URLs
are Telling Us. In Network and System Security - 9th International Conference, NSS
2015, New York, NY, USA, November 3-5, 2015, Proceedings, volume 9408 of NSS’15,
pages 78–91. Springer, 2015.

[283] D. Kantola, E. Chin, W. He, and D. Wagner. Reducing attack surfaces for intra-
application communication in android. In SPSM’12, Proceedings of the Workshop on
Security and Privacy in Smartphones and Mobile Devices, Co-located with CCS 2012,
October 19, 2012, Raleigh, NC, USA, CCS’12, pages 69–80. ACM, 2012.

[284] M. Karami, M. Elsabagh, P. Najafiborazjani, and A. Stavrou. Behavioral Analysis
of Android Applications Using Automated Instrumentation. In Seventh International
Conference on Software Security and Reliability, SERE 2012, Gaithersburg, Maryland,
USA, 18-20 June 2013 - Companion Volume, SERE’13, pages 182–187. IEEE, 2013.

[285] P. M. Kate and S. V. Dhavale. Two Phase Static Analysis Technique for Android
Malware Detection. In Proceedings of the Third International Symposium on Women
in Computing and Informatics, WCI 2015, co-located with ICACCI 2015, Kochi, India,
August 10-13, 2015, WCI’15, pages 650–655. ACM, 2015.

[286] M. Kato and S. Matsuura. A Dynamic Countermeasure Method to Android Malware by
User Approval. In 37th Annual IEEE Computer Software and Applications Conference,
COMPSAC 2013, Kyoto, Japan, July 22-26, 2013, COMPSAC’13, pages 730–731.
IEEE Computer Society, 2013.

[287] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. M. Sadeh, and D. Wetherall. A
Conundrum of Permissions: Installing Applications on an Android Smartphone. In
Financial Cryptography and Data Security - FC 2012 Workshops, USEC and WECSR
2012, Kralendijk, Bonaire, March 2, 2012, Revised Selected Papers, volume 7398 of
FC’12, pages 68–79. Springer, 2012.

[288] P. G. Kelley, L. F. Cranor, and N. M. Sadeh. Privacy as part of the app decision-
making process. In 2013 ACM SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, Paris, France, April 27 - May 2, 2013, pages 3393–3402. ACM,
2013.

[289] R. S. Khune and J. Thangakumar. A cloud-based intrusion detection system for an-
droid smartphones. In Radar, Communication and Computing (ICRCC), 2012 Inter-
national Conference on, pages 180–184. IEEE, 2012.

255



[290] D.-u. Kim, J. Kim, and S. Kim. A malicious application detection framework using
automatic feature extraction tool on android market. In Proceedings: 3rd Interna-
tional Conference on Computer Science and Information Technology (ICCSIT 2013),
ICCSIT’13, 2013.

[291] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. ScanDal: Static analyzer for detecting
privacy leaks in android applications. In IEEE Mobile Security Technologies (MoST),
in conjunction with the IEEE Symposium on Security and Privacy, MoST 2012, San
Francisco, California, USA, May 24, 2012, MoST’12, San Francisco, CA, 2012.

[292] J. C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[293] B. Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
University, 33:2004, 2004.

[294] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer. Android taint flow analysis
for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on the
State Of the Art in Java Program analysis, SOAP 2014, Edinburgh, UK, Co-located
with PLDI 2014, June 12, 2014, pages 1–6, Edinburgh, UK, 2014. ACM.

[295] X. Kou and Q. Wen. Intrusion detection model based on android. In 2011 4th IEEE
International Conference on Broadband Network and Multimedia Technology, 2011.

[296] S. M. Kywe, C. Landis, Y. Pei, J. Satterfield, Y. Tian, and P. Tague. PrivateDroid:
Private Browsing Mode for Android. In 13th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom 2014, Beijing,
China, September 24-26, 2014, pages 27–36. IEEE Computer Society, 2014.

[297] M. Kühnel, M. Smieschek, and U. Meyer. Fast Identification of Obfuscation and Mobile
Advertising in Mobile Malware. In 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki,
Finland, August 20-22, 2015, Volume 1, TrustCom’15, pages 214–221. IEEE, 2015.

[298] J.-F. Lalande and S. Wendzel. Hiding Privacy Leaks in Android Applications Using
Low-Attention Raising Covert Channels. In 2013 International Conference on Avail-
ability, Reliability and Security, ARES 2013, Regensburg, Germany, September 2-6,
2013, ARES’13, pages 701–710. IEEE Computer Society, 2013.

[299] L. Lamport. Specifying systems: the TLA+ language and tools for hardware and soft-
ware engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[300] B. W. Lampson. Protection. Operating Systems Review, 8(1):18–24, 1974.

[301] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter. L4android: a generic
operating system framework for secure smartphones. In SPSM’11, Proceedings of the
1st ACM Workshop Security and Privacy in Smartphones and Mobile Devices, Co-
located with CCS 2011, October 17, 2011, Chicago, IL, USA, SPSM’11, pages 39–50.
ACM, 2011.

256



[302] S.-H. Lee and S.-H. Jin. Warning system for detecting malicious applications on android
system. International Journal of Computer and Communication Engineering, 2(3):324,
2013.

[303] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Medvidovic. A
SEALANT for inter-app security holes in android. In Proceedings of the 39th Inter-
national Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017, pages 312–323, 2017.

[304] L. Lei, Y. Wang, J. Jing, Z. Zhang, and X. Yu. MeadDroid: Detecting Monetary Theft
Attacks in Android by DVM Monitoring. In Information Security and Cryptology -
ICISC 2012 - 15th International Conference, Seoul, Korea, November 28-30, 2012,
Revised Selected Papers, volume 7839 of ICISC’12, pages 78–91. Springer, 2012.

[305] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo. Don’t kill my ads!: balancing
privacy in an ad-supported mobile application market. In 2012 Workshop on Mobile
Computing Systems and Applications, HotMobile’12, San Diego, CA, USA, February
28-29, 2012, page 2. ACM, 2012.

[306] D. Li, Y. Lyu, M. Wan, and W. G. J. Halfond. String analysis for Java and Android
applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
FSE’15, pages 661–672. ACM, 2015.
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[535] R. Xu, H. Säıdi, and R. Anderson. Aurasium: Practical policy enforcement for an-
droid applications. In Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, August 8-10, 2012, Security’12, pages 27–27, Bellevue, WA, 2012. USENIX
Association.

[536] W. Xu, F. Zhang, and S. Zhu. Permlyzer: Analyzing permission usage in android ap-
plications. In IEEE 24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013, pages 400–410, Nov. 2013.

[537] Z. Xu and S. Zhu. Semadroid: A privacy-aware sensor management framework for
smartphones. In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015,
pages 61–72, 2015.

[538] L. Yan, Y. Guo, and X. Chen. SplitDroid: Isolated Execution of Sensitive Components
for Mobile Applications. In Security and Privacy in Communication Networks - 11th
International Conference, SecureComm 2015, Dallas, TX, USA, October 26-29, 2015,
Revised Selected Papers, volume 164 of SecureComm’15, pages 78–96. Springer, 2015.

[539] L. K. Yan and H. Yin. DroidScope: Seamlessly reconstructing the OS and dalvik
semantic views for dynamic android malware analysis. In Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012, Security’12,
pages 29–29, Bellevue, WA, 2012. USENIX Association.

[540] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. A. Porras. DroidMiner: Automated
Mining and Characterization of Fine-grained Malicious Behaviors in Android Applica-
tions. In Computer Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I,
volume 8712 of ESORICS’14, pages 163–182. Springer, 2014.

[541] C. Yang, G. Yang, A. Gehani, V. Yegneswaran, D. Tariq, and G. Gu. Using Provenance
Patterns to Vet Sensitive Behaviors in Android Apps. In Security and Privacy in Com-
munication Networks - 11th International Conference, SecureComm 2015, Dallas, TX,
USA, October 26-29, 2015, Revised Selected Papers, volume 164 of SecureComm’15,
pages 58–77. Springer, 2015.

[542] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan. IntentFuzzer: detecting capability
leaks of android applications. In 9th ACM Symposium on Information, Computer

280



and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014,
ASIACCS’14, pages 531–536. ACM, 2014.

[543] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis
of user-driven callbacks in android applications. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, ICSE 2015, Florence, Italy, 2015.

[544] T. Yang, Y. Yang, K. Qian, D. C.-T. Lo, Y. Qian, and L. Tao. Automated Detection
and Analysis for Android Ransomware. In 17th IEEE International Conference on High
Performance Computing and Communications, HPCC 2015, 7th IEEE International
Symposium on Cyberspace Safety and Security, CSS 2015, and 12th IEEE International
Conference on Embedded Software and Systems, ICESS 2015, New York, NY, USA,
August 24-26, 2015, CSS’15, pages 1338–1343. IEEE, 2015.

[545] W. Yang, J. Li, Y. Zhang, Y. Li, J. Shu, and D. Gu. APKLancet: tumor payload
diagnosis and purification for android applications. In 9th ACM Symposium on In-
formation, Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan -
June 03 - 06, 2014, ASIACCS’14, pages 483–494. ACM, 2014.

[546] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext: Differentiating
Malicious and Benign Mobile App Behaviors Using Context. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, ICSE’15, pages 303–313. IEEE, 2015.

[547] Z. Yang and M. Yang. LeakMiner: Detect information leakage on android with static
taint analysis. In 2012 Third World Congress on Software Engineering (WCSE), Hong
Kong, China, 2012, pages 101–104, Hong Kong, China, Nov. 2012.

[548] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. AppIntent: analyzing
sensitive data transmission in android for privacy leakage detection. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, CCS ’13, pages 1043–1054, Berlin, Germany, 2013.
ACM.

[549] H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the Android Apps with
Intent-Filter Tag. In The 11th International Conference on Advances in Mobile Com-
puting & Multimedia, MoMM ’13, Vienna, Austria, December 2-4, 2013, MoMM’13,
page 68. ACM, 2013.

[550] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. A New Android Malware Detec-
tion Approach Using Bayesian Classification. In 27th IEEE International Conference
on Advanced Information Networking and Applications, AINA 2013, Barcelona, Spain,
March 25-28, 2013, AINA’13, pages 121–128. IEEE Computer Society, 2013.

[551] W. You, B. Liang, J. Li, W. Shi, and X. Zhang. Android Implicit Information Flow De-
mystified. In Proceedings of the 10th ACM Symposium on Information, Computer and

281



Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015, ASIACCS
’15, pages 585–590, New York, NY, USA, 2015. ACM.

[552] W. You, K. Qian, M. Guo, P. Bhattacharya, Y. Qian, and L. Tao. A hybrid approach
for mobile security threat analysis. In Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, New York, NY, USA, June 22-
26, 2015, WISEC’15, pages 28:1–28:2. ACM, 2015.

[553] Y. Yu, P. Manolios, and L. Lamport. Model checking tla+ specifications. In Cor-
rect Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Re-
search Working Conference, CHARME ’99, Bad Herrenalb, Germany, September 27-
29, 1999, Proceedings, pages 54–66, 1999.

[554] P. Zave. A practical comparison of alloy and spin. Technical report, 2012.

[555] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. ViewDroid: towards obfuscation-
resilient mobile application repackaging detection. In 7th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, WiSec’14, Oxford, United Kingdom, July
23-25, 2014, WISEC’14, pages 25–36. ACM, 2014.

[556] L. Zhang, Y. Zhang, and T. Zang. Detecting Malicious Behaviors in Repackaged An-
droid Apps with Loosely-Coupled Payloads Filtering Scheme. In International Confer-
ence on Security and Privacy in Communication Networks - 10th International ICST
Conference, SecureComm 2014, Beijing, China, September 24-26, 2014, Revised Se-
lected Papers, Part I, volume 152 of SecureComm’14, pages 454–462. Springer, 2014.

[557] M. Zhang, Y. Duan, Q. Feng, and H. Yin. Towards Automatic Generation of Security-
Centric Descriptions for Android Apps. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, pages 518–529. ACM, 2015.

[558] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-Aware Android Malware Clas-
sification Using Weighted Contextual API Dependency Graphs. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, Scotts-
dale, AZ, USA, November 3-7, 2014, CCS’14, pages 1105–1116. ACM, 2014.

[559] M. Zhang and H. Yin. Appsealer: Automatic generation of vulnerability-specific
patches for preventing component hijacking attacks in android applications. In 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014, NDSS’14, 2014.

[560] M. Zhang and H. Yin. Efficient, context-aware privacy leakage confinement for android
applications without firmware modding. In 9th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 -
06, 2014, ASIACCS’14, pages 259–270. ACM, 2014.

[561] N. Zhang, K. Yuan, M. Naveed, X.-y. Zhou, and X. Wang. Leave Me Alone: App-
Level Protection against Runtime Information Gathering on Android. In 2015 IEEE

282



Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015,
pages 915–930. IEEE Computer Society, 2015.

[562] X. Zhang, A. Ahlawat, and W. Du. AFrame: isolating advertisements from mobile ap-
plications in Android. In Annual Computer Security Applications Conference, ACSAC
’13, New Orleans, LA, USA, December 9-13, 2013, ACSAC ’13, pages 9–18. ACM,
2013.

[563] X. Zhang and W. Du. Attacks on Android Clipboard. In Detection of Intrusions
and Malware, and Vulnerability Assessment - 11th International Conference, DIMVA
2014, Egham, UK, July 10-11, 2014. Proceedings, volume 8550 of DIMVA’14, pages
72–91. Springer, 2014.

[564] Y. Zhang, K. Huang, Y. Liu, K. Chen, L. Huang, and Y. Lian. Timing-Based Clone
Detection on Android Markets. In International Conference on Security and Privacy in
Communication Networks - 10th International ICST Conference, SecureComm 2014,
Beijing, China, September 24-26, 2014, Revised Selected Papers, Part II, volume 153
of SecureComm’15, pages 375–381. Springer, 2014.

[565] Y. Zhang, M. Yang, G. Gu, and H. Chen. FineDroid: Enforcing Permissions with
System-Wide Application Execution Context. In Security and Privacy in Commu-
nication Networks - 11th International Conference, SecureComm 2015, Dallas, TX,
USA, October 26-29, 2015, Revised Selected Papers, volume 164 of SecureComm’15,
pages 3–22. Springer, 2015.

[566] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang. Vetting
undesirable behaviors in android apps with permission use analysis. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, CCS ’13, pages 611–622, Berlin, Germany, 2013. ACM.

[567] K. Zhao, D. Zhang, X. Su, and W. Li. Fest: A feature extraction and selection
tool for Android malware detection. In 2015 IEEE Symposium on Computers and
Communication, ISCC 2015, Larnaca, Cyprus, July 6-9, 2015, ISCC’15, pages 714–
720. IEEE Computer Society, 2015.

[568] M. Zhao, F. Ge, T. Zhang, and Z. Yuan. AntiMalDroid: An Efficient SVM-Based Mal-
ware Detection Framework for Android. In Information Computing and Applications
- Second International Conference, ICICA 2011, Qinhuangdao, China, October 28-31,
2011. Proceedings, Part I, volume 243 of ICICA’11, pages 158–166. Springer, 2011.

[569] S. Zhao, X. Li, G. Xu, L. Zhang, and Z. Feng. Attack Tree Based Android Malware
Detection with Hybrid Analysis. In 13th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom 2014, Beijing,
China, September 24-26, 2014, TrustCom’15, pages 380–387. IEEE Computer Society,
2014.

[570] Z. Zhao and F. Osono. TrustDroid: Preventing the use of SmartPhones for information
leaking in corporate networks through the used of static analysis taint tracking. In

283



7th International Conference on Malicious and Unwanted Software, MALWARE 2012,
Fajardo, PR, USA, October 16-18, 2012, pages 135–143, Fajardo, PR, Oct. 2012.

[571] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F. Massacci. StaDynA:
Addressing the Problem of Dynamic Code Updates in the Security Analysis of Android
Applications. In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, CODASPY 2015, San Antonio, TX, USA, March 2-4, 2015,
CODASPY’15, pages 37–48. ACM, 2015.

[572] Y. Zhauniarovich, O. Gadyatskaya, and B. Crispo. Enabling trusted stores for an-
droid. In 2013 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS’13, Berlin, Germany, November 4-8, 2013, CCS’13, pages 1345–1348. ACM,
2013.

[573] Y. Zhauniarovich, G. Russello, M. Conti, B. Crispo, and E. Fernandes. MOSES:
Supporting and Enforcing Security Profiles on Smartphones. IEEE Trans. Dependable
Sec. Comput., 11(3):211–223, 2014.

[574] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. SmartDroid: An
automatic system for revealing UI-based trigger conditions in android applications.
In SPSM’12, Proceedings of the Workshop on Security and Privacy in Smartphones
and Mobile Devices, Co-located with CCS 2012, October 19, 2012, Raleigh, NC, USA,
SPSM ’12, pages 93–104, New York, NY, USA, 2012. ACM.

[575] M. Zheng, P. P. C. Lee, and J. C. S. Lui. ADAM: An Automatic and Extensible
Platform to Stress Test Android Anti-virus Systems. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 9th International Conference, DIMVA 2012,
Heraklion, Crete, Greece, July 26-27, 2012, Revised Selected Papers, volume 7591 of
DIMVA’12, pages 82–101. Springer, 2012.

[576] M. Zheng, M. Sun, and J. C. S. Lui. Droid Analytics: A Signature Based Analytic
System to Collect, Extract, Analyze and Associate Android Malware. In 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Commu-
nications, TrustCom 2013 / 11th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, ISPA-13 / 12th IEEE International Conference
on Ubiquitous Computing and Communications, IUCC-2013, Melbourne, Australia,
July 16-18, 2013, TrustCom’13, pages 163–171, Washington, DC, USA, 2013. IEEE
Computer Society.

[577] M. Zheng, M. Sun, and J. C. S. Lui. DroidRay: a security evaluation system for
customized android firmwares. In 9th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 - 06, 2014,
ASIACCS’14, pages 471–482. ACM, 2014.

[578] M. Zheng, M. Sun, and J. C. S. Lui. DroidTrace: A ptrace based Android dynamic
analysis system with forward execution capability. In International Wireless Commu-
nications and Mobile Computing Conference, IWCMC 2014, Nicosia, Cyprus, August
4-8, 2014, IWCMC’14, pages 128–133. IEEE, 2014.

284



[579] Y. Zhongyang, Z. Xin, B. Mao, and L. Xie. DroidAlarm: an all-sided static analysis
tool for Android privilege-escalation malware. In 8th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’13, Hangzhou, China - May 08
- 10, 2013, ASIACCS’13, pages 353–358. ACM, 2013.

[580] Q. Zhou, D. Wang, Y. Zhang, B. Qin, A. Yu, and B. Zhao. ChainDroid: Safe and
Flexible Access to Protected Android Resources Based on Call Chain. In 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Commu-
nications, TrustCom 2013 / 11th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, ISPA-13 / 12th IEEE International Conference
on Ubiquitous Computing and Communications, IUCC-2013, Melbourne, Australia,
July 16-18, 2013, TrustCom’13, pages 156–162. IEEE Computer Society, 2013.

[581] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang. DIVILAR: diversifying intermediate
language for anti-repackaging on android platform. In Fourth ACM Conference on
Data and Application Security and Privacy, CODASPY’14, San Antonio, TX, USA -
March 03 - 05, 2014, pages 199–210. ACM, 2014.

[582] W. Zhou, X. Zhang, and X. Jiang. AppInk: watermarking android apps for repackaging
deterrence. In 8th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, Hangzhou, China - May 08 - 10, 2013, pages 1–12. ACM,
2013.

[583] W. Zhou, Y. Zhou, M. C. Grace, X. Jiang, and S. Zou. Fast, scalable detection of
”Piggybacked” mobile applications. In Third ACM Conference on Data and Applica-
tion Security and Privacy, CODASPY’13, San Antonio, TX, USA, February 18-20,
2013, CODASPY’13, pages 185–196. ACM, 2013.

[584] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smartphone applica-
tions in third-party android marketplaces. In Second ACM Conference on Data and
Application Security and Privacy, CODASPY 2012, San Antonio, TX, USA, February
7-9, 2012, CODASPY’12, pages 317–326. ACM, 2012.

[585] X.-y. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The Peril of Fragmentation:
Security Hazards in Android Device Driver Customizations. In 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, S&P’14,
pages 409–423. IEEE Computer Society, 2014.

[586] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In
IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA, pages 95–109, San Francisco, CA, 2012. IEEE.

[587] Y. Zhou and X. Jiang. Detecting passive content leaks and pollution in android appli-
cations. In 20th Annual Network and Distributed System Security Symposium, NDSS
2013, San Diego, California, USA, February 24-27, 2013, San Diego, CA, 2013.

285



[588] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang. Hybrid User-level Sandboxing of
Third-party Android Apps. In Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17,
2015, pages 19–30. ACM, 2015.

[589] Y. Zhou, K. Singh, and X. Jiang. Owner-Centric Protection of Unstructured Data on
Smartphones. In Trust and Trustworthy Computing - 7th International Conference,
TRUST 2014, Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings, volume
8564 of TRUST’14, pages 55–73. Springer, 2014.

[590] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative Android Markets. In 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012. The Internet Society, 2012.

[591] Y. Zhou, L. Wu, Z. Wang, and X. Jiang. Harvesting developer credentials in Android
apps. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, New York, NY, USA, June 22-26, 2015, WISEC’15, pages 23:1–
23:12. ACM, 2015.

[592] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-stealing smart-
phone applications (on android). In Trust and Trustworthy Computing - 4th Interna-
tional Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011. Proceedings,
pages 93–107, Pittsburgh, PA, June 2011. Springer.

[593] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Mobile app recommendations with security and
privacy awareness. In The 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
KDD’14, pages 951–960. ACM, 2014.

[594] C. Zuo, J. Wu, and S. Guo. Automatically Detecting SSL Error-Handling Vulner-
abilities in Hybrid Mobile Web Apps. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’15, Singapore,
April 14-17, 2015, ASIACCS’15, pages 591–596. ACM, 2015.

286


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Dissertation Overview
	Dissertation Structure

	Background and Related Work
	Android Overview
	Related Surveys
	Research Method
	Research Tasks
	Literature Review Protocol
	Selected papers
	Threats to Validity

	Taxonomy
	Approach Positioning (Problem)
	Approach Characteristics (Solution)
	Assessment (Validation)

	Survey Results and Analysis
	Approach Positioning (Problem)
	Approach Characteristics (Solution)
	Assessment (Validation)
	Cross Analysis

	Discussion and Directions for Future Research
	Conclusion

	Research Problem
	Permission-Induced Security Attacks
	Permission-Induced Compatibility Defects

	Compositional Analysis of Permission-Induced Security Vulnerabilities
	Introduction
	Motivating Example
	Approach Overview
	Model Extractor
	Entity Extraction and Resolution
	Control Flow Augmentation
	Vulnerable Paths Identification

	Formal Analyzer
	Alloy Overview
	Formal Model of Android Framework
	Formal Model of Apps
	Checking Android Application Models

	Empirical Evaluation
	Significance of Compositional Analysis
	Automated Analysis of Applications
	Manual Analysis
	Compositional vs. Single App Analysis
	Performance and Timing

	Discussion
	Other Types of Vulnerabilities

	Conclusion

	Automatic Enforcement of Permission-Based Security Policies
	Introduction
	Motivating Example
	Approach Overview
	AME: Android Model Extractor
	ASE: Analysis and Synthesis Engine
	APE: Android Policy Enforcer
	Evaluation
	Results for RQ1 (Accuracy)
	Results for RQ2 (Separ and Real-World Apps)
	Results for RQ3 (Performance and Timing)
	Results for RQ4 (Policy Enforcement)

	Conclusion

	Incorporating Time in Permission Analysis and Enforcement
	Introduction
	Permission-Induced Attacks
	Privilege Escalation
	Unsafe PendingIntent
	Identical Custom Permission
	Passive Data Leak

	Temporal Permission
	Modeling the Android System
	Formulating Safety Rules
	Leasing Temporal Permissions

	TERMINATOR
	Approach Overview
	Analysis
	Enforcement

	Evaluation
	RQ1: Coverage
	RQ2: Disruption
	RQ3: Applicability & Reliability
	RQ4: Performance

	Conclusion

	Permission-Aware Testing of Android
	Introduction
	Illustrative Example
	Approach Overview
	Dynamic Analysis
	Static Analysis of Test Harness App
	Static Analysis of App Under Test
	Permission Analysis
	Widget Analysis

	Building Permission Combinations
	Implementation
	Evaluation
	Experiment Setup
	Efficiency
	Coverage
	Effectiveness
	Performance

	Conclusion

	Conclusion
	Research Contributions
	Future Work

	Bibliography

